首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gosling  E. M.  Wilson  I. F.  Andrews  J. 《Hydrobiologia》1998,378(1-3):21-25
Littorina tenebrosa is a small fragile-shelled periwinkle which lives on permanently submerged algae in coastal lagoons and non-tidal brackish pools. This periwinkle is a member of the rough periwinkle group which also comprises Littorina saxatilis, L. arcana, L. compressa and L. neglecta and is most closely related to L. saxatilis although its exact systematic status is in some doubt. Based on its unique ecology many believe L. tenebrosa to be a valid species. However, shell morphometric and allozyme analyses on Scottish and Swedish populations of L. tenebrosa and L. saxatilis have indicated that the two periwinkles are virtually identical. Preliminary results on five allozyme loci (AAT-1, GPI, PGM-1, PGM-2 and PNP) in samples of L. tenebrosa and L. saxatilis from Golam Head, Lettermullen, and other locations on the west coast of Ireland show L. tenebrosa to be genetically differentiated from L. saxatilis At Golam Head, where opportunities for gene flow occur between the two taxa, L. tenebrosa is as genetically differentiated from local L. saxatilis as it is from L. saxatilis from more geographically distant locations.  相似文献   

2.
The null assumption of molecular variation is that most of it is neutral to natural selection. This is in contrast to variation in morphological traits that we generally assume is maintained by selection, and therefore often by selection coupled to environmental heterogeneity in time and space. Examples of molecular variation that vary over habitat-shifts, particularly in allozymes, show that the relative impact of non-neutral variation as compared to neutral variation might be substantial in some systems. To assess the importance of habitat-generated variation in relation to variation generated by random processes in nuclear DNA markers at small spatial scales, we compared the effects of island isolation and habitat heterogeneity on genetic substructuring in a rocky shore snail ( Littorina saxatilis ). This species has a restricted migration among islands owing to the lack of free-floating larvae. Earlier studies show that allozymes vary extensively as a consequence of isolation by water barriers among islands, but also as a consequence of divergent selection among different microhabitats within islands. In the DNA markers we observed genetic differentiation owing to island isolation at three of nine loci. In addition, variation at three loci correlated with habitat type, but the correlation for two of the loci was weak. Overall, isolation contributed slightly more to the genetic variation among populations than did habitat-related factors but the difference was small. It is concluded that both island isolation, which interrupts gene flow, and a heterogeneous habitat cause genetic substructuring at the DNA level in L. saxatilis in the studied area, and thus in this species we need to be somewhat concerned about habitat heterogeneity also at DNA loci.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 377–384.  相似文献   

3.
The intertidal snail Littorina saxatilis displays a range ofshell morphologies associated with a variety of habitats. Sincemorphology has an environmental and genetic basis, shell-basedtaxonomy may not accurately reflect genetic relationships. Weexplored genetic structure among adjacent populations of L.saxatilis (the robust open-shore type), L. neglecta (the tinybarnacle-dwelling type) and L. tenebrosa (the fragile brackish-watertype), at nine sites in Britain. Using single-strand conformationalpolymorphism analysis of a 375bp fragment of cytochrome-b wefound no evidence of species distinction. In AMOVA tests significantvariation was contained among populations (68%) and among individuals(32%, both P < 0.001), and insignificant variation was foundamong ecotypes. Genetic patterns suggested gene flow among ecotypesover small scales and a strong random input over larger scales. * To whom correspondence should be addressed. (Received 27 March 2000; accepted 10 July 2000)  相似文献   

4.
We investigated genetic differentiation among populations of the clonal grass Elymus athericus, a common salt-marsh species occurring along the Wadden Sea coast of Europe. While E. athericus traditionally occurs in the high salt marsh, it recently also invaded lower parts of the marsh. In one of the first analyses of the genetic population structure in salt-marsh species, we were interested in population differentiation through isolation-by-distance, and among strongly divergent habitats (low and high marsh) in this wind- and water-dispersed species. High and low marsh habitats were sampled at six sites throughout the Wadden Sea. Based on reciprocal transplantation experiments conducted earlier revealing lower survival of foreign genotypes we predicted reduced gene flow among habitats. Accordingly, an analysis with polymorphic cross-species microsatellite primers revealed significant genetic differentiation between high and low marsh habitats already on a very small scale (< 100 m), while isolation-by-distance was present only on larger scales (60-443 km). In an analysis of molecular variance we found that 14% of the genetic variance could be explained by the differentiation between habitats, as compared to only 8.9% to geographical (isolation-by-distance) effects among six sites 2.5-443 km distant from each other. This suggests that markedly different selection regimes between these habitats, in particular intraspecific competition and herbivory, result in habitat adaptation and restricted gene flow over distances as small as 80 m. Hence, the genetic population structure of plant species can only be understood when considering geographical and selection-mediated restrictions to gene flow simultaneously.  相似文献   

5.
1. Reservoirs modify riverine ecosystems worldwide, and often with deleterious impacts on native biota. The immediate effects of reservoirs on native fish species below dams and in impounded reaches have received considerable attention, but it is unclear how reservoirs may affect fish species at larger spatial and temporal scales. Documented declines of stream fish populations in direct tributaries of reservoirs suggest reservoir pools may reduce gene flow among historically connected populations. 2. Because of increased predator densities in reservoirs and the extent of habitat alteration in impounded reaches, I predicted reservoir habitats would reduce gene flow among small‐bodied fish populations separated by reservoir habitat. I used microsatellite markers to assess the spatial genetic structure of populations of the red shiner (Cyprinella lutrensis), in a reservoir‐fragmented stream network (Lake Texoma, U.S.A.). I also tested the prediction that populations in two direct tributaries that have experienced population declines would have low genetic diversity. Individuals were collected from six sites upstream of the reservoir, three sites in the reservoir and three sites in direct tributaries of the reservoir during 2008 and 2009. 3. Results indicate that most populations were isolated by distance with little divergence among populations. In one direct tributary population, however, there was substantial genetic divergence, and genetic diversity was significantly lower than in other populations. Gene flow also seemed to be lower in reservoir habitats than in intact stream habitats, suggesting reservoir habitats may be reducing gene flow among the reservoir‐separated populations. These results indicate that reservoirs may reduce gene flow among reservoir‐fragmented stream fish populations, altering the evolutionary trajectories of fragmented populations.  相似文献   

6.
Twenty-three enzymes and five shell parameters were screened in 11 subpopulations of Littorina saxatilis Olivi (= L. rudis Maton) occupying different habitats over a 1 km stretch of coastline. Shell morphology varied considerably and consistently with respect to degree of exposure, and since there is evidence that such morphology is at least partly under genetic control, it is likely that natural selection selects particular genotypes at particular locations. There was significant allozyme heterogeneity between neighbouring subpopulations, sometimes only metres apart, but little of the allozyme variability could be related directly to environmental pressures. Thus, with the exception of the Odh locus, the considerable morphological differentiation between snails from exposed and sheltered sites was not reflected in differentiation of those genes coding for electrophoretically assayed enzymes. At the Odh locus, virtually all the genetic differentiation between subpopulations was attributable to differentiation between habitat types. Two loci, Sod-1 and Aat-1, showed highly significant genetic disequilibrium, and possible reasons for this are explored. The population structure as assessed electrophoretically accords well with the stepping-stone model which permits greater differentiation of neighbouring populations than the island model, and which seems realistic in the ovoviviparously reproducing L. saxatilis, where the greater part of gene flow is likely to occur through the occasional migration of adults between contiguous populations.  相似文献   

7.
Aim The aim of this study was to understand the roles of landscape features in shaping patterns of contemporary and historical genetic diversification among populations of the Andean tree frog (Hypsiboas andinus) across spatial scales. Location Andes mountains, north‐western Argentina, South America. Methods Mitochondrial DNA control region sequences were utilized to assess genetic differentiation among populations and calculate population pair‐wise genetic distances. Three models of movement, namely traditional straight‐line distance and two effective distances based on habitat classification, were examined to determine which of these explained the most variation in pair‐wise population genetic differentiation. The two habitat classifications were based on digital vegetation and hydrology layers that were generated from a 90‐m resolution digital elevation model (DEM) and known relationships between elevation and habitat. Mantel tests were conducted to test for correlations between geographic and genetic distance matrices and to estimate the percentage variation explained by each type of geographic distance. To investigate the location of possible barriers to gene flow, we used Monmonier’s maximum difference algorithm as implemented in barrier 2.2. Results At both geographic scales, effective distances explained more variation in genetic differentiation than did straight‐line distance. The least‐cost distances based on the simple classification performed better than the more detailed habitat classification. We controlled for the effects of historical range fragmentation determined from previous nested clade analyses, and therefore evaluated the effect of different distances on the genetic variation attributable to more recent factors. Effective distances identified populations that were highly divergent as a result of isolation in unsuitable habitats. The proposed locations of barriers to gene flow identified using Monmonier’s maximum difference algorithm corresponded well with earlier analyses and supported findings from our partial Mantel tests. Main conclusions Our results indicate that landscape features have been important in both historical and contemporary genetic structuring of populations of H. andinus at both large and small spatial scales. A landscape genetic perspective offers novel insights not provided by traditional phylogeographic studies: (1) effective distances can better explain patterns of differentiation in populations, especially in heterogeneous landscapes where barriers to dispersal may be common; and (2) least‐cost path analysis can help to identify corridors of movement between populations that are biologically more realistic.  相似文献   

8.
Garrigue  Claire 《Hydrobiologia》1998,378(1-3):1-10
Starch-gel electrophoretic techniques were applied to the investigation of molecular genetic variation in populations of the rough periwinkle Littorina saxatilis. The investigation comprised two phases: a) technique development to resolve as many as possible of the allozyme loci reported in the literature as having been screened in the genus Littorina and in Melarhaphe neritoides; b) the use of these loci to assess levels of genetic variation in and patterns of genetic differentiation among populations of L. saxatilis from a relatively isolated group of populations from Galway Bay, Ireland. More than 43 allozyme loci (of which four were screened for the first time here in this species), coding for 37 enzymes, were investigated and thirteen of these loci (including two loci screened for the first time here) were found to be variable and reliably scorable. Samples from five pairs of transects were collected from Inismór, Aran Islands, from sites with known exposure levels; one transect within each pair was collected from an exposed site and the other from a nearby, but relatively sheltered site. UPGMA for eleven loci, (ARK and PGDH were excluded from cluster and FST analysis as they were unscorable in a few samples), showed that the samples cluster mostly by pair, reflecting their geographic origin and is indicative of little gene flow between populations. Levels of population differentiation were high among samples from the top of the shore, but unusually so at AAT-1 which showed nearly three times the mean FST value for the eleven loci. There was also a significant regression of frequency of AAT-1100 against level of exposure. In addition, among midshore samples, there was a consistently higher frequency of AAT-1100 in sheltered habitats. These results support the findings of others, indicating that this locus may be subject to natural selection.  相似文献   

9.
We examined the genetic structure of natural populations of the European wood mouse Apodemus sylvaticus at the microgeographic (<3 km) and macrogeographic (>30 km) scales. Ecological and behavioural studies indicate that this species exhibits considerable dispersal relative to its home-range size. Thus, there is potential for high gene flow over larger geographic areas. As levels of population genetic structure are related to gene flow, we hypothesized that population genetic structuring at the microgeographic level should be negligible, increasing only with geographic distance. To test this, four sites were sampled within a microgeographic scale with two additional samples at the macrogeographic level. Individuals ( n =415) were screened and analysed for seven polymorphic microsatellite loci. Contrary to our hypothesis, significant levels of population structuring were detected at both scales. Comparing genetic differentiation with geographic distance suggests increasing genetic isolation with distance. However, this distance effect was non-significant being confounded by surprisingly high levels of differentiation among microgeographic samples. We attribute this pattern of genetic differentiation to the effect of habitat fragmentation, splitting large populations into components with small effective population sizes resulting in enhanced genetic drift. Our results indicate that it is incorrect to assume genetic homogeneity among populations even where there is no evidence of physical barriers and dispersal can occur freely. In the case of A. sylvaticus , it is not clear whether dispersal does not occur across habitat barriers or behavioural dispersal occurs without consequent gene flow.  相似文献   

10.
Environmental parameters were used to investigate barriers to gene flow and genetic differentiation in the Eurasian perch (Perca fluviatilis L.) at a small geographical scale in an archipelago system. Significant genetic differentiation was found among locations. Distance per se did not play a major role in the reduction of gene flow. Instead, the largest genetic differences between populations correlated with major changes in environmental conditions, such as temperature at time of spawning. The results show that genetic divergence can arise between populations in habitats thought to be highly connected, and that environmental variables can influence the level of gene flow between populations, including those that are at small spatial scales (tens of kilometres). The importance of a landscape approach when investigating genetic differentiation and defining barriers to gene flow is highlighted.  相似文献   

11.
The dispersal of individuals among populations affects the demographic and adaptive trajectories of animal populations and is fundamental to understanding population dynamics. White-tailed ptarmigan (Lagopus leucura) are a high elevation grouse species that live year-round in patchily distributed alpine areas in western North America. We investigated the patterns of dispersal and identified barriers to gene flow for a threatened subspecies (L. l. saxatilis) endemic to Vancouver Island, Canada. Connectivity among seven sites was examined using nine microsatellite loci (n = 133 individuals, H(O) = 0.62, mean number of alleles = 10) and direct movement observations using radio-telemetry (n = 118 individuals). Average movement distances of individuals measured by radio-telemetry were 0.63-3.23 km and considerably less than the shortest distance between sampling sites (18 km). Furthermore, despite extensive radio-telemetry data, movement was never observed between any of the seven sampling sites. In contrast, genetic results (STRUCTURE, TESS) showed connectivity among most of the seven sampling sites and suggested that genetic variation is best explained by two clusters of individuals which separated the South sampling site from all other areas of Vancouver Island. Analysis of molecular data also showed a generally consistent pattern of isolation by distance (Mantel test r = 0.11, P < 0.01) with large areas of unsuitable low elevation habitat possibly acting as barriers to gene flow. Despite the naturally subdivided distribution of populations, white-tailed ptarmigan do not fit well into any common definition of a metapopulation. We conclude the incongruities between the genetic and radio-telemetry data are best explained by episodic dispersal patterns. In this study, we demonstrated the importance of combining genetic and ecological data in understanding patterns of dispersal and population structure.  相似文献   

12.
Examining population genetic structure can reveal patterns of reproductive isolation or population mixing and inform conservation management. Some avian species are predicted to exhibit minimal genetic differentiation among populations as a result of the species high mobility, with habitat specialists tending to show greater fine‐scale genetic structure. To explore the relationship between habitat specialization and gene flow, we investigated the genetic structure of a saltmarsh specialist with high potential mobility across a wide geographical range of fragmented habitat. Little variation among mitochondrial sequences (620 bp from ND2) was observed among 149 individual Clapper Rails Rallus crepitans sampled along the Atlantic coast of the USA, with the majority of individuals at all sampling sites sharing a single haplotype. Genotyping of nine microsatellite loci across 136 individuals revealed moderate genetic diversity, no evidence of bottlenecks and a weak pattern of genetic differentiation that increased with geographical distance. Multivariate analyses, Bayesian clustering and an AMOVA all suggested a lack of genetic structuring across the Atlantic coast of the USA, with all individuals grouped into a single interbreeding population. Spatial autocorrelation analyses showed evidence of weak female philopatry and a lack of male philopatry. We conclude that high gene flow connecting populations of this habitat specialist may result from the interaction of ecological and behavioural factors that promote dispersal and limit natal philopatry and breeding‐site fidelity. As climate change threatens saltmarshes, the genetic diversity and population connectivity of Clapper Rails may promote resilience of their populations. This finding helps inform about potential fates of other similarly behaving saltmarsh specialists on the Atlantic coast.  相似文献   

13.
Wilding  C. S.  Grahame  J.  Mill  P. J. 《Hydrobiologia》1998,378(1-3):71-78
A genetic analysis of morphotypes of Littorina saxatilis from two locations on the north-east coast of England (Filey and Ravenscar), using randomly amplified DNA polymorphisms (RAPD) generated with a single primer, revealed quite different patterns of variation. Thin shelled, wide-apertured (H-form) animals from Ravenscar tended to cluster separately from thick shelled (M) forms, indicating genetic differentiation of these morphs. Animals of similar morphology (H and M) from Filey (about 30 km distant) did not display such an obvious pattern, and although there was still evidence of differentiation from discriminant analysis of RAPD data, levels of correct classification were reduced at Filey. This suggests that the utility of a single RAPD primer for separation of such forms varies over a relatively small distance. L. arcana from Ravenscar, included as an outgroup, were generally well differentiated from L. saxatilis and were noted to exhibit less variation, a phenomenon that has been noted previously in some allozyme and RAPD analyses. A similar RAPD analysis undertaken on small, barnacle dwelling, brooding forms from Peak Steel, Ravenscar revealed that animals appeared to have as great a tendency to cluster together on a microgeographic scale (by collection patch) as by species ( L. neglecta or L. saxatilis b) although predominance of certain species in individual patches largely explains this. Discriminant analysis of RAPD presence/absence data did correctly place over 90% of barnacle dwelling animals to their respective species, and we consider this as evidence of separate gene pools. RAPD is taken to be a useful tool for screening genetic variation in this complex of animals on a local scale when either a pre-selected informative primer is utilised or a battery of primers is used, but its efficacy may be reduced when a single primer is employed for screening animals from different shores.  相似文献   

14.
To test the hypothesis that both physical and ecological barriers to gene flow drive population differentiation in tropical seabirds, we surveyed mitochondrial control region variation in 242 brown boobies (Sula leucogaster), which prefer inshore habitat, and 271 red-footed boobies (S. sula), which prefer pelagic habitat. To determine the relative influence of isolation and gene flow on population structure, we used both traditional methods and a recently developed statistical method based on coalescent theory and Bayesian inference (Isolation with Migration). We found that global population genetic structure was high in both species, and that female-mediated gene flow among ocean basins apparently has been restricted by major physical barriers including the Isthmus of Panama, and the periodic emergence of the Sunda and Sahul Shelves in Southeast Asia. In contrast, the evolutionary history of populations within ocean basins differed markedly between the two species. In brown boobies, we found high levels of population genetic differentiation and limited gene flow among colonies, even at spatial scales as small as 500 km. Although red-footed booby colonies were also genetically differentiated within ocean basins, coalescent analyses indicated that populations have either diverged in the face of ongoing gene flow, or diverged without gene flow but recently made secondary contact. Regardless, gene flow among red-footed booby populations was higher than among brown booby populations. We suggest that these contrasting patterns of gene flow within ocean basins may be explained by the different habitat preferences of brown and red-footed boobies.  相似文献   

15.
1. We used both genetic and ecological methods to evaluate the role of history and the scale of colonisation in structuring populations of the caddisfly Plectrocnemia conspersa. There was no genetic differentiation between sites up to 20 km apart, despite population sizes suggesting that genetic drift could create substantial variation at this scale. 2. Genetic differentiation between populations separated by more than 20 km was greater than expected given the contrasting short‐range trend, and implied a neighbourhood population size that is implausibly small. Therefore, the evolutionary processes that affect the short‐range trend do not explain differentiation over greater distances. 3. At small scales (<20 km), relatively short flights by winged adults spread over a number of generations could account for the spread of genes. For instance, dispersing individuals could found small (often temporary) populations, which may then grow and exchange genes with larger and more permanent local populations, amplifying the effects of the initial gene flow. 4. Over larger scales (20–500 km), substantial gaps between regions containing suitable habitat patches could reduce the number of colonisation events. Genetic patterns at this scale may date from the time they were last colonised. Previous ecological studies have rarely examined the dynamics of aquatic insect populations over these larger geographical scales, yet these processes may be central to their persistence and spread.  相似文献   

16.
N Yuan  H P Comes  Y N Cao  R Guo  Y H Zhang  Y X Qiu 《Heredity》2015,114(6):544-551
Elucidating the demographic and landscape features that determine the genetic effects of habitat fragmentation has become fundamental to research in conservation and evolutionary biology. Land-bridge islands provide ideal study areas for investigating the genetic effects of habitat fragmentation at different temporal and spatial scales. In this context, we compared patterns of nuclear microsatellite variation between insular populations of a shrub of evergreen broad-leaved forest, Loropetalum chinense, from the artificially created Thousand-Island Lake (TIL) and the Holocene-dated Zhoushan Archipelago of Southeast China. Populations from the TIL region harboured higher levels of genetic diversity than those from the Zhoushan Archipelago, but these differences were not significant. There was no correlation between genetic diversity and most island features, excepting a negative effect of mainland–island distance on allelic richness and expected heterozygosity in the Zhoushan Archipelago. In general, levels of gene flow among island populations were moderate to high, and tests of alternative models of population history strongly favoured a gene flow-drift model over a pure drift model in each region. In sum, our results showed no obvious genetic effects of habitat fragmentation due to recent (artificial) or past (natural) island formation. Rather, they highlight the importance of gene flow (most likely via seed) in maintaining genetic variation and preventing inter-population differentiation in the face of habitat ‘insularization'' at different temporal and spatial scales.  相似文献   

17.
Effective predictive and management approaches for species occurring in a metapopulation structure require good understanding of interpopulation connectivity. In this study, we ask whether population genetic structure of marine species with fragmented distributions can be predicted by stepping‐stone oceanographic transport and habitat continuity, using as model an ecosystem‐structuring brown alga, Cystoseira amentacea var. stricta. To answer this question, we analysed the genetic structure and estimated the connectivity of populations along discontinuous rocky habitat patches in southern Italy, using microsatellite markers at multiple scales. In addition, we modelled the effect of rocky habitat continuity and ocean circulation on gene flow by simulating Lagrangian particle dispersal based on ocean surface currents allowing multigenerational stepping‐stone dynamics. Populations were highly differentiated, at scales from few metres up to thousands of kilometres. The best possible model fit to explain the genetic results combined current direction, rocky habitat extension and distance along the coast among rocky sites. We conclude that a combination of variable suitable habitat and oceanographic transport is a useful predictor of genetic structure. This relationship provides insight into the mechanisms of dispersal and the role of life‐history traits. Our results highlight the importance of spatially explicit modelling of stepping‐stone dynamics and oceanographic directional transport coupled with habitat suitability, to better describe and predict marine population structure and differentiation. This study also suggests the appropriate spatial scales for the conservation, restoration and management of species that are increasingly affected by habitat modifications.  相似文献   

18.
Primers for amplification of four novel, unlinked nuclear DNA loci, the first reported for the rough periwinkles of the genus Littorina, are described. Patterns of restriction site polymorphism for these loci are detailed within the rough periwinkles. RFLPs are not found to be diagnostic for any of the currently accepted species within this group, nor for any of the contentious subspecies, or forms, whose taxonomic status is uncertain. However, there are important differences in allele frequencies between these taxa and certain of these mirror differences detected in a previous study of the mitochondrial DNA. These allele frequency data are used to construct a phylogeny in which groupings of the three recognised species are obvious when either Nei's genetic distances or Reynold's distances are clustered. Contentious forms (L. neglecta, L. saxatilis 'b' and L. tenebrosa) do not cluster as distinct taxa, although populations of L. neglecta have important allele frequency differences from L. saxatilis. These four loci have confirmed the consensus view of Littorina phylogeny and provided important information on population structure-however four loci is insufficient for reaching definitive conclusions. Since analysis of nuclear DNA polymorphisms such as these is invaluable for analysis of phylogeny, population structure and phylogeography, identification of additional loci is considered imperative.  相似文献   

19.
The marine ectoparasitic copepod of salmonids, Lepeophtheirus salmonis (Krøyer), is a major pest of farmed Atlantic salmon (Salmo salar L.) causing great economic impact. The spatial scales over which L. salmonis populations in different salmon farms are typically connected, and the temporal scales over which L. salmonis from the same farm typically undergo genetic change are largely unknown. These questions were posed in a small-scale geographic study of population structure in L. salmonis from four salmon farms, along the northwest and west coasts of Ireland, using two outgroups from Norway and Canada. The temporal stability of genetic composition was also studied in samples collected quarterly during one year from one salmon farm in Ireland. Genetic composition in L. salmonis was characterised using four nuclear microsatellites. Significant but low genetic differentiation was observed between all sites (F ST = 0.08), with no evidence that differentiation was correlated with geographic distance. Temporal genetic differentiation was also evident (F ST = 0.07). An analysis of all L. salmonis samples except the ones from Norway detected two separate clusters. Each cluster contained both geographical and temporal samples. These results are consistent with a population model in which L. salmonis in salmon farms along the northwest and west coasts of Ireland are not isolated, but are potentially subject to (i) localised ecological factors at the particular farm sites or (ii) selection post-settlement or a combination thereof.  相似文献   

20.
Abstract Many natural populations in areas of continuous habitat exhibit some form of local genetic structure. Anthropogenic habitat fragmentation can also strongly influence the dynamics of gene flow between populations. We used eight microsatellite markers to investigate the population genetic structure of an abundant forest species, the Australian bush rat (Rattus fuscipes), in the subtropical forests of south‐east Queensland. Five sites were sampled, allowing pairwise comparisons within continuous habitat and across clearings. Weak, but significant population differentiation and a significant pattern of isolation by distance was detected over the small scale (<10 km) of this study. Fine‐scale analysis at a single site (<1 km) showed a significant correlation between individual female genetic distance and geographical distance, but no similar pattern among male individuals. There was no evidence of increased population differentiation across clearings relative to comparisons within continuous forest. This was attributed to dispersal within corridors of remnant and revegetated habitat between the forested areas. We concluded that an inherently restricted dispersal ability, female philopatry and natural habitat heterogeneity play an important part in the development of genetic structure among populations of R. fuscipes. It is important to understand the relationship between landscape features and the pattern of gene flow among continuous populations, as this allows us to predict the impact of fragmentation on natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号