首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cadherin engagement inhibits RhoA via p190RhoGAP   总被引:9,自引:0,他引:9  
Cadherins are transmembrane receptors that mediate cell-cell adhesion in epithelial cells. A number of changes occur during cadherin-mediated junction formation, one of which is a rearrangement of the actin cytoskeleton. Key regulators of actin cytoskeletal dynamics in cells are the Rho family of GTPases. We have demonstrated in previous studies that cadherin signaling suppresses RhoA activity and activates Rac1. The signaling events downstream of cadherins that modulate the activity of Rho family proteins remain unknown. Here we have identified a pathway by which RhoA becomes inactivated by cadherins. To determine whether cadherins regulate RhoA through activation of a GTPase-activating protein (GAP) for RhoA, we used constitutively active RhoA to isolate activated GAPs. Using this assay, we have identified the RhoA-specific GAP, p190RhoGAP, downstream from engaged cadherins. We found that cadherin engagement induced tyrosine phosphorylation of p190RhoGAP and increased its binding to p120RasGAP. The increased precipitation of p190RhoGAP with 63LRhoA was blocked by addition of PP2 suggesting that Src family kinases are required downstream from cadherin signaling. The inhibition of RhoA activity by cadherins was antagonized by expression of a dominant negative p190RhoGAP. Taken together, these data demonstrate that p190RhoGAP activity is critical for RhoA inactivation by cadherins.  相似文献   

2.
The Rnd proteins Rnd1, Rnd2, and Rnd3/RhoE are well known as key regulators of the actin cytoskeleton in various cell types, but they comprise a distinct subgroup of the Rho family in that they are GTP bound and constitutively active. Functional differences of the Rnd proteins in RhoA inhibition signaling have been reported in various cell types. Rnd1 and Rnd3 antagonize RhoA signaling by activating p190 RhoGAP, whereas Rnd2 does not. However, all the members of the Rnd family have been reported to bind directly to p190 RhoGAP and equally induce activation of p190 RhoGAP in vitro, and there is no evidence that accounts for the functional difference of the Rnd proteins in RhoA inhibition signaling. Here we report the role of the N-terminal region in signaling. Rnd1 and Rnd3, but not Rnd2, have a KERRA (Lys-Glu-Arg-Arg-Ala) sequence of amino acids in their N-terminus, which functions as the lipid raft-targeting determinant. The sequence mediates the lipid raft targeting of p190 RhoGAP correlated with its activation. Overall, our results demonstrate a novel regulatory mechanism by which differential membrane targeting governs activities of Rnd proteins to function as RhoA antagonists.  相似文献   

3.
The binding of extracellular matrix proteins to integrins triggers rearrangements in the actin cytoskeleton by regulating the Rho family of small GTPases. The signaling events that mediate changes in the activity of Rho proteins in response to the extracellular matrix remain largely unknown. We have demonstrated in previous studies that integrin signaling transiently suppresses RhoA activity through stimulation of p190RhoGAP. Here, we investigated the biological significance of adhesion-dependent RhoA inactivation by manipulating p190RhoGAP signaling in Rat1 fibroblasts. The inhibition of RhoA activity that is induced transiently by adhesion was antagonized by expression of dominant negative p190RhoGAP. This resulted in impaired cell spreading on a fibronectin substrate, reduced cell protrusion, and premature assembly of stress fibers. Conversely, overexpression of p190RhoGAP augmented cell spreading. Dominant negative p190RhoGAP elevated RhoA activity in cells on fibronectin and inhibited migration, whereas overexpression of the wild-type GAP decreased RhoA activity, promoted the formation of membrane protrusions, and enhanced motility. Cells expressing dominant negative p190RhoGAP, but not control cells or cells overexpressing the wild-type GAP, were unable to establish polarity in the direction of migration. Taken together, these data demonstrate that integrin-triggered RhoA inhibition by p190RhoGAP enhances spreading and migration by regulating cell protrusion and polarity.  相似文献   

4.
We found that engagement of beta(2) integrins on human neutrophils induced activation of RhoA, as indicated by the increased ratio of GTP:GTP + GDP recovered on RhoA and translocation of RhoA to a membrane fraction. The clustering of beta(2) integrins also induced a time-dependent increase in GDP bound to RhoA, which correlated with beta(2) integrin-induced activation of p190RHOGAP: The activation of p190RhoGAP was completely blocked by [4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine] (PP1), a selective inhibitor of Src family tyrosine kinases. However, clustering of beta(2) integrins did not increase the basal tyrosine phosphorylation of p190RhoGAP, nor did it affect the amount of p120RasGAP bound to p190RHOGAP: Instead, the beta(2) integrin-induced activation of p190RhoGAP was accompanied by increased tyrosine phosphorylation of a p190RhoGAP-associated protein, p120RasGAP, and accumulation of both p120RasGAP and p190RhoGAP in a membrane fraction. PP1 blocked the beta(2) integrin-induced phosphorylation of p120RasGAP, as well as the translocation of p190RhoGAP and p120RasGAP, but it did not affect the accumulation of RhoA in the membrane fraction. In agreement with the mentioned findings, PP1 also increased the GTP:GTP + GDP ratio recovered on RhoA immunoprecipitated from beta(2) integrin-stimulated cells. Thus, in neutrophils, beta(2) integrin-induced activation of p190RhoGAP requires a signal from a Src family tyrosine kinase, but it does not occur via the signaling pathway responsible for activation of RHOA:  相似文献   

5.
The Rac GTPase regulates Rho signaling in a broad range of physiological settings and in oncogenic transformation [1-3]. Here, we report a novel mechanism by which crosstalk between Rac and Rho GTPases is achieved. Activated Rac1 binds directly to p190B Rho GTPase-activating protein (RhoGAP), a major modulator of Rho signaling. p190B colocalizes with constitutively active Rac1 in membrane ruffles. Moreover, activated Rac1 is sufficient to recruit p190B into a detergent-insoluble membrane fraction, a process that is accompanied by a decrease in GTP-bound RhoA from membranes. p190B is recruited to the plasma membrane in response to integrin engagement [4]. We demonstrate that collagen type I, a potent inducer of Rac1-dependent cell motility in HeLa cells, counteracts cytoskeletal collapse resulting from overexpression of wild-type p190B, but not that resulting from overexpression of a p190B mutant specifically lacking the Rac1-binding sequence. Furthermore, this p190B mutant exhibits dramatically enhanced RhoGAP activity, consistent with a model whereby binding of Rac1 relieves autoinhibition of p190B RhoGAP function. Collectively, these observations establish that activated Rac1, through direct interaction with p190B, modulates subcellular RhoGAP localization and activity, thereby providing a novel mechanism for Rac control of Rho signaling in a broad range of physiological processes.  相似文献   

6.
The interaction of endothelial cells with extracellular matrix proteins at focal adhesions sites contributes to the integrity of vascular endothelial barrier. Although focal adhesion kinase (FAK) activation is required for the recovery of the barrier function after increased endothelial junctional permeability, the basis for the recovery remains unclear. We tested the hypothesis that FAK activates p190RhoGAP and, thus, negatively regulates RhoA activity and promotes endothelial barrier restoration in response to the permeability-increasing mediator thrombin. We observed that thrombin caused a transient activation of RhoA but a more prolonged FAK activation temporally coupled to the recovery of barrier function. Thrombin also induced tyrosine phosphorylation of p190RhoGAP, which coincided with decrease in RhoA activity. We further showed that FAK was associated with p190RhoGAP, and importantly, recombinant FAK phosphorylated p190RhoGAP in vitro. Inhibition of FAK by adenoviral expression of FRNK (a dominant negative FAK construct) in monolayers prevented p190RhoGAP phosphorylation, increased RhoA activity, induced actin stress fiber formation, and produced an irreversible increase in endothelial permeability in response to thrombin. We also observed that p190RhoGAP was unable to attenuate RhoA activation in the absence of FAK activation induced by FRNK. The inhibition of RhoA by the C3 toxin (Clostridium botulinum toxin) restored endothelial barrier function in the FRNK-expressing cells. These findings in endothelial cells were recapitulated in the lung microcirculation in which FRNK expression in microvessel endothelia increased vascular permeability. Our studies demonstrate that FAK-induced down-modulation of RhoA activity via p190RhoGAP is a crucial step in signaling endothelial barrier restoration after increased endothelial permeability.  相似文献   

7.
p190-B RhoGAP regulates mammary ductal morphogenesis   总被引:1,自引:0,他引:1  
Previous studies from our laboratory have demonstrated that p190-B RhoGAP (p190-B) is differentially expressed in the Cap cells of terminal end buds (TEBs) and poorly differentiated rodent mammary tumors. Based on these observations we hypothesized that p190-B might play an essential role in invasion of the TEBs into the surrounding fat pad during ductal morphogenesis. To test this hypothesis, mammary development was studied in p190-B-deficient mice. A haploinsufficiency phenotype was observed in p190-B heterozygous mice as indicated by decreased number and rate of ductal outgrowth(s) at 3, 4, and 5 wk of age when compared with their wild-type littermates. This appeared to result from decreased proliferation in the Cap cells of the TEBs, a phenotype remarkably similar to that observed previously in IGF-I receptor null mammary epithelium. Furthermore, decreased expression of insulin receptor substrates 1 and 2 were observed in TEBs of p190-B heterozygous mice. These findings are consistent with decreased IGF signaling observed previously in p190-B-/- mouse embryo fibroblasts. To further assess if this defect was cell autonomous or due to systemic endocrine effects, the mammary anlagen from p190-B+/+, p190-B+/-, and p190-B-/- mice was rescued by transplantation into the cleared fat pad of recipient Rag1-/- mice. Surprisingly, as opposed to 75-80% outgrowths observed using wild-type donor epithelium, only 40% of the heterozygous and none of the p190-B-/- epithelial transplants displayed any outgrowths. Together, these results suggest that p190-B regulates ductal morphogenesis, at least in part, by modulating the IGF signaling axis.  相似文献   

8.
During development of the central nervous system, oligodendrocyte progenitor cells differentiate into mature myelinating cells. The molecular signals that promote this process, however, are not well defined. One molecule that has been implicated in oligodendrocyte differentiation is the Src family kinase Fyn. In order to probe the function of Fyn in this system, a yeast two hybrid screen was performed. Using Fyn as bait, p190 RhoGAP was isolated in the screen of an oligodendrocyte cDNA library. Coimmunoprecipitation and in vitro binding assays verified that p190 RhoGAP bound to the Fyn SH2 domain. Phosphorylation of p190 required active Fyn tyrosine kinase and was increased threefold upon differentiation of primary oligodendrocytes. Moreover, complex formation between p190 and p120 RasGAP occurred in differentiated oligodendrocytes. p190 RhoGAP activity is known to regulate the RhoGDP:RhoGTP ratio. Indeed, expression of dominant negative Rho in primary oligodendrocytes caused a hyperextension of processes. Conversely, constitutively activated Rho caused reduced process formation. These findings define a pathway in which Fyn activity regulates the phosphorylation of p190, leading to an increase in RhoGAP activity with a subsequent increase in RhoGDP, which in turn, regulates the morphological changes that accompany oligodendrocyte differentiation.  相似文献   

9.
p190RhoGAP is a GTPase-activating protein (GAP) known to regulate actin cytoskeleton dynamics by decreasing RhoGTP levels through activation of the intrinsic GTPase activity of Rho. Although the GAP domain of p190RhoGAP stimulates the intrinsic' GTPase activity of several Rho family members (Rho, Rac, Cdc42) under in vitro conditions, p190RhoGAP is generally regarded as a GAP for RhoA in the cell. The cellular RacGAP activity of the protein has not been proven directly. We have previously shown that the in vitro RacGAP and RhoGAP activity of p190RhoGAP was inversely regulated through a polybasic region of the protein. Here we provide evidence that p190RhoGAP shows remarkable GAP activity toward Rac also in the cell. The cellular RacGAP activity of p190RhoGAP requires an intact polybasic region adjacent to the GAP domain whereas the RhoGAP activity is inhibited by the same domain. Our data indicate that through its alternating RacGAP and RhoGAP activity, p190RhoGAP plays a more complex role in the Rac–Rho antagonism than it was realized earlier.  相似文献   

10.
Lamprecht R  Farb CR  LeDoux JE 《Neuron》2002,36(4):727-738
We used fear conditioning, which is known to alter synaptic efficacy in lateral amygdala (LA), to study molecular mechanisms underlying long-term memory. Following fear conditioning, the tyrosine phosphorylated protein p190 RhoGAP becomes associated with GRB2 in LA significantly more in conditioned than in control rats. RasGAP and Shc were also found to associate with GRB2 in LA significantly more in the conditioned animals. Inhibition of the p190 RhoGAP-downstream kinase ROCK in LA during fear conditioning impaired long- but not short-term memory. Thus, the p190 RhoGAP/ROCK pathway, which regulates the morphology of dendrites and axons during neural development, plays a central role, through a GRB2-mediated molecular complex, in fear memory formation in the lateral amygdala.  相似文献   

11.
We have previously shown that protein kinase C (PKC) epsilon induces neurite outgrowth via its regulatory domain. This is accompanied by PKC-induced stress fibre loss. Here, we show that the regulatory domain (RD) of PKCepsilon induces processes also in NIH-3T3 fibroblasts, similar to what has been observed with p190RhoGAP. This study also shows that p190RhoGAP induces neurite outgrowth in SK-N-BE(2) neuroblastoma cells. We therefore investigated whether p190RhoGAP may be downstream of PKCepsilon. We could detect a co-localization of p190RhoGAP and PKCepsilon at membrane ruffles and an increased association between the proteins in fibroblasts treated with 12-O-tetradecanoylphorbol-13-acetate (TPA). The association is also seen in neuroblastoma cells, and nerve growth factor (NGF) treatment of SH-SYSY/TrkA cells decreases the interaction. However, overexpressed PKCepsilon did not coprecipitate overexpressed p190RhoGAP in CHO cells, indicating that the proteins do not interact directly. This raises the possibility that p190RhoGAP is involved in mediating the morphological effects of PKCepsilon.  相似文献   

12.
Integration of receptor tyrosine kinase, integrin, and cadherin activities is crucial for normal cell growth, motility, and adhesion. Here, we describe roles for p120-catenin (p120) and p190RhoGAP that coordinate crosstalk between these systems and regulate cadherin function. Surprisingly, PDGFR-induced actin remodeling in NIH3T3 cells is blocked in the absence of p120, and the cells are partially transformed via constitutive activation of Rho. We have traced the mechanism to unexpected codependent roles for p120 and p190RhoGAP in regulating Rac-dependent antagonism of Rho. Receptor-induced Rac activity causes translocation of p190RhoGAP to adherens junctions (AJs), where it couples to the cadherin complex via interaction with p120. AJ formation is dependent on this p120-p190RhoGAP interaction and fails altogether if either of these proteins are compromised. We propose that Rac activation links diverse signaling systems to AJ assembly by controlling transient p190RhoGAP interactions with p120 and localized inhibition of Rho.  相似文献   

13.
Cell migration is critical for normal development and for pathological processes including cancer cell metastasis. Dynamic remodeling of focal adhesions and the actin cytoskeleton are crucial determinants of cell motility. The Rho family and the mitogen-activated protein kinase (MAPK) module consisting of MEK-extracellular signal-regulated kinase (ERK) are important regulators of these processes, but mechanisms for the integration of these signals during spreading and motility are incompletely understood. Here we show that ERK activity is required for fibronectin-stimulated Rho-GTP loading, Rho-kinase function, and the maturation of focal adhesions in spreading cells. We identify p190A RhoGAP as a major target for ERK signaling in adhesion assembly and identify roles for ERK phosphorylation of the C terminus in p190A localization and activity. These observations reveal a novel role for ERK signaling in adhesion assembly in addition to its established role in adhesion disassembly.Cell migration is a highly coordinated process essential for physiological and pathological processes (69). Signaling through Rho family GTPases (e.g., Rac, Cdc42, and Rho) is crucial for cell migration. Activated Rac and Cdc42 are involved in the production of a dominant lamellipodium and filopodia, respectively, whereas Rho-stimulated contractile forces are required for tail retraction and to maintain adhesion to the matrix (57, 58, 68). Rac- and Cdc42-dependent membrane protrusions are driven by the actin cytoskeleton and the formation of peripheral focal complexes; Rho activation stabilizes protrusions by stimulating the formation of mature focal adhesions and stress fibers. Active Rho influences cytoskeletal dynamics through effectors including the Rho kinases (ROCKs) (2, 3).Rho activity is stimulated by GEFs that promote GTP binding and attenuated by GTPase-activating proteins (GAPs) that enhance Rho''s intrinsic GTPase activity. However, due to the large number of RhoGEFs and RhoGAPs expressed in mammalian cells, the molecular mechanisms responsible for regulation of Rho activity in time and space are incompletely understood. p190A RhoGAP (hereafter p190A) is implicated in adhesion and migration signaling. p190A contains an N-terminal GTPase domain, a large middle domain juxtaposed to the C-terminal GAP domain, and a short C-terminal tail (74). The C-terminal tail of ∼50 amino acids is divergent between p190A and the closely related family member p190B (14) and thus may specify the unique functional roles for p190A and p190B revealed in gene knockout studies (10, 11, 41, 77, 78). p190A activity is dynamically regulated in response to external cues during cell adhesion and migration (5, 6, 59). Arthur et al. (5) reported that p190A activity is required for the transient decrease in RhoGTP levels seen in fibroblasts adhering to fibronectin. p190A activity is positively regulated by tyrosine phosphorylation (4, 5, 8, 17, 31, 39, 40, 42): phosphorylation at Y1105 promotes its association with p120RasGAP and subsequent recruitment to membranes or cytoskeleton (8, 17, 27, 31, 71, 75, 84). However, Y1105 phosphorylation is alone insufficient to activate p190A GAP activity (39). While the functions of p190A can be irreversibly terminated by ubiquitinylation in a cell-cycle-dependent manner (80), less is known about reversible mechanisms that negatively regulate p190A GAP activity during adhesion and motility.The integration of Rho family GTPase and extracellular signal-regulated kinase (ERK) signaling is important for cell motility (48, 50, 63, 76, 79). Several studies have demonstrated a requirement for ERK signaling in the disassembly of focal adhesions in migrating cells, in part through the activation of calpain proteases (36, 37) that can downregulate focal adhesion kinase (FAK) signaling (15), locally suppress Rho activity (52), and sever cytoskeletal linkers to focal adhesions (7, 33). Inhibition of ERK signaling increases focal adhesion size and retards disassembly of focal adhesions in adherent cells (57, 64, 85, 86). It is also recognized that ERK modulates Rho-dependent cellular processes, including membrane protrusion and migration (18, 25, 64, 86). Interestingly, ERK activated in response to acute fibronectin stimulation localizes not only to mature focal adhesions, but also to peripheral focal complexes (32, 76). Since these complexes can either mature or be turned over (12), ERK may play a distinct role in focal adhesion assembly. ERK is proposed to promote focal adhesion formation by activating myosin light chain kinase (MLCK) (21, 32, 50).Here we find that ERK activity is required for Rho activation and focal adhesion formation during adhesion to fibronectin and that p190A is an essential target of ERK signaling in this context. Inspection of the p190A C terminus reveals a number of consensus ERK sites and indeed p190A is phosphorylated by recombinant ERK only on its C terminus in vitro, and on the same C-terminal peptide in vivo. Mutation of the C-terminal ERK phosphorylation sites to alanine increases the biochemical and biological activity of p190A. Finally, inhibition of MEK or mutation of the C-terminal phosphorylation sites enhances retention of p190A in peripheral membranes during spreading on fibronectin. Our data support the conclusion that ERK phosphorylation inhibits p190A allowing increases in RhoGTP and cytoskeletal changes necessary for focal adhesion formation.  相似文献   

14.
The rat pheochromocytoma cell line PC12 has been widely used as a model to study neuronal differentiation. PC12 cells give rise to neurites in response to basic fibroblast growth factor (bFGF). However, it is unclear whether bFGF promotes neurite outgrowth by inducing RhoA inactivation, and a mechanism for RhoA inactivation in PC12 cells in response to bFGF has not been reported. Lysophosphatidic acid (LPA) treatment and the expression of constitutively active (CA)‐RhoA (RhoA V14) impaired neurite formation in response to bFGF, while Tat‐C3 exoenzyme and the expression of dominant negative (DN)‐RhoA (RhoA N19) stimulated neurite outgrowth. GTP‐bound RhoA levels were reduced in response to bFGF, which suggests that the inactivation of RhoA is essential to neurite outgrowth in response to bFGF. To investigate the mechanism of RhoA inactivation, this study examined the roles of p190RhoGAP and Rap‐dependent RhoGAP (ARAP3). DN‐p190RhoGAP prevented neurite outgrowth, while WT‐p190RhoGAP and Src synergistically stimulated neurite outgrowth; these findings suggest that bFGF promotes the inactivation of RhoA and subsequent neurite outgrowth through p190RhoGAP and Src. Furthermore, DN‐Rap1 and DN‐ARAP3 reduced neurite formation in PC12 cells. These results suggest that RhoA is likely to be inactivated by p190RhoGAP and ARAP3 during neurite outgrowth in response to bFGF. J. Cell. Physiol. 224: 786–794, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
16.
We previously reported that cells chronically exposed to ethanol show alterations in actin cytoskeleton organization and dynamics in primary cultures of newborn rat astrocytes, a well-established in vitro model for foetal alcohol spectrum disorders. These alterations were attributed to a decrease in the cellular levels of active RhoA (RhoA-GTP), which in turn was produced by an increase in the total RhoGAP activity. We here provide evidence that p190RhoGAPs are the main factors responsible for such increase. Thus, in astrocytes chronically exposed to ethanol we observe: (i) an increase in p190A- and p190B-associated RhoGAP activity; (ii) a higher binding of p190A and p190B to RhoA-GTP; (iii) a higher p120RasGAP-p190A RhoGAP complex formation; and (iv) the recruitment of both p190RhoGAPs to the plasma membrane. The simultaneous silencing of both p190 isoforms prevents the actin rearrangements and the total RhoGAP activity increase triggered both by ethanol. Therefore, our data directly points p190RhoGAPs as ethanol-exposure molecular targets on glial cells of the CNS.  相似文献   

17.
Melanoma cells express the chemokine receptor CXCR4 that confers high invasiveness upon binding to its ligand CXCL12. Melanoma cells at initial stages of the disease show reduction or loss of E-cadherin expression, but recovery of its expression is frequently found at advanced phases. We overexpressed E-cadherin in the highly invasive BRO lung metastatic cell melanoma cell line to investigate whether it could influence CXCL12-promoted cell invasion. Overexpression of E-cadherin led to defective invasion of melanoma cells across Matrigel and type I collagen in response to CXCL12. A decrease in individual cell migration directionality toward the chemokine and reduced adhesion accounted for the impaired invasion. A p190RhoGAP-dependent inhibition of RhoA activation was responsible for the impairment in chemokine-stimulated E-cadherin melanoma transfectant invasion. Furthermore, we show that p190RhoGAP and p120ctn associated predominantly on the plasma membrane of cells overexpressing E-cadherin, and that E-cadherin-bound p120ctn contributed to RhoA inactivation by favoring p190RhoGAP-RhoA association. These results suggest that melanoma cells at advanced stages of the disease could have reduced metastatic potency in response to chemotactic stimuli compared with cells lacking E-cadherin, and the results indicate that p190RhoGAP is a central molecule controlling melanoma cell invasion.Cadherins are a family of Ca2+-dependent adhesion molecules that mediate cell-cell contacts and are expressed in most solid tissues providing a tight control of morphogenesis (1, 2). Classical cadherins, such as epithelial (E) cadherin, are found in adherens junctions, forming core protein complexes with β-catenin, α-catenin, and p120 catenin (p120ctn). Both β-catenin and p120ctn directly interact with E-cadherin, whereas α-catenin associates with the complex through its binding to β-catenin, providing a link with the actin cytoskeleton (1, 2). E-cadherin is frequently lost or down-regulated in many human tumors, coincident with morphological epithelial to mesenchymal transition and acquisition of invasiveness (3-6).Although melanoma only accounts for 5% of skin cancers, when metastasis starts, it is responsible for 80% of deaths from skin cancers (7). Melanocytes express E-cadherin (8-10), but melanoma cells at early radial growth phase show a large reduction in the expression of this cadherin, and surprisingly, expression has been reported to be partially recovered by vertical growth phase and metastatic melanoma cells (9, 11, 12).Trafficking of cancer cells from primary tumor sites to intravasation into blood circulation and later to extravasation to colonize distant organs requires tightly regulated directional cues and cell migration and invasion that are mediated by chemokines, growth factors, and adhesion molecules (13). Solid tumor cells express chemokine receptors that provide guidance of these cells to organs where their chemokine ligands are expressed, constituting a homing model resembling the one used by immune cells to exert their immune surveillance functions (14). Most solid cancer cells express CXCR4, a receptor for the chemokine CXCL12 (also called SDF-1), which is expressed in lungs, bone marrow, and liver (15). Expression of CXCR4 in human melanoma has been detected in the vertical growth phase and on regional lymph nodes, which correlated with poor prognosis and increased mortality (16, 17). Previous in vivo experiments have provided evidence supporting a crucial role for CXCR4 in the metastasis of melanoma cells (18).Rho GTPases control the dynamics of the actin cytoskeleton during cell migration (19, 20). The activity of Rho GTPases is tightly regulated by guanine-nucleotide exchange factors (GEFs),4 which stimulate exchange of bound GDP by GTP, and inhibited by GTPase-activating proteins (GAPs), which promote GTP hydrolysis (21, 22), whereas guanine nucleotide dissociation inhibitors (GDIs) appear to mediate blocking of spontaneous activation (23). Therefore, cell migration is finely regulated by the balance between GEF, GAP, and GDI activities on Rho GTPases. Involvement of Rho GTPases in cancer is well documented (reviewed in Ref. 24), providing control of both cell migration and growth. RhoA and RhoC are highly expressed in colon, breast, and lung carcinoma (25, 26), whereas overexpression of RhoC in melanoma leads to enhancement of cell metastasis (27). CXCL12 activates both RhoA and Rac1 in melanoma cells, and both GTPases play key roles during invasion toward this chemokine (28, 29).Given the importance of the CXCL12-CXCR4 axis in melanoma cell invasion and metastasis, in this study we have addressed the question of whether changes in E-cadherin expression on melanoma cells might affect cell invasiveness. We show here that overexpression of E-cadherin leads to impaired melanoma cell invasion to CXCL12, and we provide mechanistic characterization accounting for the decrease in invasion.  相似文献   

18.
19.
The Rho family small GTPases Rho, Rac, and Cdc42 regulate cell shape and motility through the actin cytoskeleton. These proteins cycle between a GTP-bound “on” state and a GDP-bound “off” state and are negatively regulated by GTPase-activating proteins (GAPs), which accelerate the small GTPase’s intrinsic hydrolysis of bound GTP to GDP. Drosophila RhoGAP68F is similar to the mammalian protein p50RhoGAP/Cdc42GAP, which exhibits strong GAP activity toward Cdc42. We find that, despite the strong similarities between RhoGAP68F and p50RhoGAP/Cdc42GAP, RhoGAP68F is most effective as a GAP for RhoA. These in vitro data are supported by the in vivo analysis of mutants in RhoGAP68F. We demonstrate through the characterization of two alleles of the RhoGAP68F gene that RhoGAP68F participates in gastrulation of the embryo, a morphogenetic event driven by cell constriction that involves RhoA signaling. We propose that RhoGAP68F functions as a regulator of RhoA signaling during gastrulation.  相似文献   

20.
In mitogenically stimulated cells, a specific complex forms between the Ras GTPase-activating protein (RasGAP) and the cellular protein p190. We have previously reported that p190 contains a carboxy-terminal domain that functions as a GAP for the Rho family GTPases. Thus, the RasGAP-p190 complex may serve to couple Ras- and Rho-mediated signalling pathways. In addition to its RhoGAP domain, p190 contains an amino-terminal domain that contains sequence motifs found in all known GTPases. Here, we report that p190 binds GTP and GDP through this conserved domain and that the structural requirements for binding are similar to those seen with other GTPases. While the purified protein is unable to hydrolyze GTP, we detect an activity in cell lysates that can promote GTP hydrolysis by p190. A mutated form of p190 that fails to bind nucleotide retains its RasGAP binding and RhoGAP activities, indicating that GTP binding by p190 is not required for these functions. The sequence of p190 in the GTP-binding domain, which shares structural features with both the Ras-like small GTPases and the larger G proteins, suggests that this protein defines a novel class of guanine nucleotide-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号