首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present theoretical studies of three regions for plasmonic focusing, which are surface plasmon-dominating, Fresnel, and Fraunhoffer regions. The boundaries of the three regions are defined and the physical behaviors of plasmonic lenses in terms of focal length and focus size in these regions are investigated. A plasmonic lens that renders a subdiffraction-limit focus in the Fresnel region is presented and the lens performance with respect to the design parameters is studied by using finite-difference time-domain simulations. This work can serve as a basis for understanding plasmonic-focusing phenomenon and designing plasmonic lenses for various applications.  相似文献   

2.
A compact plasmonic lens is proposed in this paper. This plasmonic lens consists of rectangular holes etched on the silver film and arranged on one straight line and possesses the characteristics of short focus length, ultrathin thickness, and strong focus ability. The theoretical design for the plasmonic lens abides by the constructive interference theorem, and the surface plasmon polaritons excited by the holes with linearly polarized light illumination focuses effectively. The plasmonic lenses with single and double focus spots are provided, and the simulation experiment gives the powerful verification. The distinct structure feature and the excellent focusing characteristic of this plasmonic lens are benefit for its applications in optical integration.  相似文献   

3.
We report plasmonic lenses consisting of coupled nanoslits immersed in a high-index medium to obtain the robustly efficient superfocusing. Based on the geometrical optics and the wavefront reconstruction theory, an array of nanoslits perforated in a gold film and a series of spacings between adjacent nanoslits are optimally designed to realize the desired phase modulation for light focusing. The numerical results verify the design of each plasmonic lens in excellent agreement. For the given total phase difference of 2π, the immersion plasmonic lenses with smaller lens aperture can have much better focusing performance than the non-immersion one. A superfocusing spot of λ/4.39 is achieved using an oil immersion plasmonic lens with an aperture size of 4.97λ, resulting in a resolution improvement of 68.9 % compared with the non-immersion lens. Moreover, such superfocusing performance can be still well kept when the structural parameters of the lens, e.g., nanoslit width and metal film thickness, are deviated from the original design, making the final implementation of the superfocusing lenses much easier.  相似文献   

4.

Although spiral plasmonic lens has been proposed as circular polarization analyzer, there is no such plasmonic nanostructure available for linear polarization. In the current work, we have designed nano-corral slits (NCS) plasmonic lens, which focuses the x- and y-polarized light into spatially distinguished plasmonic fields. We have calculated analytically and numerically the electric field intensity and phase of the emission from nano-corral slits plasmonic lens with different pitch lengths under various polarizations of the illumination. It has been shown that one can control the wave front of the output beam of these plasmonic lenses by manipulating the illumination of both circular and linear polarization. Our theoretical study in correlation with FDTD simulation has shown that NCS plasmonic lens with pitch length equal to λspp produces scalar vortex beam having optical complex fields with helical wave front and optical singularity at the center under circular polarization of light. When NCS lens (pitch = λspp) is illuminated with linearly polarized light, it exhibits binary distribution of phase with same electric field intensity around the center. However, with pitch length of 0.5λspp, NCS shows linear dichroism under linearly polarized illumination unlike spiral plasmonic lens (SPL) eliminating the use of circularly polarized light. Optical complex fields produced by these NCS plasmonic lenses may find applications for faster quantum computing, data storage, and telecommunications.

  相似文献   

5.
Active plasmonic devices are mostly designed at visible frequencies. Here, we propose an active terahertz (THz) plasmonic lens tuned by an external magnetic field. Unlike other tunable devices where the tuning is achieved by changing the plasma frequency of materials, the proposed active lens is tuned by changing the cyclotron frequency through manipulating magnetoplasmons (MPs). We have theoretically investigated the dispersion relation of MPs of a semiconductor?Cinsulator?Csemiconductor structure in the Voigt configuration and systematically designed several lenses realized with a doped semiconductor slab perforated with sub-wavelength slits. It is shown through finite?Cdifference time?Cdomain simulations that THz wave propagating through the designed structure can be focused to a small size spot via the control of MPs. The tuning range of the focal length under the applied magnetic field (up to 1?T) is ??3??, about 50% of the original focal length. Various lenses, including one with two focal spots and a tunable lens for dipole source imaging, are realized for the proposed structure, demonstrating the flexibility of the design approach. The proposed tunable THz plasmonic lenses may find applications in THz science and technology such as THz imaging.  相似文献   

6.
Ji  Jiaxin  Xu  Pengfei  Chen  Jiying  Li  Jing  Meng  Yonggang 《Plasmonics (Norwell, Mass.)》2020,15(1):209-215
Plasmonics - Rotational near-field photolithography uses one or an array of plasmonic lenses to directly pattern features on a rotating substrate that is coated with a very sensitive photoresist....  相似文献   

7.
A design method of a micron-focusing plasmonic lens is proposed, which consists of a nanoaperture surrounded by concentric annular grooves with fixed width and depth. The phase modulation of the radiation lights decoupled from surface plasmon polariton waves by the annular grooves is realized by altering the radii of the grooves. Based on the principle of the constructive interference, a design formula of a micron-focusing plasmonic lens is deduced. The transmitted fields through the designed plasmonic lenses are numerically simulated with finite-difference time-domain method, and the results show that a circular focusing spot is generated where the focal length can be controlled in several micrometers, which agree with our theoretical analysis.  相似文献   

8.
An elliptical nano-pinhole structure-based plasmonic lens was designed and investigated experimentally by means of focused ion beam nanofabrication, atomic force microscope imaging, and scanning near-field optical microscope (NSOM). Two scan modes, tip scan and sample scan, were employed, respectively, in our NSOM measurements. Both the scan modes have their characteristics while probing the plasmonic lenses. Our experimental results demonstrated that the lens can realize subwavelength focusing with elongated depth of focus. This type of lens can be used in micro-systems such as micro-opto-electrical–mechanical systems for biosensing, subwavelength imaging, and data storage.  相似文献   

9.

Imaging applications at terahertz frequencies are, in general, limited to relatively low spatial resolution due to the effects of diffraction. By using a subwavelength aperture in the near-field, however, it is possible to achieve subwavelength resolution, although low transmission through the aperture limits the sensitivity of this approach. Plasmonic lenses in the form of bullseye structures, which consist of a circular subwavelength aperture surrounded by concentric periodic corrugations, have demonstrated enhanced transmission, thereby increasing the utility of near-field imaging configurations. In this paper, the design, fabrication, and experimental performance of plasmonic lenses optimized for 300 GHz are discussed. While nanofabrication techniques are required for optical applications, microfabrication techniques are sufficient for terahertz applications. The process flow for fabricating a double-sided bullseye structure using a precision micromilling technique is described. Transmission and beam profile measurements using a customized terahertz testbed are presented.

  相似文献   

10.
The generation efficiency of surface plasmon polaritons at metallic nanoslit is theoretically analyzed, and a novel plasmonic lens with two semiannular nanoslits is proposed in this paper. Based on the analysis results, the focusing performance of the proposal is optimized with a maximum field intensity enhancement factor of 7.69 and the full width at half maximum is 132 nm (~0.2λ i), far beyond theoretical diffraction limit. Meanwhile, some other classical plasmonic lenses are also optimized through improving generation efficiency of surface plasmon polaritons at nanoslit and the focusing performances are consequently greatly enhanced.  相似文献   

11.
1. The purpose of the present study was to analyze the possible effect of ouabain and an endogenous ouabain-like substance (endobain E), on lenses of 100- and 400-g body weight rats.2. Lenses were incubated with ouabain or endobain E for 120 min, either at room temperature or in the cold; opalescence was checked by gross examination and ultrastructure by electron microscopy.3. Lenses from 400-g rats invariably remained translucent whereas those from 100-g rats presented variable opalescence.4. As disclosed with the electron microscope, lenses of 100-g rats incubated at room temperature, with or without ouabain or endobain E, presented variable degrees of ultrastructural changes: with ouabain, there was fiber separation and vacuole formation but with endobain E, no vacuoles were found and fibers, though disorganized, appeared attached. After incubation in an ice bath, lenses were markedly altered in all conditions assayed.5. It is concluded that ouabain and endobain E effect on lens transparency depends on the rat age and that in young animals, it is crucial incubation temperature during experimental procedure.  相似文献   

12.
The novel plasmonic lenses based on slanted nanoslits have been proposed theoretically. The slanted nanoslits with different slant angles can provide unequal propagation distances for the surface plasmon polaritons excited by incident light. The phase retardation for wavefront shaping can be obtained to realize constructive interference on a preset single spot. We can actively modulate the position of the optical focus by adjusting the slits slant angles properly. The simulation results of the finite element method are used to verify our proposals.  相似文献   

13.

A tunable high transmission optical bandpass filter based on a plasmonic hybrid nanostructure, composed of a periodic array of nanocircles and nanoholes combining two isolated waveguides is introduced in this paper. The presented design improves the coupling, which results in a higher transmission peak. To study the filtering operation, different topologies are investigated. The transmission properties and the resonance wavelengths are adjusted by sweeping various geometrical parameters. A multimode spectrum for each of the topologies is obtained. A tunable bandgap and bandwidth can be obtained by adjusting the refractive index of the periodic nanostructure. We have reached a maximum quality factor and a small full width at half-maximum bandwidth with the maximum transmission values greater than 80%. The advantages of the presented structures which include the benefits of both plasmonic and periodic nanostructures are tunability, high detection resolution, and integrability at the nanoscale for optical applications.

  相似文献   

14.
Conventionally, plasmonic lenses introduce a phase delay distribution across their surfaces by modulating the dimensions of nanostructures within a metal film. However, there is very limited modulation of the phase delay due to the small dependence of the mode propagation constant on the structure dimensions. In this paper, a novel design of plasmonic zone plate lenses (PZPL) with both slit width and refractive index modulation is proposed to enable integrating more slits in a fixed lens aperture with the extended phase delay range and, therefore, greatly enhance the performance of the devices. More than three-time enhancement of the light intensity at the focus is achieved compared to the structure with only slit width modulation. Like a conventional immersion system, a PZPL embedded in a dielectric is found to have a further improved focusing performance, where light is focused down to a 0.44λ spot using a PZPL with an aperture of 12λ and a focal length of 6λ. Dispersive light-focusing behaviour is also analysed and the modulation of the focal length by colour has a potential application in stacked image sensors and multi-dimensional optical data storage.  相似文献   

15.
Plasmonics - In this paper, a novel technique for realization of all-optical plasmonic switches is presented. The proposed structure is based on an asymmetric metal-insulator-metal plasmonic...  相似文献   

16.
To experimentally demonstrate the subwavelength focusing of depth-tuned or non-depth-tuned plasmonic lenses, we first designed this type of lens using diffraction-coupling-angle based method, then fabricated the structure in gold thin film with focused ion beam, and finally characterized its focusing behavior using near-field scanning optical microscope. It is found that this type of lens has a resolution limit on the focal plane due to the field represented by angular spectrum having a cut-off frequency, while at the near field the lens has sub-diffraction limit focusing capability due to the existence of high-angular-frequency components in the field.  相似文献   

17.
Chatzianagnostou  E.  Ketzaki  D.  Dabos  G.  Tsiokos  D.  Weeber  J.-C.  Miliou  A. 《Plasmonics (Norwell, Mass.)》2019,14(4):823-838

Herein, we present a design analysis and optimization of open-cladded plasmonic waveguides on a Si3N4 photonic waveguide platform targeting CMOS-compatible manufacturing. For this purpose, two design approaches have been followed aiming to efficiently transfer light from the hosting photonic platform to the plasmonic waveguide and vice versa: (i) an in-plane, end-fire coupling configuration based on a thin-film plasmonic structure and (ii) an out-of-plane directional coupling scheme based on a hybrid slot waveguide. A comprehensive numerical study has been conducted, initially deploying gold as the reference metal material for validating the numerical models with already published experimental results, and then aluminum and copper have been investigated for CMOS manufacturing revealing similar performance. To further enhance coupling efficiency from the photonic to the plasmonic part, implementation of plasmonic tapering schemes was examined. After thorough investigation, plasmo-photonic structures with coupling losses per single interface in the order of 1 dB or even in the sub-dB level are proposed, which additionally exhibit increased tolerance to deviations of critical geometrical parameters and enable CMOS-compatible manufacturing.

  相似文献   

18.

In this work, a label-free and inexpensive method for the monitoring of water pollutants is demonstrated. We introduce a localized surface plasmon resonance (LSPR) based plasmonic capillary optical biosensor to detect microalgae cells. Here, the plasmonic capillary biosensor was prepared by decorating the inner walls of a glass capillary with gold nanoparticles that were employed for investigations. Since the gold nanoparticle has the potential to sense pollutants in water rapidly with high sensitivity and they are expected to perform a significant role in environmental monitoring. Our proposed plasmonic capillary sensor has a detection limit of 25 algal cells (Chlorella sp. CB4). Furthermore, the plasmonic capillary sensing platform significantly simplifies sensor fabrication and reduces the cost of the device. We believe that the presented plasmonic sensor could stand as a potential candidate for developing a cost-effective, label-free, and rapid sensing platform to detect microalgae pollutants present in the water at very low concentrations.

  相似文献   

19.
A new design method of a broadband wide-angle metal-dielectric-metal plasmonic absorber is presented based on the cavity mode theory. The broadband absorption is implemented by filling a unit cell with multi-size square metal patches resonant at adjacent wavelengths, with the widths of the patches and thickness of the dielectric layer optimized with the presented method. A broadband plasmonic absorber working in the visible range is designed, the absorption of which is insensitive to the azimuth angle of incident field and keeps over 0.7 at incident angle up to 60° for p polarization and above 0.6 at up to 40° for s polarization.  相似文献   

20.
In this contribution, we have examined the patterns of gene expression in normal and cataractous lenses as presented in five different papers using microarrays and expressed sequence tags. The purpose was to evaluate unique and common patterns of gene expression during development, aging and cataracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号