首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To test the hypothesis that CD8+ T cells may suppress the allergen-induced late airway response (LAR) and airway eosinophilia, we examined the effect of administration of Ag-primed CD8+ T cells on allergic airway responses, bronchoalveolar lavage (BAL) leukocytes, and mRNA expression for cytokines (IL-4, IL-5, and IFN-gamma) in OVA-sensitized Brown Norway rats. On day 12 postsensitization to OVA, test rats were administered 2 million CD8+ T cells i.p. isolated from either the cervical lymph nodes (LN group; n = 8) or the spleen (Spl group; n = 6) of sensitized donors. On day 14, test rats were challenged with aerosolized OVA. Control rats were administered PBS i.p. on day 12, and challenged with OVA (n = 10) or BSA (n = 6) on day 14. The lung resistance was measured for 8 h after challenge. BAL was performed at 8 h. Cytospin slides of BAL were analyzed for major basic protein by immunostaining and for cytokine mRNA by in situ hybridization. The LAR was significantly less in the LN group (1.8 +/- 0.5 U; p < 0.01) and BSA controls (1.4 +/- 0.7; p < 0.01), but not in the Spl group (6.7 +/- 2.2), compared with that in OVA controls (8.1 +/- 1.8). In BAL, the number of major basic protein-positive cells was lower in the LN and Spl groups compared with OVA controls (p < 0.05 and p < 0.01). IL-4- and IL-5-positive cells were decreased in the LN group compared with the OVA controls (p < 0.01). INF-gamma-positive cells were increased in the LN and Spl groups compared with the OVA controls (p < 0.01). Serum OVA-specific IgE levels were unaffected by CD8+ T cell transfers. These results indicate that Ag-primed CD8+ T cells have a potent suppressive effect on LAR.  相似文献   

2.
IL-15, a pleiotropic cytokine, is involved in the inflammatory responses in various infectious and autoimmune diseases. We have recently constructed IL-15-transgenic (Tg) mice, which have an increased number of memory-type CD8+ T cells in the peripheral lymphoid tissues. In the present study, we found that eosinophilia and Th2-type cytokine production in the airway were severely attenuated in OVA-sensitized IL-15-Tg mice following OVA inhalation. IL-15-Tg mice preferentially developed Tc1 responses mediated by CD8+ T cells after OVA sensitization, and in vivo depletion of CD8+ T cells by anti-CD8 mAb aggravated the allergic airway inflammation in IL-15-Tg mice following OVA inhalation. Adoptive transfer of CD8+ T cells from OVA-sensitized IL-15-Tg mice into normal mice before OVA sensitization suppressed Th2 response to OVA in the normal mice. These results suggest that overexpression of IL-15 in vivo suppresses Th2-mediated-allergic airway response via induction of CD8+ T cell-mediated Tc1 response.  相似文献   

3.
The role of T lymphocyte subpopulations in the protection against intraperitoneal (i.p.) and peroral Encephalitozoon cuniculi infections was compared in adoptive-transfer experiments using severe combined immunodeficient mice. Whereas CD8+ T cell-depleted, but not CD4+ T cell-depleted, BALB/c splenocytes failed to protect the mice against i.p. infection, only SCID mice reconstituted with both CD4+ T lymphocyte- and CD8+ T lymphocyte-depleted splenocytes succumbed to peroral infection. The results indicate that whereas CD8+ T cells are critical for the protection against an i.p. E. cuniculi infection, both CD4+ and CD8+ T lymphocyte subpopulations play a substantive protective role in a peroral infection, i.e., natural route of infection.  相似文献   

4.
CD4+ T cells, particularly Th2 cells, play a pivotal role in allergic airway inflammation. However, the requirements for interactions between CD4+ and CD8+ T cells in airway allergic inflammation have not been delineated. Sensitized and challenged OT-1 mice in which CD8+ T cells expressing the transgene for the OVA(257-264) peptide (SIINFEKL) failed to develop airway hyperresponsiveness (AHR), airway eosinophilia, Th2 cytokine elevation, or goblet cell metaplasia. OT-1 mice that received naive CD4+IL-4+ T cells but not CD4+IL-4- T cells before sensitization developed all of these responses to the same degree as wild-type mice. Moreover, recipients of CD4+IL-4+ T cells developed significant increases in the number of CD8+IL-13+ T cells in the lung, whereas sensitized OT-1 mice that received primed CD4+ T cells just before challenge failed to develop these responses. Sensitized CD8-deficient mice that received CD8+ T cells from OT-1 mice that received naive CD4+ T cells before sensitization increased AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged with allergen. In contrast, sensitized CD8-deficient mice receiving CD8+ T cells from OT-1 mice without CD4+ T cells developed reduced AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged. These data suggest that interactions between CD4+ and CD8+ T cells, in part through IL-4 during the sensitization phase, are essential to the development of CD8+IL-13+ T cell-dependent AHR and airway allergic inflammation.  相似文献   

5.
The role of Th2/CD4 T cells, which secrete IL-4, IL-5, and IL-13, in allergic disease is well established; however, the role of CD8(+) T cells (allergen-induced airway hyperresponsiveness (AHR) and inflammation) is less clear. This study was conducted to define the role of Ag-primed CD8(+) T cells in the development of these allergen-induced responses. CD8-deficient (CD8(-/-)) mice and wild-type mice were sensitized to OVA by i.p. injection and then challenged with OVA via the airways. Compared with wild-type mice, CD8(-/-) mice developed significantly lower airway responsiveness to inhaled methacholine and lung eosinophilia, and exhibited decreased IL-13 production both in vivo, in the bronchoalveolar lavage (BAL) fluid, and in vitro, following Ag stimulation of peribronchial lymph node (PBLN) cells in culture. Reconstitution of sensitized and challenged CD8(-/-) mice with allergen-sensitized CD8(+) T cells fully restored the development of AHR, BAL eosinophilia, and IL-13 levels in BAL and in culture supernatants from PBLN cells. In contrast, transfer of naive CD8(+) T cells or allergen-sensitized CD8(+) T cells from IL-13-deficient donor mice failed to do so. Intracellular cytokine staining of lung as well as PBLN T cells revealed that CD8(+) T cells were a source of IL-13. These data suggest that Ag-primed CD8(+) T cells are required for the full development of AHR and airway inflammation, which appears to be associated with IL-13 production from these primed T cells.  相似文献   

6.
Regulatory role of B cells in a murine model of allergic airway disease   总被引:1,自引:0,他引:1  
Mice sensitized to OVA and subjected to acute OVA aerosol exposures develop allergic airway disease (AAD). However, chronic continuous Ag exposure results in resolution of AAD and the development of local inhalational tolerance (LIT). Because we have previously observed the persistence of B cells in the bronchoalveolar lavage (BAL) and hilar lymph nodes (HLN) at the resolution stage of this model, we investigated the role of B cells in the modulation of AAD. Although B cell-deficient mice developed LIT, adoptive transfer of HLN B cells from LIT mice to OVA-sensitized recipients resulted in attenuated AAD following subsequent OVA aerosol exposure, as determined by reduced BAL leukocytosis and eosinophilia, decreased tissue inflammation, and absent methacholine hyper-responsiveness. In similar adoptive transfer studies, HLN B cells from AAD mice were without effect. The protection transferred by LIT HLN B cells was Ag specific and was associated with accumulation of Foxp3(+) T regulatory cells regionally in BAL and HLN, but not systemically in the spleen. Fluorescent labeling of LIT HLN B cells before adoptive transfer demonstrated that these cells had the capacity to migrate to local inflammatory sites. In vitro assessment demonstrated that the LIT HLN B cells exerted this regulatory effect via TGF-beta induced conversion of CD4(+)CD25(-) T effector cells into functionally suppressive CD4(+)CD25(+)Foxp3(+) T regulatory cells. These findings illustrated a novel regulatory role for regional B cells in AAD and suggested a possible contributory role of B cells, along with other cell types, in the establishment of LIT.  相似文献   

7.
Ags administered orally at a high dose are absorbed in immunogenic forms and perfuse the liver, which raises a question regarding the relevance of hepatic lymphocyte activation to the systemic hyporesponsiveness against the ingested Ag. Oral administration of 100 mg of OVA to the mice led to massive cell death of OVA-specific (KJ1-26+)CD4+ T cells by Fas-Fas ligand (FasL)-mediated apoptosis in the liver, which was associated with the emergence of hepatic KJ1-26+CD4+ T cells expressing FasL. Hepatic CD4+ T cells in OVA-fed mice secreted large amounts of IL-4, IL-10, and TGF-beta(1) upon restimulation in vitro and inhibited T cell proliferation. Adoptive transfer of these hepatic CD4+ T cells to naive mice and subsequent antigenic challenge led to suppression of T cell proliferation as well as IgG Ab responses to OVA; this effect was mostly abrogated by a blocking Ab to FasL. i.p. administration of an Ag at a high dose also generated hepatic CD4+FasL+ T cells with similar cytokine profile as T cells activated by oral administration of Ags at a high dose. Finally, we did not see an increase in FasL+ cells in the hepatic CD4+Vbeta8+ T cell subset of MRL/lpr/lpr mice given staphylococcal enterotoxin B, indicating the requirement for Fas-mediated signals. These hepatic CD4+FasL+ regulatory cells may explain the tolerogenic property of the liver and play roles in systemic hyporesponsiveness induced by an Ag administered at a high dose.  相似文献   

8.
Studies in both humans and rodents have suggested that CD8+ T cells contribute to the development of airway hyperresponsiveness (AHR) and that leukotriene B4 (LTB4) is involved in the chemotaxis of effector CD8+ T cells (T(EFF)) to the lung by virtue of their expression of BLT1, the receptor for LTB4. In the present study, we used a mast cell-CD8-dependent model of AHR to further define the role of BLT1 in CD8+ T cell-mediated AHR. C57BL/6+/+ and CD8-deficient (CD8-/-) mice were passively sensitized with anti-OVA IgE and exposed to OVA via the airways. Following passive sensitization and allergen exposure, C57BL/6+/+ mice developed altered airway function, whereas passively sensitized and allergen-exposed CD8-/- mice failed to do so. CD8-/- mice reconstituted with CD8+ T(EFF) developed AHR in response to challenge. In contrast, CD8-/- mice reconstituted with BLT1-deficient effector CD8+ T cells did not develop AHR. The induction of increased airway responsiveness following transfer of CD8+ T(EFF) or in wild-type mice could be blocked by administration of an LTB4 receptor antagonist confirming the role of BLT1 in CD8+ T cell-mediated AHR. Together, these data define the important role for mast cells and the LTB4-BLT1 pathway in the development of CD8+ T cell-mediated allergic responses in the lung.  相似文献   

9.
Bromelain modulates T cell and B cell immune responses in vitro and in vivo   总被引:3,自引:0,他引:3  
The ability to modulate immune responses is a major aim of many vaccine and immunotherapeutic development programs. Bromelain, a mixture of cysteine proteases, modulates immunological responses and has been proposed to be of clinical use. However, the identity of the immune cells affected by bromelain and the specific cellular functions that are altered remain poorly understood. To address these shortcomings in our knowledge, we have used both in vitro and in vivo immunological assays to study the effects of bromelain. We found that bromelain enhanced T cell receptor (TCR) and anti-CD28-mediated T cell proliferation in splenocyte cultures by increasing the costimulatory activity of accessory cell populations. However, despite increased T cell proliferation, bromelain concomitantly decreased IL-2 production in splenocyte cultures. Additionally, bromelain did not affect TCR and CD28-induced proliferation of highly purified CD4+ T cells, but did inhibit IL-2 production by these cells. In vivo, bromelain enhanced T-cell-dependent, Ag-specific, B cell antibody responses. Again, bromelain induced a concomitant decrease in splenic IL-2 mRNA accumulation in immunized mice. Together, these data show that bromelain can simultaneously enhance and inhibit T cell responses in vitro and in vivo via a stimulatory action on accessory cells and a direct inhibitory action on T cells. This work provides important insights into the immunomodulatory activity of bromelain and has important implications for the use of exogenous cysteine proteases as vaccine adjuvants or immunomodulatory agents.  相似文献   

10.

Background

CD8+ T cells participate in airway hyperresponsiveness (AHR) and allergic pulmonary inflammation that are characteristics of asthma. CXCL10 by binding to CXCR3 expressed preferentially on activated CD8+ T cells, attracts T cells homing to the lung. We studied the contribution and limitation of CXCR3 to AHR and airway inflammation induced by ovalbumin (OVA) using CXCR3 knockout (KO) mice.

Methods

Mice were sensitized and challenged with OVA. Lung histopathological changes, AHR, cellular composition and levels of inflammatory mediators in bronchoalveolar lavage (BAL) fluid, and lungs at mRNA and protein levels, were compared between CXCR3 KO mice and wild type (WT) mice.

Results

Compared with the WT controls, CXCR3 KO mice showed less OVA-induced infiltration of inflammatory cells around airways and vessels, and less mucus production. CXCR3 KO mice failed to develop significant AHR. They also demonstrated significantly fewer CD8+ T and CD4+ T cells in BAL fluid, lower levels of TNFα and IL-4 in lung tissue measured by real-time RT-PCR and in BAL fluid by ELISA, with significant elevation of IFNγ mRNA and protein expression levels.

Conclusions

We conclude that CXCR3 is crucial for AHR and airway inflammation by promoting recruitment of more CD8+ T cells, as well as CD4+ T cells, and initiating release of proinflammatory mediators following OVA sensitization and challenge. CXCR3 may represent a novel therapeutic target for asthma.  相似文献   

11.
Generation of effective CTL responses is the goal of many vaccination protocols. However, to what extant T cell precursor frequencies will generate a CD8+ CTL response has not been elucidated properly. In this study, we employed a model system, in which naive CD4+ and CD8+ T cells derived from ovalbumin (OVA)-specific TCR transgenic OT II and OT I mice were used for adoptive transfer into wild-type, Iab−/− gene knockout and transgenic RIP-mOVA mice, and assessed OVA-pulsed DC (DCOVA)-stimulated CD8+ CTL responses in these mice. We demonstrated that (i) a critical threshold exists above which T cells precursor frequency cannot enhance the CTL responses in wild-type C57BL/6 mice, (ii) increasing CD8+ T cell precursors is required to generate CTL responses but with functional memory defect in absence of CD4+ T cell help, and (iii) increasing CD4+ and CD8+ T cell precursors overcomes immune suppression to DCOVA-stimulated CD8+ CTL responses in transgenic RIP-mOVA mice with OVA-specific self immune tolerance. Taken together, these findings may have important implications for optimizing immunotherapy against cancer.  相似文献   

12.
Chronic innocuous aeroallergen exposure attenuates CD4(+) T cell-mediated airways hyperresponsiveness in mice; however, the mechanism(s) remain unclear. We examined the role of airway mucosal dendritic cell (AMDC) subsets in this process using a multi-OVA aerosol-induced tolerance model in sensitized BALB/c mice. Aeroallergen capture by both CD11b(lo) and CD11b(hi) AMDC and the delivery of OVA to airway draining lymph nodes by CD8α(-) migratory dendritic cells (DC) were decreased in vivo (but not in vitro) when compared with sensitized but nontolerant mice. This was functionally significant, because in vivo proliferation of OVA-specific CD4(+) T cells was suppressed in airway draining lymph nodes of tolerized mice and could be restored by intranasal transfer of OVA-pulsed and activated exogenous DC, indicating a deficiency in Ag presentation by endogenous DC arriving from the airway mucosa. Bone marrow-derived DC Ag-presenting function was suppressed in multi-OVA tolerized mice, and allergen availability to airway APC populations was limited after multi-OVA exposure, as indicated by reduced OVA and dextran uptake by airway interstitial macrophages, with diffusion rather than localization of OVA across the airway mucosal surface. These data indicate that inhalation tolerance limits aeroallergen capture by AMDC subsets through a mechanism of bone marrow suppression of DC precursor function coupled with reduced Ag availability in vivo at the airway mucosa, resulting in limited Ag delivery to lymph nodes and hypoproliferation of allergen-specific CD4(+) T cells.  相似文献   

13.
In mice, respiratory syncytial virus (RSV) infection enhances allergic airway sensitization, resulting in lung eosinophilia and in airway hyperresponsiveness (AHR). The mechanisms by which RSV contributes to development of asthma and its effects on allergic airway sensitization in mice are not known. We tested whether these consequences of RSV infection can be adoptively transferred by T cells and whether depletion of T cell subsets prevents the effects of RSV infection on subsequent airway sensitization. Mononuclear cells, T lymphocytes, or CD4 or CD8 T cells from peribronchial lymph nodes (PBLN) of RSV-infected mice were transferred into naive BALB/c mice which were then exposed to OVA via the airways. Additionally, RSV-infected mice were depleted of CD4 or CD8 T cells following acute RSV infection but prior to airway sensitization. Following sensitization, airway responsiveness to inhaled methacholine, numbers of lung eosinophils, and levels of IFN-gamma, IL-4, and IL-5 in PBLN cell cultures were monitored. Transfer of T cells from RSV-infected mice resulted in increased eosinophil influx into the lungs, increased IL-5 production, and development of AHR following airway sensitization to allergen. Transfer of CD8 but not CD4 T cells from the PBLN of RSV-infected mice also resulted in AHR following 10 days of OVA exposure. Further, depletion of CD8 T cells prevented these consequences of RSV infection while CD4 T cell depletion reduced them. We conclude that T cells, in particular CD8 T cells, are critical in mediating RSV-induced development of lung eosinophilia and AHR following allergic airway sensitization.  相似文献   

14.
Cytoplasmic delivery and cross-presentation of proteins and peptides is necessary for processing and presentation of antigens for the generation of cytotoxic T cells. We previously described the use of the 16 amino acid peptide penetratin from the Drosophila Antennapedia homeodomain (penetratin, Antp) to transport cytotoxic T lymphocyte epitopes derived from ovalbumin (OVA) or the Mucin-1 tumor-associated antigen into cells. We have now shown that penetratin covalently conjugated to OVA protein and linked in tandem to CD4(+) and/or CD8(+) T-cell epitopes from OVA-stimulated T cells in vitro (B3Z T-cell hybridoma and OT-I and OT-II T cells). The induction of these responses was directly mediated by the penetratin peptide as linking a nonspecific 16-mer peptide to OVA or mixing did not induce CD8(+) or CD4(+) T-cell responses in vitro. Furthermore, interferon (IFN)-γ-secreting CD4(+) and CD8(+) T cells were induced which suppressed B16.OVA tumor growth in C57BL/6 mice. Tumor protection was mediated by a CD8(+) T-cell-dependent mechanism and did not require CD4(+) help to protect mice 7 days after a boost immunization. Alternatively, 40 days after a boost immunization, the presence of CD4(+) help enhanced antigen-specific IFN-γ-secreting CD8(+) T cells and tumor protection in mice challenged with B16.OVA. Long-term CD8 responses were equally enhanced by antigen-specific and universal CD4 help. In addition, immunization with AntpOVA significantly delayed growth of B16.OVA tumors in mice in a tumor therapy model.  相似文献   

15.
Mice with genetic deletion of the cholesterol transporter ATP binding cassette G1 (ABCG1) have pulmonary lipidosis and enhanced innate immune responses in the airway. Whether ABCG1 regulates adaptive immune responses to the environment is unknown. To this end, Abcg1(+/+) and Abcg1(-/-) mice were sensitized to OVA via the airway using low-dose LPS as an adjuvant, and then challenged with OVA aerosol. Naive Abcg1(-/-) mice displayed increased B cells, CD4(+) T cells, CD8(+) T cells, and dendritic cells (DCs) in lung and lung-draining mediastinal lymph nodes, with lung CD11b(+) DCs displaying increased CD80 and CD86. Upon allergen sensitization and challenge, the Abcg1(-/-) airway, compared with Abcg1(+/+), displayed reduced Th2 responses (IL-4, IL-5, eosinophils), increased neutrophils and IL-17, but equivalent airway hyperresponsiveness. Reduced Th2 responses were also found using standard i.p. OVA sensitization with aluminum hydroxide adjuvant. Mediastinal lymph nodes from airway-sensitized Abcg1(-/-) mice produced reduced IL-5 upon ex vivo OVA challenge. Abcg1(-/-) CD4(+) T cells displayed normal ex vivo differentiation, whereas Abcg1(-/-) DCs were found paradoxically to promote Th2 polarization. Th17 cells, IL-17(+) γδT cells, and IL-17(+) neutrophils were all increased in Abcg1(-/-) lungs, suggesting Th17 and non-Th17 sources of IL-17 excess. Neutralization of IL-17 prior to challenge normalized eosinophils and reduced neutrophilia in the Abcg1(-/-) airway. We conclude that Abcg1(-/-) mice display IL-17-mediated suppression of eosinophilia and enhancement of neutrophilia in the airway following allergen sensitization and challenge. These findings identify ABCG1 as a novel integrator of cholesterol homeostasis and adaptive immune programs.  相似文献   

16.
Although eosinophils play an essential role in allergic inflammation, their role has recently been under controversy. Epidemic studies suggest that hypereosinophilia induced by parasite infection could suppress subsequent Ag sensitization, although the mechanism has not been fully clarified. In this study, we investigated whether eosinophils could suppress the Ag-specific immune response in the airway. BALB/c mice were sensitized and airway challenged with OVA. Systemic hypereosinophilia was induced by delivery of an IL-5-producing plasmid. IL-5 gene delivery suppressed the Ag-specific proliferation and cytokine production of CD4+ T cells in the spleen. IL-5 gene delivery before OVA sensitization significantly suppressed airway eosinophilia and hyperresponsiveness provoked by subsequent OVA airway challenge, while delivery during the OVA challenge did not suppress them. This IL-5-induced immune suppression was abolished in eosinophil-ablated mice, suggesting an essential role of eosinophils. IL-5 treatment increased the production of TGF-beta1 in the spleen, and we demonstrated that the main cellular source of TGF-beta1 production was eosinophils, using eosinophil-ablated mice and depletion study. TGF-beta1, but not IL-5 itself, suppressed the Ag-specific immune response of CD4+ T cells in vitro. Furthermore, IL-5 treatment enhanced phosphorylation of Smad2 in CD4+ T cells. Finally, a TGF-beta type I receptor kinase inhibitor restored this IL-5-induced immune suppression both in vitro and in vivo. These results suggest that IL-5-induced hypereosinophilia could suppress sensitization to Ag via a TGF-beta-dependent mechanism, thus suppressed allergic airway inflammation. Therefore, hypereosinophilia could reveal an immunosuppressive effect in the early stage of Ag-induced immune response.  相似文献   

17.
The capacity of airway eosinophils, potentially pertinent to allergic diseases of the upper and lower airways, to function as professional APCs, those specifically able to elicit responses from unprimed, Ag-naive CD4(+) T cells has been uncertain. We investigated whether airway eosinophils are capable of initiating naive T cell responses in vivo. Eosinophils, isolated free of other APCs from the spleens of IL-5 transgenic mice, following culture with GM-CSF expressed MHC class II and the costimulatory proteins, CD40, CD80, and CD86. Eosinophils, incubated with OVA Ag in vitro, were instilled intratracheally into wild-type recipient mice that adoptively received i.v. infusions of OVA Ag-specific CD4(+) T cells from OVA TCR transgenic mice. OVA-exposed eosinophils elicited activation (CD69 expression), proliferation (BrdU incorporation), and IL-4, but not IFN-gamma, cytokine production by OVA-specific CD4(+) T cells in paratracheal lymph nodes (LN). Exposure of eosinophils to lysosomotropic NH(4)Cl, which inhibits Ag processing, blocked each of these eosinophil-mediated activation responses of CD4(+) T cells. By three-color fluorescence microscopy, OVA Ag-loaded eosinophil APCs were physically interacting with naive OVA-specific CD4(+) T cells in paratracheal LN after eosinophil airway instillation. Thus, recruited luminal airway eosinophils are distinct allergic "inflammatory" professional APCs able to activate primary CD4(+) T cell responses in regional LNs.  相似文献   

18.
Oral administration of Ag coupled to cholera toxin B subunit (CTB) efficiently induces peripheral immunological tolerance. We investigated the extent to which this oral tolerance is mediated by CD25+CD4+ regulatory T cells (T(reg)). We found that total T(reg), KJ1-26+ T(reg) and CTLA-4+ T(reg) were all increased in Peyer's patches, mesenteric lymph nodes, and, to a lesser extent, in spleen of mice after intragastric administration of OVA/CTB conjugate, which also increased TGF-beta in serum. This could be abolished by co-administering cholera toxin or by treatment with anti-TGF-beta mAb. CD25+ T(reg), but also CD25-CD4+ T cells from OVA/CTB-treated BALB/c or DO11.10 mice efficiently suppressed effector T cell proliferation and IL-2 production in vitro. Following adoptive transfer, both T cell populations also suppressed OVA-specific T cell and delayed-type hypersensitivity responses in vivo. Foxp3 was strongly expressed by CD25+ T(reg) from OVA/CTB-treated mice, and treatment also markedly expanded CD25+Foxp3+ T(reg). Furthermore, in Rag1(-/-) mice that had adoptively received highly purified Foxp3-CD25-CD4+ OT-II T cells OVA/CTB feeding efficiently induced CD25+ T(reg) cells, which expressed Foxp3 more strongly than naturally developing T(reg) and also had stronger ability to suppress effector OT-II T cell proliferation. A remaining CD25- T cell population, which also became suppressive in response to OVA/CTB treatment, did not express Foxp3. Our results demonstrate that oral tolerance induced by CTB-conjugated Ag is associated with increase in TGF-beta and in both the frequency and suppressive capacity of Foxp3+ and CTLA-4+ CD25+ T(reg) together with the generation of both Foxp3+ and Foxp3-CD25- CD4+ T(reg).  相似文献   

19.
Inbred strains of mice vary widely in their ability to survive infection with Trypanosoma cruzi. C3H/He mice are highly susceptible to infection with the Brazil strain T. cruzi, but can be protected by immunization with avirulent Corpus Christi strain parasites. We have examined, during the course of infection, the changes in lymphocyte populations in C3H/He mice that were infected but protected by immunization, infected but not immunized, immunized but not infected, and normal age-matched controls. Immunization- and/or infection-induced changes in lymphocyte populations in lymph nodes were unremarkable except for an increase in the percentage of Ig+ cells. Conversely, in the spleen the percentages of mu+ cells decreased and T cells increased in all manipulated animals. The increase in splenic T cell subsets in immunized only controls occurred simultaneously and thus the CD4:CD8 ratio remained similar to that of normal animals (approximately 2.2). Twenty days after infection, mice that were infected but not immunized (and thus would be expected to die 4-8 days later) showed a dramatic increase in the percentage of CD8+ cells which resulted in a decline in the CD4:CD8 ratio to 0.85. Mice protected by immunization had a CD4:CD8 ratio of 1.7 at this critical time point, which did, however, decline to 1.0 by Day 60. The percentages of all cell phenotypes examined in all mice had returned to normal levels 155 days after infection. These data suggest that alterations in the splenic CD4:CD8 ratio may be important in determining whether or not an animal can survive infection with the Brazil strain of T. cruzi.  相似文献   

20.
TLR ligands are potent activators of dendritic cells and therefore function as adjuvants for the induction of immune responses. We analyzed the capacity of TLR ligands to enhance CD8+ T cell responses toward soluble protein Ag. Immunization with OVA together with LPS or poly(I:C) elicited weak CD8+ T cell responses in wild-type C57BL/6 mice. Surprisingly, these responses were greatly increased in mice lacking CD4+ T cells indicating the induction of regulatory CD4+ T cells. In vivo, neutralization of IL-10 completely restored CD8+ T cell responses in wild-type mice and OVA-specific IL-10 producing CD4+ T cells were detected after immunization with OVA plus LPS. Our study shows that TLR ligands not only activate the immune system but simultaneously induce Ag specific, IL-10-producing regulatory Tr1 cells that strongly suppress CD8+ T cell responses. In this way, excessive activation of the immune system may be prevented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号