首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expcsure of adult male albino rats to higher environmental temperature (HET) at 35° for 2–12 hr or at 45° for 1–2 hr increases hypothalamic synaptosomal acetylcholinesterase (AChE) activity. Synaptosomal AChE activity in cerebral cortex of rats exposed to 35° for 12 hr and in cerebral cortex and pons-medulla of rats exposed to 45° for 1–2 hr are also activated. AChE activity of synaptosomes prepared from normal rat brain regions incubated in-vitro at 39° or 41° for 0.5 hr increases significantly in cerebral cortex and hypothalamus. The activation of AChE in ponsmedulla is also observed when this brain region is incubated at 41° for 0.5 hr. Increase of (a) the duration of incubation at 41° and (b) the incubation temperature to 43° under in-vitro condition decreases the synaptosomal AChE activity. Lioneweaver-Burk plots indicate that (a) in-vivo and invitro HET-induced increases of brain regional synaptosomal AChE activity are coupled with an increase ofV max without any change inK m (b) very high temperature (43° under in-vitro condition) causes a decrease inV max with an increase inK m of AChE activity irrespective of brain regions. Arrhenius plots show that there is a decrease in transition temperature in hypothalamus of rats exposed to either 35° or 45°; whereas such a decrease in transition temperature of the pons-medulla and cerebral cortex regions are observed only after exposure to 45°. These results suggests that heat exposure increases the lipid fluidity of synaptosomal membrane depending on the brain region which may expose the catalytic site of the enzyme (AChE) and hence activate the synaptosomal membrane bound AChE activity in brain regions. Further the in-vitro higher temperature (43°C)-induced inhibition of synaptosomal AChE activity irrespective of brain regions may be the cause iof partial proteolysis/disaggregation of AChE oligomers and/or solubilization of this membrane-bound enzyme.To whom to address reprint requests:  相似文献   

2.
Miniature endplate potentials (MEPC) were recorded from rat diaphragm muscle fiber. A positive correlation was found in controls between half-decay time and amplitude of individual MEPC, an effect enhanced by acetylcholinesterase (AChE) inhibition (correlation coefficients: 0.29 and 0.49 respectively at a temperature of 28°C). Adding curare following AChE inhibition produced a reduction in the amplitude and duration of MEPC without influencing the correlation relationship between the above-mentioned parameters. This relationship declined significantly with a temperature reduction to 18°C in both the control and cases of AChE inhibition. The increase in MEPC half-decay time following AChE inhibition was greater at 28° than at 18°C; Q10 equalled about two for duration of rising time as compared with around three for MEPC half-decay time. Factors determining the time course of MEPC are discussed. The findings obtained are explained by postsynaptic potential (and cooperative binding of agonists to cholinoreceptors lies at the root of this) and by the pattern of ACh diffusion at the synaptic cleft.A. A. Ukhtomskii Institute of Physiology, A. A. Zhdanov State University, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 4, pp. 504–512, July–August, 1987.  相似文献   

3.
The rhythm of CO2 assimilation exhibited by leaves of Bryophyllum fedtschenkoi maintained in light and normal air occurs only at constant ambient temperatures between 10°C and 30°C. Over this range the period increases linearly with increasing temperature from the extremely low value of 15.7 h to 23.3 h, but shows a considerable degree of temperature compensation. Outside the range 10°C–30°C the rhythm is inhibited but re-starts on changing the temperature to 15°C. Prolonged exposure of leaves to high (40°C) and low (2°C) temperature inhibits the rhythm by driving the basic oscillator to fixed phase points in the cycle which differ by 180°, and which have been characterised in terms of the malate status of the leaf cells. At both temperatures loss of the circadian rhythm of CO2 assimilation is due to the inhibition of phosphoenolpyruvate carboxylase (PEPCase) activity, but the inhibition is apparently achieved in different ways at 40°C and 2°C. High temperature appears to inhibit directly PEPCase activity, but not the activity of the enzymes responsible for the breakdown of malate, with the result that the leaf acquires a low malate status. In contrast, low temperature does not directly inhibit PEPCase activity, but does inhibit enzymes responsible for malate breakdown, so that the malate level in the leaf increases to a high value and PEPCase is eventually allosterically inhibited. The different malate status of leaves held at these two temperatures accounts for the phases of the rhythms being reversed on returning the leaves to 15°C. After exposure to high temperature, CO2 fixation by PEPCase activity can begin immediately, whereas after exposure to low temperature, the large amount of malate accumulated in the leaves has to be decarboxylated before CO2 fixation can begin.  相似文献   

4.
Summary The supernatant prepared from the brain tissue homogenate incubated in vitro in the presence of PVP or sucrose exhibits a decrease of AChE, SDH as well as of LDH activity. A 0.75% PVP solution inhibits AChE activity by 30%, LDH activity is inhibited by 35% and SDH activity by 40%. A two hours lasting effect of a 7.5% PVP solution at 3° C on enzymatic preparations induces in AChE 20% inhibition of its activity, in LDH an inhibition of 44% and in SDH the inhibition of its activity amounts to 74%. 1 M Sucrose inhibits AChE activity by 34%, LDH activity by 41% and SDH activity is inhibited by 31%. After two hours lasting effect of 1.4 M sucrose at 3° C on the supernatant the AChE activity is inhibited by 22% and that of LDH by 30%. The SDH activity was after a two hours lasting effect of 1 M sucrose at 3° C inhibited by 34%. The inhibition of activity of the above mentioned enzymes localized in brain cortex preparations was compared with the inhibition of activity of the isolated serum cholinesterase. 0.25 M Sucrose inhibited the activity of this enzyme by 25% and 0.75% PVP by 45%. A two hours lasting effect of 7.5% PVP or 1 M sucrose at 3° C on the cholinesterase induced a 40% and 22% inhibition respectively. After double washing of the brain cortical minced tissue, prepared in a 7.5% PVP containing solution, AChE activity was constant. By triple washing of the brain cortical crude mitochondrial fraction, exposed for two hours at 3° C to the effect of 1 M sucrose, SDH activity was also constant.Abbreviations AChE acetylcholinesterase (EC 3.1.1.7.) - INT 2(p-iodophenyl)3-p-nitrophenyl-5-phenyl tetrazolium chloride - LDH lactate dehydrogenase (EC 1.1.1.27.) - PMS phenazine methosulfate - PVP polyvinylpyrrolidone - SDH succinate dehydrogenase (EC 1.3.99.1.)  相似文献   

5.
The present study examined the influence of air exposure at different temperatures: a common perturbation associated with aquaculture handling practices, on immune responses in zhikong scallop Chlamys farreri. Scallops were exposed to air for 2 h, 6 h, 12 h and 24 h at 5 °C, 17 °C and 25 °C respectively. Thereafter, a recovery period of 24 h at 17 °C was applied. Haemocyte mortality, phagocytosis and reactive oxygen species (ROS) production of haemocytes, acid phosphatase (ACP) and superoxide dismutase (SOD) activity in haemocyte lysates were chosen as immunomarkers of anoxic stress. The results showed that an increase of haemocyte mortality and a decrease of phagocytosis and ACP activity were observed after 2 h of air exposure for all temperatures tested. Moreover, a significant increase of ROS production occurred following 2 h of air exposure at 25 °C and 24 h of air exposure at 17 °C. Significant differences were also observed in haemocyte mortality, percentage of phagocytic cells and ACP and SOD activity depending on the temperature of air exposure. Finally, after 24 h of recovery at 17 °C, percentage of phagocytic haemocytes and ACP activity did not return to initial values. ROS production was significantly higher than before the recovery period and initial values for scallops subjected to air exposure at 5 °C. In our study, scallops showed a relative low anoxia tolerance under a high temperature. All the scallops air exposed to 25 °C died after the 6 h sampling. In conclusion, air exposure associated to aquaculture practices was demonstrated to strongly affect functional immune activities of scallop haemocytes, and high temperature air exposure caused reduced survival of scallops.  相似文献   

6.
The primary objective of this study was to examine a possible correlation among the three endpoints of toxicity, namely, stress gene expression (hsp16), feeding, and acetylcholinesterase (AChE) activity in transgenic C. elegans (hsp16‐lacZ) exposed to sublethal concentrations of dichlorvos, an organophosphorus insecticide. Worms exposed to dichlorvos (at 5, 40, and 80 μM) exhibited a concentration‐dependent inhibition in feeding with total cessation in feeding occurring beyond 4 h of exposure. Concomitantly, marked and dose‐dependent inhibition (69%–90%) of AChE was also evident after 4 h of exposure. Induction of heat shock protein (Hsp) was evident after 4 h of exposure (as seen from quantitative analysis), although maximum expression of Hsp was evident only after 24 h of exposure (as evident from qualitative analysis). Interestingly, the Hsp induction was restricted only to the pharyngeal region. Significant correlation was discernible between the three evaluated end points suggesting their possible interrelated role in the physiological dysfunctions evoked by sublethal concentrations of dichlorvos. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:9–17, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20258  相似文献   

7.
The recovery of photosynthesis in tomato subsequent to chilling exposure   总被引:7,自引:0,他引:7  
The overall success of a plant in coping with low temperature sensitivity of photosynthesis is dependent not only on the maximum extent of inhibition suffered for a given time of low temperature exposure but also on the persistence of the inhibition after normal growth temperatures are restored. Thus the capacity of recovery and the speed with which a plant can recover from the effects of chilling exposure are important parameters in determining how devastating the chilling event will be on season-long growth and yields. We have studied the recovery of CO2-saturated photosynthesis from the injury caused by exposing intact tomato plants (Lycopersicon esculentum Mill. cv. Floramerica) or detached tomato leaves to a temperature of 1°C in the dark for varying periods of time. We found that net photosynthesis was fully recovered within 12 h after returning the plants to 25°C in the dark, even after chilling exposures as long as 45 h. This was true for intact plants as well as for detached leaves that were supplied with water. When chilling took place in the light (4°C, 1000 E · m-2 · s-1, PAR) inhibition of photosynthesis was more severe and appeared more quickly and the recovery was slower and incomplete. A 12 h chilling exposure in the light resulted in injury to net photosynthesis that was not fully recovered even after 50 h. Chilling damage to photosynthesis developing in the light was distinguished from chilling in the dark by the decreased photosynthetic quantum yield. Not only did high intensity illumination enhance chilling damage of photosynthesis but bright light subsequent to the chilling exposure also delayed the recovery of photosynthesis. At none of the three ambient CO2 concentrations investigated (300, 1500 and 5000 1.1-1) did the recovery of photosynthesis depend on stomatal conductance.  相似文献   

8.
Rapid acclimation of root hydraulic conductivity to low temperature   总被引:14,自引:5,他引:9  
Root hydraulic conductance of many species is substantially reduced by exposure to low temperatures. The objective of this research was to investigate the decrease and recovery of root hydraulic conductivity in spinach (Spinacia oleracea L.) root systems upon exposure to low temperature. Root hydraulic conductivity (Lp) was determined for detached whole root systems as the slope of the flux and an applied pressure gradient. Water flux (Jv), of root systems grown at 20C, decreased immediately upon exposure to 5C. After 2-5 h Jv recovered and reached a stable value after 12 h exposure to 5°C. In separate experiments, the root Lp of plants acclimated for 7 d at 5°C was 125% greater than that of isolated root systems acclimated for 12 h at 5°C. Lp of plants grown and measured at 5°C was about 50% of the Lp of plants grown and measured at 20°C. The rapid acclimation to low temperatures observed in detopped root systems was also indicated in intact plants at 20/5°C (shoot/root temperatures) using mass flow porometry. Acclimation of the root system after exposure to 5°C was apparent by recovery of stomatal opening. These results indicate that spinach root systems have the ability to acclimate rapidly to changes in temperature and to continue acclimating during prolonged exposure to low temperature.  相似文献   

9.
The lion's paw scallop, Nodipecten nodosus, is subject to wide temperature variations on seasonal and short-term scales, and may be exposed to low-salinity events, caused by oceanographic and meteorological processes at its southern distribution limit (Santa Catarina State, Brazil). Such variations may have important implications on the distribution and on aquaculture site selection. The upper and lower temperature tolerances and the percentage of byssal attachment at different temperatures (11 to 35 °C) were studied for spat, juvenile and adult scallops. The lethal and sublethal effects of reduced salinity (13‰ to 33‰) on spat, juvenile and adult scallops were studied at ambient temperature (23.5 °C) and on spat also at low (16 °C) and high (28 °C) temperatures during 96-h bioassays. In addition, the influences of short exposure (1 h) to low salinity (13‰ and 17‰) at different temperatures (16 and 28 °C), and the effects of exposure (2 and 4 h) to high temperature (33 °C) at ambient salinity (33‰) were studied. N. nodosus is a moderately eurythermal but stenohaline tropical species, adults having lower tolerance to high temperature and low salinity than spat. Lethal temperatures for a 48-h exposure (LT50) were 29.8 °C for adult and juveniles, and 31.8 °C for spat. Maximum rate of byssal attachment occurred in a narrower temperature range for juveniles and adults (23 to 27 °C) than for spat (19 to 27 °C), which are suggested as the optimum ranges of temperatures for growth. Lethal salinities (LC50) for a 48-h exposure at ambient temperature were 23.2‰, 23.6‰ and 20.1‰ for adults, juveniles and spat, respectively, but the percent byssal attachment was significantly reduced below salinities of 29‰ indicating that scallops were physiologically stressed. A 1-h exposure to 17‰ was lethal to spat at 28 °C, but at 16 °C there was a 28.5% survival, 96 h after the exposure. Temperatures and salinity in coastal areas of southern Brazil can reach levels leading to sublethal effects, and in some sites, it may surpass the limits of tolerance for the survival of the species.  相似文献   

10.
The salinity, temperature and pH tolerance of Procephalothrix simulus Iwata, 1952, were experimentally studied. In hypo-media, the nemerteans could survive 96 h in 3.3‰ solution at 10 °C (median lethal salinity [LS50] was not determined at this temperature), and 96 h LS50 were 7.3‰ and 13.5‰ at 20 °C and 30 °C, respectively. In hyper-media, 96 h LS50 values were 53.9‰, 47.1‰ and 41.4‰ at 10 °C, 20 °C and 30 °C, respectively. The trend of body weight changes in diluted media indicated that this nemertean is a volume regulator. During a 96-h exposure in media at 0 °C, worms were thanatoid but could recover if the temperature was gradually elevated to 20 °C. In thermal tolerance experiments, the nemertean survived 96 h in seawater of 30 °C, and worms suffered high mortalities when the temperature exceeded 32 °C. Present results suggest that the interaction of temperature and salinity on the lethal effects on P. simulus is significant (P < 0.05). Elevated temperature (range 10-30 °C) decreased the worm's solute tolerance, and elevated salinity (range 18-38‰) decreased the worm's thermal tolerance. The survival pH level for this nemertean ranged from 5.00 to 9.20.  相似文献   

11.
Summary The shivering, body temperature, and metabolic response to stable and decreasing ambient temperature were measured in winter acclimatized Black-capped Chickadees,Parus atricapillus. Shivering activity, measured by duration and amplitude of bursts, increased curvilinearly from thermoneutral temperatures of 27°C down to 0°C. This parabolic shivering response may be a major component of the curvilinear response of metabolism to decreasing ambient temperature.Birds exposed to 0°C exhibited metabolism 32–45% lower than predicted for a 12-g homeotherm and body temperatures 10°C below the pre-experimental nocturnal body temperature. This hypothermia was not the result of a breakdown in thermoregulation, but was a controlled effort serving to reduce overnight energy expenditure. It is suggested that (1) hypothermia was achieved by decreased shivering by pectoral muscles during exposure to decreasing ambient temperatures, (2) the rate of body temperature decline was moderated by intermittent and reduced bursts during the cooling period, and (3) body temperature was maintained at a particular level during exposure to a stable low ambient temperature by intense bursts lasting one to three minutes.The physiology of hypothermia in chickadees is similar to torpor; however, chickadees did not arouse to a normal diurnal body temperature in the laboratory, and their hypothermia was not induced by inanition or prolonged exposure to cold, as reported for other species capable of torpor.  相似文献   

12.
This study tested whether variable temperatures (from −0.5 to 15 °C) and air exposure could be used under laboratory and under field conditions to store stallion sperm diluted in extender INRA96 without loss of fertility. Experiment 1 (laboratory conditions) measured the effects of two 72 h storage conditions (5 °C with air vs. 15 °C without air). Experiment 2 (fixed field conditions) measured the effects of 22 h of storage without air in disposable containers maintained at four ambient temperatures (7 °C, 17 °C, 27 °C, 39 °C with semen at −0.5 °C to 3 °C, 4 °C to 7 °C, 8 °C to 10 °C, 12 °C to 15 °C, respectively). Per cycle pregnancy rate (PC) was measured after one artificial insemination (AI) in uterine body of 200 × 106 total spermatozoa, 7 h (Experiment 1) or 17 h (Experiment 2) before ovulation. In Experiment 1, PC was similar for both conditions (60% (n = 40 cycles) vs. 63% (n = 40), respectively, 5 stallions × 8 cycles). Only velocity VCL and ALH were slightly higher at 15 °C. In Experiment 2, PC was reduced when ambient temperature was low (semen at −0.5 °C to 3 °C; PC = 25%) rather than intermediate (semen at 4 °C to 7 °C; PC = 53%) or high (semen at 8 °C to 10 °C; PC = 50%) (4 stallions × 8 cycles) (P = 0.002). Sperm stored at −0.5 °C to 3 °C had lower acrosome integrity/responsiveness, similar membrane integrity (HOS test) and motilities, and higher VCL and ALH, than semen stored between 4 and 15 °C. These results demonstrate a wide tolerance of equine sperm to variable positive temperatures and air exposure for 22 h storage and more. However, temperatures close to 0 °C are detrimental for fertility.  相似文献   

13.
The survival of Neozygites cf. floridana (Weiser and Muma) as dry hyphal bodies in mummified cassava green mites, Mononychellus tanajoa (Bondar), at 5.0% RH in the dark was affected by storage temperature. Survival of the fungus in mummies kept at 24±1.0°C could be demonstrated for 6–7 months. When stored at 4°C, the fungus sporulated from 90% of the mummies liberating an average of 186.9 primary conidia per mummy even after a storage period of 16 months, when the experiment was terminated. The temperature, humidity and light condition significantly affected the viability of primary conidia. The percent viability across all factors dropped from 98.4% after 0 h (beginning of the experiment) to 23.4% after a 1 h exposure to the conditions tested. Lower temperatures maintained higher viabilities with 86.3% of the conidia surviving after 18 h at 18°C, whereas almost all conidia died after 12 h at 33°C. Conidia survived less than 1 h when exposed to SDs (saturation deficit) of 2.0 mm Hg or higher at any tested temperature.  相似文献   

14.
The consequences of acclimation for survival and other fitness components in the parasitoid wasp, Trichogramma carverae (Oatman and Pinto), were examined. Heat hardening adult wasps at 33 °C or 35 °C for one to two h increased survivorship at 40 °C. This benefit was apparent for several hours after heat-hardening and occurred in both males and females. Heat hardening at 33 °C during development also resulted in significant increases in survivorship of adults after exposure to 40 °C. However, this developmental hardening reduced longevity of adult male and female wasps and also reduced parastism rate. This suggests costs and benefits of exposure to non-lethal temperature increases. Acclimating wasps by rearing them under constant temperatures (14, 25 or 30 °C) influenced parasitism rates at these temperatures at the adult stage; only females reared at 14 °C parasitised eggs at 14 °C, while parasitism at 25 °C and 30 °C was not significantly influenced by rearing temperature. Acclimation may be useful for increasing the survival or fecundity of mass-reared Trichogramma in inundative releases, but any benefits could be offset by fitness costs of the acclimation process.  相似文献   

15.
Insect body temperature is usually determined by ambient temperature. Therefore, most biochemical and physiological processes underlying behavioural patterns are temperature dependent. Mating duration is also dependent on temperature, and therefore temperature should influence on sperm transfer and female remating frequency. In the adzuki bean beetle, Callosobruchus chinensis, we found negative relationships between ambient temperature and mating duration, sperm transfer and sperm transfer duration. Female remating frequency at lower temperature (17 °C) was lower than at other temperatures (25 °C and 33 °C). The physiological and behavioural significance of these results is discussed. The number of ejaculated sperm was significantly lower at 33 °C than at 17 °C; the effect of temperature on sperm transfer is discussed in relation to the intensity of female refusal behaviour directed against males.  相似文献   

16.
In order to cope with the seasonal variations in ambient temperature and food availability in the natural habitat, gray mouse lemurs (Microcebus murinus) exhibit adaptive energy-saving mechanisms similar to those in hibernating species with seasonal and daily heterothermia. To determine thermoregulatory responses, via telemetry we recorded body temperature and locomotor activity variations during the breeding season in three captive male mouse lemurs kept at ambient temperatures (Ta) ranging from 18° to 34°C. Rhythms in body temperature and locomotor activity were clearly exhibited regardless of ambient temperature. As a increased, mean body temperature increased from 36.5 ± 0.1°C to 37.6 ± 0.3°C, with significant change in the amplitude of the body temperature rhythm when a rose above 28°C. Effects of a were mostly due to changes in the fall in body temperature occurring daily at the beginning of the light phase when the subjects entered diurnal sleep. The daily decrease in body temperature was not modified by exposure to ambient temperatures from 18°C to 28°C whereas it disappeared under warmer condition. Changes in locomotor activity levels only delayed the occurrence of thermoregulatory modulation. These results strongly suggest that, during the breeding season, the thermoneutral zone of mouse lemurs is close to 28°C and that the diurnal fall in body temperature could be considered as an important adaptive energy-saving mechanism adjusted to ecological constraints.  相似文献   

17.
Responses to cold exposure tests both locally and of the whole body were examined in subjects who stayed in the Arctic (average maximum and minimum temperatures –11 and –21° C respectively) for 14 days of skiing and sleeping in tents. These changes were compared to responses in subjects living working in Ottawa, Canada (average max. and min. temperatures –5 and –11° C respectively). The tests were done before the stay in the Arctic (Pre), immediately after the return (Post 1) and approximately 32 days after the return (Post 2). For the whole-body cold exposure each subject, wearing only shorts and lying on a rope mesh cot, was exposed to an ambient temperature of 10° C. There was no consistent response in the changes of metabolic or body temperature to this exposure in either of groups and, in addition, the changes over time were variable. Cold induced vasodilatation (CIVD) was determined by measuring temperature changes in the middle finger of the nondominant hand upon immersion in ice water for 30 min. CIVD was depressed after the Arctic exposure whilst during the Post 2 testing, although variable, did not return to the Pre values; the responses of the control group were similar. These results indicate that normal seasonal changes may be as important in adaptation as a stay in the Arctic. Caution is advised in the separation of seasonal effects when examining the changes in adaptation after exposure to a cold environment.  相似文献   

18.
The life-cycle of Apatania fimbriata (Pictet, 1843) (Trichoptera: Limnephilidae) was studied in the Breitenbach (Hesse, Federal Republic of Germany) and in the laboratory at 6 °C, 10 °C and 14 °C at 14 h day length. Embryogenesis was mainly temperature dependent in the 4 °C–18 °C range. At a constant 22 °C embryos developed to well-differentiated larvae which did not hatch. In the laboratory experiments, developmental rates increased with increasing temperature (6 °C, 10 °C and 14 °C); larvae went through a dormancy in the third and fourth larval instars; in the field this occurred between November and February. The dormancy synchronized the larval development. Laboratory studies led to the conclusion that the dormancy was not temperature dependent but endogenously determined. The emergence pattern of adults showed a clear diurnal pattern, with a maximum emergence approximately two hours after sunset. A comparison of several years emergence studies showed a decreasing number of females with increasing distance from the spring. A comparison of the dry weight of females between two traps at the stream showed a significantly higher weight from the downstream site. For males no between-site differences were observed.  相似文献   

19.
Male Guinea pigs (n=80) were divided into four groups and maintained in a climatic chamber for three weeks in one of the following environmental conditions: (1) Ta20°C and 55% RH; (2) Ta35°C and 30–35% RH from 08:00 to 20:00 h and 5°C; 60–65% RH, from 20:00 h to 08:00 h; (3) Ta5°C and 60–65% RH; (4) Ta35°C and 30–35% RH. At the end of this period the animals were exposed to either –5°C, 60–65% RH or 45°C, 30–35% RH, for a period of 20 min, following which Tre, plasma 11-OHCS, thyroxin, glucose, and FFA, and body and organ weights were determined. The cold-warm adapted animals seemed to develop a more efficient adaptability to acute heat and cold exposure. It is suggested that on acute exposure to severe environmental conditions the endocrine and the nervous system play a dominant role in maintaining optimal body temperature, while on chronic exposure the metabolic rate of the various organs becomes relatively more important.  相似文献   

20.
The ability of the sweet potato whitefly, Bemisia tabaci Gennad., to survive a range of environmental conditions was investigated in the laboratory. The range of temperature and humidity investigated corresponds to the normal climatic range during B. tabaci's summer migration in Israel. Adult whiteflies confined to small test cages were exposed to combinations of temperature (25, 30, 35, and 41 °C) and relative humidity (20, 50, 80, and 100%) for periods of 2, 4, or 6 h.A logistic regression model describing the four-dimensional surface defining percent survival as a function of time, temperature, and humidity was developed. Using stepwise regression to exclude non-significant terms, the linear predictor included temperature, and the products of temperature and time, and humidity and time. The model accounted for 75% of the variance. A reparameterization of the fitted regression model suggests that survival potential is conditioned by temperature conditions prevailing during the previous 10 h.Whitefly survival after 2 h exposure ranged from 90% survival at 20°C and 100% RH, to <2% survival at 41°C and 20% r.h.. No whiteflies survived more than 2 h exposure at these latter extremes of temperature and humidity. Survival rates decreased slightly after experimental whiteflies were kept in a cage with food a further 20 h at 25±2°C, 55±5% r.h. Investigations of the effects of hunger and virus infection, showed that both increased mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号