首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Choline acetyltransferase, the enzyme that synthesizes the transmitter acetylcholine in cholinergic neurons, is a substrate for protein kinase C. In the present study, we used mass spectrometry to identify serine 440 in recombinant human 69-kDa choline acetyltransferase as a protein kinase C phosphorylation site, and site-directed mutagenesis to determine that phosphorylation of this residue is involved in regulation of the enzyme's catalytic activity and binding to subcellular membranes. Incubation of HEK293 cells stably expressing wild-type 69-kDa choline acetyltransferase with the protein kinase C activator phorbol 12-myristate 13-acetate showed time- and dose-related increases in specific activity of the enzyme; in control and phorbol ester-treated cells, the enzyme was distributed predominantly in cytoplasm (about 88%) with the remainder (about 12%) bound to cellular membranes. Mutation of serine 440 to alanine resulted in localization of the enzyme entirely in cytoplasm, and this was unchanged by phorbol ester treatment. Furthermore, activation of mutant enzyme in phorbol ester-treated HEK293 cells was about 50% that observed for wild-type enzyme. Incubation of immunoaffinity purified wild-type and mutant choline acetyltransferase with protein kinase C under phosphorylating conditions led to incorporation of [(32)P]phosphate, with radiolabeling of mutant enzyme being about one-half that of wild-type, indicating that another residue is phosphorylated by protein kinase C. Acetylcholine synthesis in HEK293 cells expressing wild-type choline acetyltransferase, but not mutant enzyme, was increased by about 17% by phorbol ester treatment.  相似文献   

2.
Exposure of MCF-7 human breast cancer cells to the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) leads to the inhibition of cell proliferation. We investigate here the short-term effects of TPA on subcellular distribution of protein kinase C, and on protein phosphorylation in cultured MCF-7 cells. We report a rapid and dramatic decrease in cytosolic protein kinase C activity after TPA treatment. Only 30% of the enzymatic activity lost in the cytosol was recovered in the particulate fraction. These data suggest that subcellular translocation of protein kinase C is accompanied by a rapid down-regulation of the enzyme (70%). Furthermore, TPA and other protein kinase C activators rapidly induce the phosphorylation of a 28 kDa protein in intact MCF-7 cells. Phorbol esters devoid of tumor-promoting activity are ineffective both for inducing these early biochemical events and for inhibiting cell proliferation.  相似文献   

3.
Choline acetyltransferase synthesizes acetylcholine in cholinergic neurons. In the brain, these neurons are especially vulnerable to effects of beta-amyloid (A beta) peptides. Choline acetyltransferase is a substrate for several protein kinases. In the present study, we demonstrate that short term exposure of IMR32 neuroblastoma cells expressing human choline acetyltransferase to A beta-(1-42) changes phosphorylation of the enzyme, resulting in increased activity and alterations in its interaction with other cellular proteins. Using mass spectrometry, we identified threonine 456 as a new phosphorylation site in choline acetyltransferase from A beta-(1-42)-treated cells and in purified recombinant ChAT phosphorylated in vitro by calcium/calmodulin-dependent protein kinase II (CaM kinase II). Whereas phosphorylation of choline acetyltransferase by protein kinase C alone caused a 2-fold increase in enzyme activity, phosphorylation by CaM kinase II alone did not alter enzyme activity. A 3-fold increase in choline acetyltransferase activity was found with coordinate phosphorylation of threonine 456 by CaM kinase II and phosphorylation of serine 440 by protein kinase C. This phosphorylation combination was observed in choline acetyltransferase from A beta-(1-42)-treated cells. Treatment of cells with A beta-(1-42) resulted in two phases of activation of choline acetyltransferase, the first within 30 min and associated with phosphorylation by protein kinase C and the second by 10 h and associated with phosphorylation by both CaM kinase II and protein kinase C. We also show that choline acetyltransferase from A beta-(1-42)-treated cells co-immunoprecipitates with valosin-containing protein, and mutation of threonine 456 to alanine abolished the A beta-(1-42)-induced effects. These studies demonstrate that A beta-(1-42) can acutely regulate the function of choline acetyltransferase, thus potentially altering cholinergic neurotransmission.  相似文献   

4.
Protein kinase C is processed by three phosphorylation events before it is competent to respond to second messengers. Specifically, the enzyme is first phosphorylated at the activation loop by another kinase, followed by two ordered autophosphorylations at the carboxyl terminus (Keranen, L. M., Dutil, E. M., and Newton, A. C. (1995) Curr. Biol. 5, 1394-1403). This study examines the role of negative charge at the first conserved carboxyl-terminal phosphorylation position, Thr-641, in regulating the function and subcellular localization of protein kinase C betaII. Mutation of this residue to Ala results in compensating phosphorylations at adjacent sites, so that a triple Ala mutant was required to address the function of phosphate at Thr-641. Biochemical and immunolocalization analyses of phosphorylation site mutants reveal that negative charge at this position is required for the following: 1) to process catalytically competent protein kinase C; 2) to allow autophosphorylation of Ser-660; 3) for cytosolic localization of protein kinase C; and 4) to permit phorbol ester-dependent membrane translocation. Thus, phosphorylation of Thr-641 in protein kinase C betaII is essential for both the catalytic function and correct subcellular localization of protein kinase C. The conservation of this residue in every protein kinase C isozyme, as well as other members of the kinase superfamily such as protein kinase A, suggests that carboxyl-terminal phosphorylation serves as a key molecular switch for defining kinase function.  相似文献   

5.
Long-term treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) down-regulates select protein kinase C (PKC) isozymes and may differentially affect PKC substrates. We investigated the role of PKC down-regulation on phosphorylation of two PKC substrates, the 43 kDa growth-associated protein (GAP-43) and the myristoylated alanine-rich C-kinase substrate (MARCKS) in SK-N-SH human neuroblastoma cells. Cells were treated with 70 nM TPA for 15 min, 17 or 72 h. Phosphorylation of MARCKS and GAP-43 was elevated throughout 72 h of TPA. The magnitude and peptidic sites of phosphorylation in GAP-43 and MARCKS were similar after all TPA treatments. GAP-43, but not MARCKS, content was increased after 17 and 72 h of TPA. The ratio of GAP-43 phosphorylation to content was elevated throughout 17 h but returned to control by 72 h as content increased. PKC epsilon and alpha isozyme content was greatly reduced after 72 h of TPA but membranes retained 23% of PKC activity. Only PKC epsilon translocated to membranes after 15 min TPA. GAP-43 content after 72 h of TPA was increased in subcellular fractions in which significant PKC epsilon isozyme concentration remained. These results demonstrate that continuous TPA differentially affected phosphorylation of PKC substrate proteins and regulation of PKC isozyme content in SK-N-SH cells.  相似文献   

6.
Both bryostatin 1 and 4 beta-phorbol 12,13-dibutyrate (PBt2) activate Ca2+- and phospholipid-dependent protein kinase (protein kinase C) at the plasma membrane in HL-60 cells (Kraft, A. S., Baker, V. V., and May, W. S. (1987) Oncogene 1, 91-100). However, whereas PBt2 causes HL-60 cells to cease dividing and differentiate, bryostatin 1 antagonizes this effect and allows cells to continue proliferating. To test whether these divergent effects could be due to the differential activation of protein kinase C at the nuclear level, the phosphorylation of nuclear envelope polypeptides was evaluated in cells treated with either bryostatin 1 or PBt2. Bryostatin 1, either alone or in combination with PBt2, but not PBt2 alone, mediates rapid and specific phosphorylation of several nuclear envelope polypeptides. A major target for bryostatin-induced phosphorylation is the major nuclear envelope polypeptide lamin B (Mr = 67,000, pI 6.0). In vitro studies combining purified protein kinase C and HL-60 cell nuclear envelopes demonstrate that bryostatin activates protein kinase C to phosphorylate lamin B, whereas PBt2 does so only weakly, suggesting selective activation of this enzyme toward this substrate. Comparative phosphopeptide and phosphoamino acid analyses demonstrate that bryostatin induces phosphorylation of identical serine sites on lamin B both in whole cells and in vitro. Treatment of whole cells with bryostatin, but not PBt2, leads to specific translocation of activated protein kinase C to the nuclear envelope. Since phosphorylation of lamin B is known to be involved in nuclear lamina depolymerization at the time of mitosis, it is possible that bryostatin-activated protein kinase C activity is involved in this process. Finally, specific activation of protein kinase C at the nuclear membrane could explain, at least in part, the divergent effects of bryostatin 1 and PBt2 on HL-60 cell growth.  相似文献   

7.
A 20-kDa DNA-binding protein that binds the AT-rich sequences within the promoters of the brain-specific protein kinase C (PKC) gamma and neurogranin/RC3 genes has been characterized as chromosomal nonhistone high-mobility-group protein (HMG)-I. This protein is a substrate of PKC alpha, beta, gamma, and delta but is poorly phosphorylated by PKC epsilon and zeta. Two major (Ser44 and Ser64) and four minor phosphorylation sites have been identified. The extents of phosphorylation of Ser44 and Ser64 were 1:1, whereas those of the four minor sites all together were <30% of the major one. These PKC phosphorylation sites are distinct from those phosphorylated by cdc2 kinase, which phosphorylates Thr53 and Thr78. Phosphorylation of HMG-I by PKC resulted in a reduction of DNA-binding affinity by 28-fold as compared with 12-fold caused by the phosphorylation with cdc2 kinase. HMG-I could be additively phosphorylated by cdc2 kinase and PKC, and the resulting doubly phosphorylated protein exhibited a >100-fold reduction in binding affinity. The two cdc2 kinase phosphorylation sites of HMG-I are adjacent to the N terminus of two of the three predicted DNA-binding domains. In comparison, one of the major PKC phosphorylation sites, Ser64, is adjacent to the C terminus of the second DNA-binding domain, whereas Ser44 is located within the spanning region between the first and second DNA-binding domains. The current results suggest that phosphorylation of the mammalian HMG-I by PKC alone or in combination with cdc2 kinase provides an effective mechanism for the regulation of HMG-I function.  相似文献   

8.
The main intrinsic membrane protein of the lens fiber cell, MIP, has been previously shown to be phosphorylated in preparations of lens fragments. Phosphorylation occurred on serine residues near the cytoplasmic C-terminus of the molecule. Since MIP is thought to function as a channel protein in lens plasma membranes, possibly as a cell-to-cell channel protein, phosphorylation could regulate the assembly or gating of these channels. We sought to identify the specific serines which are phosphorylated in order to help identify the kinases involved in regulating MIP function. To this end we purified a peptide fragment from native membranes that had not been subjected to any exogenous kinases or kinase activators. Any phosphorylation detected in these fragments must be due to cellular phosphorylation and thus is termed in vivo phosphorylation. Purified membranes were also phosphorylated with cAMP-dependent protein kinase to determine the mobility of phosphorylated and unphosphorylated MIP-derived peptides on different HPLC columns and to determine possible cAMP-dependent protein kinase phosphorylation sites. Lens membranes, which contain 50-60% of the protein as MIP, were digested with lysylendopeptidase C. Peptides were released from the C-terminal region of MIP and a major product of 21-22 kDa remained membrane-associated. Separation of the lysylendopeptidase-C-released peptides on C8 reversed-phase HPLC demonstrated that one of these fragments, corresponding to residues 239-259 in MIP, was partially phosphorylated. The phosphorylated and nonphosphorylated forms of this peptide were separated on QAE HPLC. In vivo phosphorylation sites were found at residues 243 and 245 through phosphoserine modification via ethanethiol and sequence analysis. Phosphorylation was never detected on serine 240. The phosphorylation level of serine 243 could be increased by incubation of membranes with cAMP-dependent protein kinase under standard assay conditions. Other kinases that phosphorylate serines found near acidic amino acids must be responsible for the in vivo phosphorylation demonstrated at serine 245.  相似文献   

9.
It has been demonstrated that the third component of complement (C3)(1) and its peptides increase normal and tumour cell proliferation. However, the signal cascade responsible for this phenomenon is still unknown. In this study, we elucidate some of the mechanisms involved in the signalling of C3 stimulation of cell proliferation. We have first investigated the in and out traffic of C3 peptides, then we have identified the subcellular localisation of internalised C3 and, finally, we have explored the role of protein phosphorylation in C3 traffic and in the proliferation of the Lewis lung carcinoma (3LL) cells. Our results indicate that traffic of C3 is not dependent on cytoskeletal integrity and requires protein kinase C-dependent phosphorylation. In addition, proliferation of 3LL cells stimulated by C3 depends on both C3 internalisation and protein-kinase C phosphorylation.  相似文献   

10.
Filamin A is an established structural component of cell-matrix adhesion sites. In addition, it serves as a scaffold for the subcellular targeting of different signaling molecules. Protein kinase C (PKC) has been found associated with filamin; however, details about this interaction and its significance for cell-matrix adhesion-dependent signaling have remained elusive. We performed a yeast two-hybrid analysis using protein kinase Calpha as a bait and identified filamin as a direct binding partner. The interaction was confirmed in transfected HeLa cells, and serial truncation fragments of filamin A were employed to identify two binding sites on filamin. In vitro ligand binding assays revealed a Ca2+ and phospholipid-dependent association of the regulatory domain of protein kinase C with these sites. Phosphorylation of filamin was found to be isoform-restricted, leading to phosphate incorporation in the C termini of filamin A and C, but not B. PKC-dependent phosphorylation of filamin was also detected in cells. Our data suggest an intimate interaction between filamin and PKC in cell signaling.  相似文献   

11.
12.
13.
Recently, we characterized a surface antigen (Z-1) of guinea pig macrophages by monoclonal anti-Z-1 antibody. The Z-1 antigen consists of two different polypeptide chains; alpha (140 kDa) and beta (95 kDa). This antigen is closely correlated with the phagocytic activity of the cells for zymosan and presumably functions as a receptor for zymosan. In the present study, the effect of phorbol 12-myristate 13-acetate (PMA) on the function of Z-1 was examined. Incubation of ortho-[32P]phosphate-labeled macrophages with PMA greatly increased the phosphorylation of the beta subunit of Z-1 but not that of the alpha subunit. Optimal phosphorylation was observed when cells were incubated with 300 ng/ml of PMA for 60-120 min. The PMA-induced phosphorylation was markedly suppressed by treatment of the macrophages with H-7, an inhibitor of protein kinase C. A chemotactic peptide, N-formyl-Met-Leu-Phe (fMLP) also caused phosphorylation of the beta subunit. Unlike PMA, fMLP maximized the phosphorylation within 30 s. Purified Z-1 was an excellent substrate for the exogenously added protein kinase C only in the presence of both Ca2+ and phosphatidylserine. H-7 completely inhibited the in vitro phosphorylation. These data suggest that the beta subunit of Z-1 is phosphorylated by protein kinase C. The phosphorylation of Z-1 by PMA and fMLP coincided with inhibition of zymosan phagocytosis. A linear relationship was obtained between the level of phosphorylation of Z-1 and the degree of inhibition of zymosan phagocytosis induced by PMA. Thus, the results suggest that zymosan uptake is negatively regulated by protein kinase C-mediated phosphorylation of the beta subunit of Z-1.  相似文献   

14.
Numerous reports have described a phosphoprotein with an apparent molecular mass of 68-87 kDa, often referred to as the 80K protein, which serves as a major specific substrate for protein kinase C in a wide variety of cell types. This protein has been shown to be myristoylated in macrophages, apparently in a stimulus-dependent manner. In the present study, we have defined the kinetics for myristoylation of the 80K protein in BC3H1 myocytes and have examined the subcellular distribution of the [3H]myristate and 32P-labeled forms of the protein before and after activation of protein kinase C by phorbol dibutyrate (PDBu). The 80K protein was identified in BC3H1 myocytes by apparent molecular mass of 68 kDa (consistent with the previously reported size of the murine homologue), isoelectric point of 4.6-4.8, PDBu-inducible phosphorylation, peptide mapping, and labeling with [3H]myristate. Incorporation of [3H]myristate by this protein occurred through an amide linkage and was abolished completely by cycloheximide. Pulse labeling of quiescent cells with [3H]myristate revealed no alteration in myristoylation of the 80K protein in either the crude membrane or soluble fractions after PDBu-induced phosphorylation. The subcellular distribution of this protein (approximately 80% membrane, approximately 20% cytosol) also was the same in control and PDBu-stimulated cells. Phosphorylation of both the membrane-bound and soluble forms was increased approximately 6-fold upon stimulation of cultures with PDBu; the soluble form was phosphorylated to a 4-fold higher stoichiometry than its membrane-bound counterpart. Together, these data demonstrate that the 80K protein is myristoylated cotranslationally in BC3H1 cells and that protein kinase C-dependent phosphorylation of the 80K protein does not alter its subcellular distribution or degree of myristoylation. The fact that 20% of total myristoylated 80K protein resides in the cytosol also indicates that myristoylation alone is not sufficient to target this protein to the plasma membrane.  相似文献   

15.
Changes in the extent of phosphorylation of the 25 kDa subunit of eIF-4F occur during several major biological events including mitosis and heat shock in mammalian cells and shortly after fertilization of sea urchin (Lytechinus pictus) eggs. In vitro phosphorylation studies using highly purified protein kinases demonstrated that the 220 kDa subunit of eIF-4F was phosphorylated by cAMP dependent protein kinase, protein kinase C and probably to a lesser extent by cGMP dependent protein kinase. In addition, eIF-4A was readily phosphorylated by cAMP and cGMP dependent protein kinases whereas p48 of eIF-4F was not. The effect of these phosphorylation events on eIF-4F function, its assembly or disassembly, susceptibility to viral initiated proteolysis or the ability of p25 to be phosphorylated at serine-53 remain to be investigated.  相似文献   

16.
Protein kinase C (PKC) family requires phosphorylation of itself to become competent for responding to second messengers. Much attention has been focused on elucidating the role of phosphorylation in PKC activity; however, it remains unknown where this modification takes place in the cells. This study examines whether anchoring protein is involved in the regulation of PKC phosphorylation. A certain population of PKC epsilon in rat brain extracts as well as that expressed in COS7 cells was associated with an endogenous anchoring protein CG-NAP (centrosome and Golgi localized PKN- associated protein). Pulse chase experiments revealed that the associated PKC epsilon was an immature species at the hypophosphorylated state. In vitro binding studies confirmed that non- or hypophosphorylated PKC epsilon directly bound to CG-NAP via its catalytic domain, whereas sufficiently phosphorylated PKC epsilon did not. PKC epsilon mutant at a potential phosphorylation site of Thr-566 or Ser-729 to Ala, possessing almost no catalytic activity, was associated and co-localized with CG-NAP at Golgi/centrosome area. On the other hand, wild type and a phosphorylation-mimicking mutant at Thr-566 were mainly distributed in cytosol and represented second messenger-dependent catalytic activation. These results suggest that CG-NAP anchors hypophosphorylated PKCepsilon at the Golgi/centrosome area during maturation and serves as a scaffold for the phosphorylation reaction.  相似文献   

17.
NOX5 is a ROS-generating NADPH oxidase which contains an N-terminal EF-hand region and can be activated by cytosolic Ca(2+) elevations. However the C-terminal region of NOX5 also contains putative phosphorylation sites. In this study we used HEK cells stably expressing NOX5 to analyze the size and subcellular localization of the NOX5 protein, its mechanisms of activation, and the characteristics of the ROS released. We demonstrate that NOX5 can be activated both by the protein kinase C activating phorbol esther PMA and by the Ca(2+) ionophore ionomycin. The PMA- but not the ionomycin-dependent activation can be inhibited by protein kinase C inhibitors. NOX5 activity is inhibited by submicromolar concentrations of diphenyl iodonium (DPI), but not by apocynin. Western blot analysis showed a lower ( approximately 70 kDa) than expected (82 kDa) molecular mass. Two arguments suggest that NOX5 is at least partially expressed on the plasma membrane: (i) the membrane-impermeant superoxide was readily detected by extracellular probes, and (ii) immunofluorescent labeling of NOX5 detected a fraction of the NOX5 protein at the plasma membrane. In summary, we demonstrate that NOX5 can be found intracellularly and at the cell surface. We also describe that it can be activated through protein kinase C, in addition to its Ca(2+) activation.  相似文献   

18.
Studies have suggested that the expression, translocation, and function of alpha4beta2 nicotinic receptors may be modulated by alpha4 subunit phosphorylation, but little direct evidence exists to support this idea. The objective of these experiments was to identify specific serine/threonine residues on alpha4 subunits that are phosphorylated in vivo by cAMP-dependent protein kinase and protein kinase C (PKC). To accomplish this, DNAs coding for human alpha4 subunits containing alanines in place of serines/threonines predicted to represent phosphorylation sites were constructed, and transiently transfected with the DNA coding for wild-type beta2 subunits into SH-EP1 cells. Cells were pre-incubated with (32)Pi and incubated in the absence or presence of forskolin or phorbol 12,13-dibutyrate. Immunoprecipitated alpha4 subunits were subjected to immunoblot, autoradiographic and phosphoamino acid analyses, and two-dimensional phosphopeptide mapping. Results confirmed the presence of two alpha4 protein bands, a major band of 71/75 kDa and a minor band of 80/85 kDa. Phosphoamino acid analysis of the major band indicated that only serine residues were phosphorylated. Phosphopeptide maps demonstrated that Ser362 and 467 on the M3/M4 cytoplasmic domain of the alpha4 subunit represent major cAMP-dependent protein kinase phosphorylation sites, while Ser550 also contained within this major intracellular loop is a major site for protein kinase C phosphorylation.  相似文献   

19.
Phosphorylation induced by protein kinase C was examined in a plasma membrane fraction from rat aortic myocytes. Labelled phosphate incorporation produced by addition of kinase C to the membrane preparation allowed to identify a 16 kDa protein as the major substrate of the enzyme. This protein electrophoretically migrated with a protein phosphorylated by cAMP dependent protein kinase, but the two kinases produced phosphorylation of different sites since their effects were additive. Pretreatment of the myocytes with a kinase C activating phorbol ester or with vasopressin decreased further phosphate incorporation into the 16 kDa protein under the influence of exogenous kinase C. The results provide evidence that vasopressin produced in situ phosphorylation of the 16 kDa protein in rat aortic myocytes, with a time course and at concentrations consistent with a role of kinase C activation in the response of aortic myocytes to stimulation of V1 receptors.  相似文献   

20.
Apparently conflicting observations indicated that protein kinase C both may block and support the assembly of tight junctions. We therefore tested the hypothesis that different isoenzymes antagonistically affect tight junction proteins and function. Thus, by using specific inhibitors we investigated the involvement of conventional and novel protein kinase C of kidney tubule cells in tight junction assembly. In low Ca2+ medium, the application of pan-protein kinase C inhibitor GF-109203X blocked the formation of tight junctions induced by protein kinase C agonist diacyglycerol. G?6976, inhibitor of conventional protein kinase C, promoted the formation of tight junctions and occludin phosphorylation in cells cultivated in low Ca2+ medium and attenuated the disruption of tight junction complex induced by the switch to low Ca2+ medium. In addition, G?6976 accelerated the occludin phosphorylation and the formation of tight junction barrier during assembly of tight junctions induced by Ca2+ re-addition. This phosphorylation was accompanied by accelerated occludin incorporation into newly forming tight junctions and by reducing the paracellular permeability. In contrast, inhibitor of novel protein kinase C rottlerin blocked the occludin phosphorylation and the formation of tight junction barrier, both caused by re-addition of normal Ca2+ medium. It is concluded that the conventional protein kinase C alpha participates in tight junction disassembly while the novel protein kinase C epsilon plays a role in tight junction formation of kidney epithelial cells. The discovered antagonism contributes to a better understanding of the regulation of the structure and function of tight junctions and hence to that of the epithelial barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号