首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nitrogen-fixing symbiont of alfalfa, Sinorhizobium meliloti, is able to use myo-inositol as the sole carbon source. Putative inositol catabolism genes (iolA and iolRCDEB) have been identified in the S. meliloti genome based on their similarities with the Bacillus subtilis iol genes. In this study, functional mutational analysis revealed that the iolA and iolCDEB genes are required for growth not only with the myo-isomer but also for growth with scyllo- and d-chiro-inositol as the sole carbon source. An additional, hypothetical dehydrogenase of the IdhA/MocA/GFO family encoded by the smc01163 gene was found to be essential for growth with scyllo-inositol, whereas the idhA-encoded myo-inositol dehydrogenase was responsible for the oxidation of d-chiro-inositol. The putative regulatory iolR gene, located upstream of iolCDEB, encodes a repressor of the iol genes, negatively regulating the activity of the myo- and the scyllo-inositol dehydrogenases. Mutants with insertions in the iolA, smc01163, and individual iolRCDE genes could not compete against the wild type in a nodule occupancy assay on alfalfa plants. Thus, a functional inositol catabolic pathway and its proper regulation are important nutritional or signaling factors in the S. meliloti-alfalfa symbiosis.  相似文献   

2.
Natto is a traditional Japanese food made from soybeans fermented by strains of Bacillus subtilis natto. It gives off a strong ammonia smell during secondary fermentation, and the biochemical basis for this ammonia production was investigated in this study. When natto was fermented by strain r22, ammonia production was shown to involve degradation of soybean proteins releasing amino acids, and only the glutamate contained in the natto obviously decreased, while the other amino acids increased during secondary fermentation. Strain r22 has two active glutamate dehydrogenase genes, rocG and gudB, and inactivating both genes reduced ammonia production by half, indicating that deamination of glutamate was one of the major ammonia-releasing reactions. In addition, urease encoded by ureABC was found to degrade urea during secondary fermentation. A triple mutant lacking rocG, gudB, and ureC exhibited minimal ammonia production, suggesting that the degradation of urea might be a further ammonia-releasing reaction.  相似文献   

3.
4.
5.
6.
Natto is a traditional Japanese food made from soybeans fermented by strains of Bacillus subtilis natto. It gives off a strong ammonia smell during secondary fermentation, and the biochemical basis for this ammonia production was investigated in this study. When natto was fermented by strain r22, ammonia production was shown to involve degradation of soybean proteins releasing amino acids, and only the glutamate contained in the natto obviously decreased, while the other amino acids increased during secondary fermentation. Strain r22 has two active glutamate dehydrogenase genes, rocG and gudB, and inactivating both genes reduced ammonia production by half, indicating that deamination of glutamate was one of the major ammonia-releasing reactions. In addition, urease encoded by ureABC was found to degrade urea during secondary fermentation. A triple mutant lacking rocG, gudB, and ureC exhibited minimal ammonia production, suggesting that the degradation of urea might be a further ammonia-releasing reaction.  相似文献   

7.
We prepared natto (fermented soybeans) mucilage containing poly-gamma-glutamic acid (gamma-PGA) from commercial natto. The effect of natto mucilage on calcium (Ca) solubility in vitro and in vivo was investigated. Ca solubility in vitro increased with an increase in the amount of natto mucilage, due to inhibition of the formation of an insoluble complex of Ca with phosphate by natto mucilage. Rats were fed with 5 g of soybean protein isolate, natto, mucilage-free natto, or natto mucilage diet for 1.5 h. Small intestinal contents were collected 2.5 h after ingestion. In the lower half of the small intestine, both the amount and the percentage of soluble Ca of intestinal contents were significantly higher (P < 0.001) in rats fed with natto mucilage diet than in those fed with the other diets. Natto mucilage also increased Ca solubility in vivo. These results suggested that gamma-PGA is responsible for the increasing effect of natto mucilage on Ca solubility.  相似文献   

8.
D-chiro-inositol (DCI) is a drug candidate for the treatment of type 2 diabetes and polycystic ovary syndrome, since it improves the efficiency with which the body uses insulin and also promotes ovulation. Here, we report genetic modification of Bacillus subtilis for production of DCI from myo-inositol (MI). The B. subtilis iolABCDEFGHIJ operon encodes enzymes for the multiple steps of the MI catabolic pathway. In the first and second steps, MI is converted to 2-keto-MI (2KMI) by IolG and then to 3D-(3,5/4)-trihydroxycyclohexane-1,2-dione by IolE. In this study, we identified iolI encoding inosose isomerase, which converts 2KMI to 1-keto-D-chiro-inositol (1KDCI), and found that IolG reduces 1KDCI to DCI. Inactivation of iolE in a mutant constitutively expressing the iol operon blocked the MI catabolic pathway to accumulate 2KMI, which was converted to DCI via the activity of IolI and IolG. The mutant was able to convert at least 6% of input MI in the culture medium to DCI.  相似文献   

9.
10.
The capability of Salmonella enterica serovar Typhimurium strain 14028 (S. Typhimurium 14028) to utilize myo-inositol (MI) is determined by the genomic island GEI4417/4436 carrying the iol genes that encode enzymes, transporters, and a repressor responsible for the MI catabolic pathway. In contrast to all bacteria investigated thus far, S. Typhimurium 14028 growing on MI as the sole carbon source is characterized by a remarkable long lag phase of 40 to 60 h. We report here that on solid medium with MI as the sole carbon source, this human pathogen exhibits a bistable phenotype characterized by a dissection into large colonies and a slow-growing bacterial background. This heterogeneity is reversible and therefore not caused by mutation, and it is not observed in the absence of the iol gene repressor IolR nor in the presence of at least 0.55% CO(2). Bistability is correlated with the activity of the iolE promoter (P(iolE)), but not of P(iolC) or P(iolD), as shown by promoter-gfp fusions. On the single-cell level, fluorescence microscopy and flow cytometry analysis revealed a gradual switch of P(iolE) from the "off" to the "on" status during the late lag phase and the transition to the log phase. Deletion of iolR or the addition of 0.1% NaHCO(3) induced an early growth start of S. Typhimurium 14028 in minimal medium with MI. The addition of ethoxyzolamide, an inhibitor of carboanhydrases, elongated the lag phase in the presence of bicarbonate. The positive-feedback loop via repressor release and positive induction by bicarbonate-CO(2) might allow S. Typhimurium 14028 to adapt to rapidly changing environments. The phenomenon described here is a novel example of bistability in substrate degradation, and, to our knowledge, is the first demonstration of gene regulation by bicarbonate-CO(2) in Salmonella.  相似文献   

11.
The insertion sequence IS4Bsu1 frequently causes Bacillus subtilis starters for the production of Japanese fermented soybean pasts (natto) to lose the ability to produce poly-gamma-glutamate, the viscous material characteristic of natto. Bacillus subtilis NAFM5, a derivative of a natto starter, has six IS4Bsu1 copies on its chromosome. In this study, we determined all six insertion loci of the insertion sequence (IS). One was located in the coding region of yktD, a putative gene involved in polyketide synthesis. Four were located in non-coding regions between iolR and iolA, between tuaA and lytC, between rapI and orf1 (a potential gene of unknown function), and between ynaE and orf3 (a putative gene similar to thiF), and one resided in an intergenic region between divergent possible orf4 and orf5 genes of unknown function. Here we describe the structural features of these loci and discuss the effects of the IS4Bsu1 insertions on the functions of the target gene and the expression of the downstream genes. In addition, we found that strain NAFM5 and commercial natto starters possess eight to 10 loci of another IS of the IS256 family (designated IS256Bsu1) on their chromosomes. IS256Bus1 appeared active in transposition, potentially causing phenotypic alterations in natto starters like those induced by IS4Bsu1.  相似文献   

12.
13.
T Hara  S Nagatomo  S Ogata    S Ueda 《Applied microbiology》1991,57(6):1838-1841
The structure of a 2.0-kb BstEII DNA sequence necessary and sufficient for the replication of a 5.7-kb Natto plasmid, pUH1, which is responsible for gamma-polyglutamate production by Bacillus subtilis (natto), has been characterized by using a trimethoprim resistance gene derived from B. subtilis chromosomal DNA as a selective marker. The 2.0-kb DNA sequence contains an open reading frame, rep, stretching for 999 bp; a promoter region for rep expression; and a possible replication origin for the plasmid upstream of the promotor. The predicted Rep protein has highly homologous amino acid sequences with rep14 of pFTB14 in B. amyloliquefaciens, RepB of pUB110, and protein A, which is necessary for pC194 replication in staphylococci throughout the protein molecule, but is not homologous with RepC of staphylococcal plasmid pT181.  相似文献   

14.
The structure of a 2.0-kb BstEII DNA sequence necessary and sufficient for the replication of a 5.7-kb Natto plasmid, pUH1, which is responsible for gamma-polyglutamate production by Bacillus subtilis (natto), has been characterized by using a trimethoprim resistance gene derived from B. subtilis chromosomal DNA as a selective marker. The 2.0-kb DNA sequence contains an open reading frame, rep, stretching for 999 bp; a promoter region for rep expression; and a possible replication origin for the plasmid upstream of the promotor. The predicted Rep protein has highly homologous amino acid sequences with rep14 of pFTB14 in B. amyloliquefaciens, RepB of pUB110, and protein A, which is necessary for pC194 replication in staphylococci throughout the protein molecule, but is not homologous with RepC of staphylococcal plasmid pT181.  相似文献   

15.
myoinositol (MI) is a key sugar alcohol component of various metabolites, e.g. phosphatidylinositol‐based phospholipids that are abundant in animal and plant cells. The seven‐step pathway of MI degradation was previously characterized in various soil bacteria including Bacillus subtilis. Through a combination of bioinformatics and experimental techniques we identified a novel variant of the MI catabolic pathway in the marine hyperthermophilic bacterium Thermotoga maritima. By using in vitro biochemical assays with purified recombinant proteins we characterized four inositol catabolic enzymes encoded in the TM0412–TM0416 chromosomal gene cluster. The novel catabolic pathway in T. maritima starts as the conventional route using the myo‐inositol dehydrogenase IolG followed by three novel reactions. The first 2‐keto‐myo‐inositol intermediate is oxidized by another, previously unknown NAD‐dependent dehydrogenase TM0412 (named IolM), and a yet unidentified product of this reaction is further hydrolysed by TM0413 (IolN) to form 5‐keto‐l ‐gluconate. The fourth step involves epimerization of 5‐keto‐l ‐gluconate to d ‐tagaturonate by TM0416 (IolO). T. maritima is unable to grow on myo‐inositol as a single carbon source. The determined in vitro specificity of the InoEFGK (TM0418–TM0421) transporter to myo‐inositol‐phosphate suggests that the novel pathway in Thermotoga utilizes a phosphorylated derivative of inositol.  相似文献   

16.
Certain Bacillus subtilis strains, such as B. subtilis (natto) starter strains for the manufacture of natto (fermented soybeans), produce capsular poly-gamma-glutamate (gammaPGA). In B. subtilis (natto), gammaPGA synthesis is controlled by the ComP-ComA two-component regulatory system and thereby induced at the beginning of the stationary growth phase. We have found a new insertion sequence (IS), designated IS4Bsu1, in the comP gene of a spontaneous gammaPGA-negative mutant of B. subtilis (natto) NAF4. IS4Bsu1 (1,406 bp), the first IS discovered in B. subtilis, encodes a putative transposase (Tpase) with a predicted M(r) of 34,895 (374 residues) which displays similarity to the Tpases of IS4 family members. Southern blot analyses have identified 6 to 11 copies of IS4Bsu1, among which 6 copies were at the same loci, in the chromosomes of B. subtilis (natto) strains, including NAF4, three commercial starters, and another three gammaPGA-producing B. subtilis (natto) strains. All of the eight spontaneous gammaPGA(-) mutants, which were derived from five independent NAF4 cultures, had a new additional IS4Bsu1 copy in comP at six different positions within 600 bp of the 5'-terminal region. The target sites of IS4Bsu1 were determined to be AT-rich 9-bp sequences by sequencing the flanking regions of IS4Bsu1 in mutant comP genes. These results indicate that IS4Bsu1 transposes by the replicative mechanism, in contrast to other IS4 members that use the conservative mechanism, and that most, if not all, of spontaneous gammaPGA(-) mutants appear to have resulted from the insertion of IS4Bsu1 exclusively into comP. The presence of insertion hot spots in comP, which is essential for gammaPGA synthesis, as well as high transposition activity, would account for the high frequency of spontaneous gammaPGA(-) mutation by IS4Bsu1 in B. subtilis (natto).  相似文献   

17.
ABSTRACT: BACKGROUND: In Japan, consumption of Natto, a fermented bean dish, is recommended because of its high quality protein, digestibility in the gut and its preventive effect on blood clot formation due to high vitamin K content. However, consumption of Natto in Kansai and the Chugoku area (the western part of Honshu) is less than that in the other areas of Japan probably because of a "food related cultural inhibition". In this study, we determined which characteristic of Natto (appearance, odor or taste) most affect subjects' perception of sensory attributes by observation of brain hemodynamics in relation to subjects' preference for Natto. FINDINGS: In this experiment, we defined each subject's changes in brain hemodynamics as (+) or () corresponding to an increase or a decrease in total hemoglobin concentration after stimuli compared to that before stimuli. As a result, there was no relation between preference for Natto and change in brain hemodynamics by the stimuli of "looking at" or "smelling", while there was a significant relationship between preference and stimulus of "ingestion"; (+) : ()=21:15 in the subjects of the "favorite" group and (+): ()=30:7 in the subjects of the "nonfavorite" group (P=0.034). CONCLUSION: This result indicated that characteristic "taste" of Natto most affects preference for Natto.  相似文献   

18.
In gram-positive bacteria, HPr, a phosphocarrier protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), is phosphorylated by an ATP-dependent, metabolite-activated protein kinase on seryl residue 46. In a Bacillus subtilis mutant strain in which Ser-46 of HPr was replaced with a nonphosphorylatable alanyl residue (ptsH1 mutation), synthesis of gluconate kinase, glucitol dehydrogenase, mannitol-1-P dehydrogenase and the mannitol-specific PTS permease was completely relieved from repression by glucose, fructose, or mannitol, whereas synthesis of inositol dehydrogenase was partially relieved from catabolite repression and synthesis of alpha-glucosidase and glycerol kinase was still subject to catabolite repression. When the S46A mutation in HPr was reverted to give S46 wild-type HPr, expression of gluconate kinase and glucitol dehydrogenase regained full sensitivity to repression by PTS sugars. These results suggest that phosphorylation of HPr at Ser-46 is directly or indirectly involved in catabolite repression. A strain deleted for the ptsGHI genes was transformed with plasmids expressing either the wild-type ptsH gene or various S46 mutant ptsH genes (S46A or S46D). Expression of the gene encoding S46D HPr, having a structure similar to that of P-ser-HPr according to nuclear magnetic resonance data, caused significant reduction of gluconate kinase activity, whereas expression of the genes encoding wild-type or S46A HPr had no effect on this enzyme activity. When the promoterless lacZ gene was put under the control of the gnt promoter and was subsequently incorporated into the amyE gene on the B. subtilis chromosome, expression of beta-galactosidase was inducible by gluconate and repressed by glucose. However, we observed no repression of beta-galactosidase activity in a strain carrying the ptsH1 mutation. Additionally, we investigated a ccpA mutant strain and observed that all of the enzymes which we found to be relieved from carbon catabolite repression in the ptsH1 mutant strain were also insensitive to catabolite repression in the ccpA mutant. Enzymes that were repressed in the ptsH1 mutant were also repressed in the ccpA mutant.  相似文献   

19.
20.
纳豆激酶产生菌——纳豆菌对木糖和葡萄糖的利用   总被引:4,自引:0,他引:4  
谢秋玲  郭勇  林剑   《微生物学通报》2001,28(4):9-12
在纳豆激酶 (Nattokinase,简称NK)发酵条件研究中 ,我们发现木糖是较葡萄糖更佳的产酶碳源。进一步的试验证明 ,NK的发酵菌种———Bacillussubtilisvar.natto在混合碳源中没有二次生长现象 ,对木糖和葡萄糖的吸收是同时的 ,且互不干扰 ,葡萄糖对木糖的吸收利用没有分解代谢阻遏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号