首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PIKE/nuclear PI 3-kinase signaling in preventing programmed cell death   总被引:5,自引:0,他引:5  
PI 3-kinase enhancer (PIKE) is a nuclear GTPase that enhances PI 3-kinase (PI3K) activity. Nerve growth factor (NGF) treatment leads to PIKE activation by triggering the nuclear translocation of PLC-gamma1, which acts as a physiological guanine nucleotide exchange factor (GEF) for PIKE. PI3K occurs in the nuclei of a broad range of cell types, and various stimuli elicit PI3K nuclear translocation. While cytoplasmic PI3K has been well characterized, little is known about the biological function of nuclear PI3K. Surprisingly, nuclei from 30 min NGF-treated PC12 cells are resistant to DNA fragmentation initiated by the activated cell-free apoptosome, and both PIKE and nuclear PI3K are sufficient and necessary for this effect. Moreover, pretreatment of the control nucleus with PI(3,4,5)P3 alone mimics the anti-apoptotic activity of NGF by selectively preventing apoptosis, for which nuclear Akt is required but not sufficient. Recently, a nuclear PI(3,4,5)P3 receptor, nucleophosmin/B23, has been identified from NGF-treated PC12 nuclear extract. PI(3,4,5)P3/B23 complex mediates the anti-apoptotic effects of NGF by inhibiting DNA fragmentation activity of caspase-activated DNase (CAD). Thus, PI(3,4,5)P3/B23 complex and nuclear Akt effectors might coordinately mediate PIKE/nuclear PI3K signaling in promoting cell survival by NGF.  相似文献   

2.
Ahn JY  Rong R  Liu X  Ye K 《The EMBO journal》2004,23(20):3995-4006
PI 3-kinase (PI3K) occurs in the nuclei of a broad range of cell types, and various stimuli elicit PI3K nuclear translocation. However, little is known about the biological function of nuclear PI3K. Here we show that nuclear PI3K and its upstream regulator PIKE mediate the antiapoptotic activity of nerve growth factor (NGF) in the isolated nuclei. The nuclei from NGF-treated PC12 cells, EGF-treated HEK293 cells and HeLa cells are resistant to DNA fragmentation initiated by activated cell-free apoptosome. Nuclei from constitutively active PI3K adenovirus-infected cells display the same resistance as those treated by NGF, whereas PI3K inhibitors, dominant-negative PI3K or PIKE abolishes it. Knockdown of either PI3K or PIKE diminishes the antiapoptotic activity of NGF. PI (3,4,5)P3 alone mimics the antiapoptotic activity of NGF, for which nuclear Akt is required. These results demonstrate that PIKE/nuclear PI3K signaling through nuclear PI (3,4,5)P3 and Akt plays an essential role in promoting cell survival.  相似文献   

3.
The nuclear GTPase PIKE (PI 3-kinase Enhancer) binds PI 3-kinase and enhances it lipid kinase activity. PIKE predominantly distributes in the brain, and nerve growth factor stimulation triggers PIKE activation by provoking nuclear translocation of PLC-gamma1, which acts as a physiologic guanine nucleotide exchange factor (GEF) for PIKE through its SH3 domain. PIKE contains GTPase and ArfGAP domains, which are separated by a PH domain. C-terminal ArfGAP domain activates its internal GTPase activity, and this process is regulated by the interaction between phosphatidylinositols and PH domain. PI 3-kinase occurs in the nuclei of a broad range of cell types, and various stimuli elicit its nuclear translocation. The nuclei from NGF-treated PC12 cells are resistant to DNA fragmentation initiated by activated cell-free apoptosome, for which PIKE/nuclear PI 3-kinase signaling through nuclear PI(3,4,5)P(3) and Akt plays an essential role. As a nuclear receptor for PI(3,4,5)P(3,) B23 binds to PI(3,4,5)P(3) in an NGF-dependent way. The PI(3,4,5)P(3)/B23 complex inhibits DNA fragmentation activity of CAD. Nuclear Akt regulation of apoptosis is dependent on its phosphorylation of key substrates in the nucleus, but the identities of these substrates are unknown. Identification of its nuclear substrates will further our understanding of the physiological roles of nuclear PI 3-kinase/Akt signaling.  相似文献   

4.
Nerve growth factor (NGF) elicits Akt translocation into the nucleus, where it phosphorylates nuclear targets. Here, we describe that Akt phosphorylation can promote the nuclear translocation of Akt and is necessary for its nuclear retention. Overexpression of Akt-K179A, T308A, S473A-mutant failed to show either nuclear translocation or nuclear Akt phosphorylation, whereas expression of wild-type counterpart elicited profound Akt phosphorylation and induced nuclear translocation under NGF stimulation. Employing the PI3K inhibitor and a variety of mutants PI3K, we showed that nuclear translocation of Akt was mediated by activation of PI3K, and Akt phosphorylation status in the nucleus required PI3K activity. Thus the activity of PI3K might contribute to the nuclear translocation of Akt, and that Akt phosphorylation is essential for its nuclear retention under NGF stimulation conditions.  相似文献   

5.
PIKE (PI 3-Kinase Enhancer) is a recently identified brain specific nuclear GTPase, which binds PI 3-kinase and stimulates its lipid kinase activity. Nerve growth factor treatment leads to PIKE activation by triggering the nuclear translocation of phospholipase C-gamma1 (PLC-gamma1), which acts as a physiologic guanine nucleotide exchange factor (GEF) for PIKE through its SH3 domain. To date, three forms of PIKE have been characterized: PIKE-S, PIKE-L and PIKE-A. PIKE-S is initially identified shorter isoform. PIKE-L, a longer isoform of PIKE gene, differs from PIKE-S by C-terminal extension containing Arf-GAP (ADP ribosylation factor-GTPase Activating Protein) and two ankyrin repeats domains. In contrast to the exclusive nuclear localization of PIKE-S, PIKE-L occurs in both the nucleus and the cytoplasm. PIKE-L physiologically associates with Homer 1, an mGluR I binding adaptor protein. The Homer/PIKE-L complex couples PI 3-kinase to mGluR I and regulates a major action of group I mGluRs, prevention of neuronal apoptosis. More recently, a third PIKE isoform, PIKE-A was identified in human glioblastoma multiforme brain cancers. Unlike the brain specific PIKE-L and -S isoforms, PIKE-A distributes in various tissues. PIKE-A contains the same domains present in PIKE-L but lacks N-terminal proline-rich domain (PRD), which binds PI 3-kinase and PLC-gamma1. Instead, PIKE-A specifically binds to active Akt and upregulates its activity in a GTP-dependent manner, mediating human cancer cell invasion and preventing apoptosis. Thus, PIKE extends its roles from the nucleus to the cytoplasm, mediating cellular processes from cell invasion to programmed cell death.  相似文献   

6.
We previously identified Per1-interacting protein of the suprachiasmatic nucleus (PIPS) in rats. To reveal its role, its tissue distribution was examined by immunoblotting. PIPS-like immunoreactive substance (PIPSLS) was observed in the brain, adrenal gland, and PC12 cells. Since PIPS, which has no nuclear localization signal (NLS), is translocated into nuclei of COS-7 cells in the presence of mPer1, the effect of NGF on nuclear localization of PIPS was examined using PC12 cells. NGF caused nuclear translocation of either PIPSLS or GFP-PIPS. NGF mediated nuclear translocation of PIPSLS was blocked by K252a, a TrkA-inhibitor, or wortmannin, a PI3K-inhibitor. Gab1, which is implicated in TrkA signaling and has NLS, co-immunoprecipitated with PIPSLS from PC12 cells using an anti-PIPS antibody. Inhibition of PIPS expression by RNAi increased levels of apoptosis in PC12 cells. These findings suggest that nuclear translocation of PIPS is involved in NGF mediated neuronal survival via TrkA, PI3K, and Gab1 signaling pathway.  相似文献   

7.
Although the outer nuclear membrane is continuous with the endoplasmic reticulum, it is possible to isolate nuclei both intact and free from endoplasmic reticulum contaminants. The outer and the inner nuclear membranes can be purified free from cross-contamination. Evidence in support of autonomous regulation of nuclear calcium signaling relies upon the investigations with isolated nuclei. Mechanisms for generating calcium signaling in the nucleus have been identified. Two calcium transporting systems, an ATP-dependant nuclear Ca(2+)-ATPase and an IP4-mediated inositol 1,3,4,5-tetrakisphosphate receptor, are located on the outer nuclear membrane. Thus, ATP and IP4, depending on external free calcium concentrations, are responsible for filling the nuclear envelope calcium pool. The inositol 1,4,5-trisphosphate receptor is located on the inner nuclear membrane with its ligand binding domain facing toward the nucleoplasm. Likewise, the ryanodine receptor is located on the inner nuclear membrane and its ligand cADP-ribose is generated within the nucleus. A 120 kDa protein fragment of nuclear PLC-gamma1 is stimulated in vivo by epidermal growth factor nuclear signaling coincident with the time course of nuclear membrane epidermal growth factor receptor activation. Stimulated 120 kDa protein fragment interacts with PIKE, a nuclear GTPase, and together they form a complex with PI[3]kinase serving as a module for nuclear PI[3]K stimulation. Thus, the nucleus has its own IP(3) generating system.  相似文献   

8.
Intraperitoneal injection of epidermal growth factor (EGF) into mice resulted in the phosphorylation of liver nuclei phospholipase Cgamma1 (PLCgamma1) at the tyrosine, coincident with the time course of nuclear membrane epidermal growth factor receptor (EGFR) activation. The function of PLCgamma1 in mice liver nuclei was attributed to a 120 kDa protein fragment. This 120 kDa protein was immunoprecipitated with the isozyme specific PLCgamma1 antibody and was found to be sensitive to a PLCgamma1 specific blocking peptide. The 10-partial sequence analysis revealed that the 120 kDa protein contains the PELCQVSLSE sequence at its N-terminal end and the RTRVNGDNRL sequence at its C-terminal end, which reveals that this protein is a major fragment of PLCgamma1 devoid of an amino acid portion at the N-terminal end. The tyrosine-phosphorylated 120 kDa protein interacts with activated EGFR, binds phosphatidylinositol-3-OH-kinase enhancer (PIKE), enhances nuclear phosphatidylinositol-3-OH-kinase (PI[3]K) activity, and generates diacylglycerol (DAG) in response to the EGF signal to the nucleus in vivo. The immunoprecipitated 120 kDa protein fragment displayed phosphatidylinositol (PI) hydrolysis activity. These results establish the capacity of EGF-triggered nuclear signaling which is mediated by EGFR itself, located on the inner nuclear membrane. This is the first report identifying a 120 kDa PLCgamma1 fragment generated in vivo in the nucleus and capable of discharging the function of nuclear PLCgamma1.  相似文献   

9.
10.
11.
12.
Suppressing the activity of Gsk3β is critical for maintenance of murine pluripotent stem cells. In murine embryonic stem cells (mESCs), Gsk3β is inhibited by multiple mechanisms, including its inhibitory phosphorylation on serine 9 by protein kinase B (Akt), a major effector of the canonical phosphatidylinositol 3-kinase (PI3K) pathway. A second PI3K/Akt-regulated mechanism promotes the nuclear export of Gsk3β, thereby restricting its access to nuclear substrates such as c-myc and β-catenin. Although Gsk3β shuttles between the nucleus and cytoplasm under self-renewing conditions, its localization is primarily cytoplasmic because its rate of nuclear export exceeds its rate of nuclear import. In this report, we show that Gsk3β is exported from the nucleus in a complex with Frat. Loss of PI3K/Akt activity results in dissociation of this complex and retention of Gsk3β in the nucleus. Frat continues to shuttle between the nucleus and cytoplasm under these conditions and remains predominantly in the cytoplasm. These results indicate that Frat carries Gsk3β out of the nucleus under self-renewing conditions and that PI3K regulates this by promoting its association with Frat. These findings provide new links between PI3K/Akt signaling and regulation of Gsk3β activity by Frat, an oncogene previously shown to cooperate with Myc in tumorigenesis.  相似文献   

13.
We and others have previously demonstrated the existence of an autonomous nuclear polyphosphoinositide cycle that generates second messengers such as diacylglycerol (DAG), capable of attracting to the nucleus specific protein kinase C (PKC) isoforms (Neri et al. (1998) J. Biol. Chem. 273, 29738-29744). Recently, however, nuclei have also been shown to contain the enzymes responsible for the synthesis of the non-canonical 3-phosphorylated inositides. To clarify a possible role of this peculiar class of inositol lipids we have examined the question of whether nerve growth factor (NGF) induces PKC-zeta nuclear translocation in PC12 cells and whether this translocation is dependent on nuclear phosphatidylinositol 3-kinase (PI 3-K) activity and its product, phosphatidylinositol 3,4, 5-trisphosphate [PtdIns(3,4,5)P(3)]. NGF increased both the amount and the enzyme activity of immunoprecipitable PI 3-K in PC12 cell nuclei. Activation of the enzyme, but not its translocation, was blocked by PI 3-K inhibitors wortmannin and LY294002. Treatment of PC12 cells for 9 min with NGF led to an increase in the nuclear levels of PtdIns(3,4,5)P(3). Maximal translocation of PKC-zeta from the cytoplasm to the nucleus (as evaluated by immunoblotting, enzyme activity, and confocal microscopy) occurred after 12 min of exposure to NGF and was completely abrogated by either wortmannin or LY294002. In contrast, these two inhibitors did not block nuclear translocation of the conventional, DAG-sensitive, PKC-alpha. On the other hand, the specific phosphatidylinositol phospholipase C inhibitor, 1-O-octadeyl-2-O-methyl-sn-glycero-3-phosphocholine, was unable to abrogate nuclear translocation of the DAG-insensitive PKC-zeta. These data suggest that a nuclear increase in PI 3-K activity and PtdIns(3,4,5)P(3) production are necessary for the subsequent nuclear translocation of PKC-zeta. Furthermore, they point to the likelihood that PKC-zeta is a putative nuclear downstream target of PI 3-K during NGF-promoted neural differentiation.-Neri, L. M., Martelli, A. M., Borgatti, P., Colamussi, M. L., Marchisio, M., Capitani, S. Increase in nuclear phosphatidylinositol 3-kinase activity and phosphatidylinositol (3,4, 5) trisphosphate synthesis precede PKC-zeta translocation to the nucleus of NGF-treated PC12 cells.  相似文献   

14.
Ahn JY  Liu X  Cheng D  Peng J  Chan PK  Wade PA  Ye K 《Molecular cell》2005,18(4):435-445
Phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P(3)] is an essential second messenger implicated in various cellular processes. Cytoplasmic PI(3,4,5)P(3) has been well characterized, but little is known about the physiological role of nuclear PI(3,4,5)P(3). Here, we describe a nuclear PI(3,4,5)P(3) receptor, nucleophosmin (NPM)/B23, that mediates the antiapoptotic effects of NGF by inhibiting DNA fragmentation activity of caspase-activated DNase (CAD). Employing PI(3,4,5)P(3) column and NGF-treated PC12 nuclear extracts, we identified B23 as a nuclear PI(3,4,5)P(3) binding protein. Purification from nuclear extract demonstrates that B23 contributes to DNA fragmentation inhibitory activity. Depletion of B23 from nuclear extracts or knockdown B23 in PC12 cells abolishes NGF-provoked protective effect, whereas overexpression of B23 in PC12 cells prevents apoptosis. Further, hydrolyzing PI(3,4,5)P(3) with PTEN or SHIP abrogates its antiapoptotic activity. Moreover, B23 mutants that can not associate with PI(3,4,5)P(3) fail to prevent DNA fragmentation. Thus, the nuclear B23-PI(3,4,5)P(3) complex regulates the antiapoptotic activity of NGF in the nucleus.  相似文献   

15.
Although phospholipase C-gamma (PLC-gamma) participates in cellular mitogenesis, evidence indicates that the catalytic activity of PLC-gamma (to hydrolyze certain phosphoinositides) is nonessential to the process. So how is it that PLC-gamma is necessary but its lipase activity is not? Recently published results from Snyder and colleagues describe the ability of PLC-gamma to facilitate guanine nucleotide exchange for the recently identified nucleus-localized GTPase PIKE, which acts to enhance the enzymatic activity of phosphatidylinositol 3'-kinase (PI3K). The authors contend that the SH3 domain, rather than the catalytic domain, of PLC-gamma is required for aiding PIKE, and furthermore, that the mitogenic activity of PLC-gamma depends not on its phospholipase activity, but rather on its interaction with PIKE. Wang and Moran examine the results and piece together a picture of how PLC-gamma cooperates with PIKE.  相似文献   

16.
During the past years, several independent laboratories have highlighted the presence of nuclear signaling pathways based on lipid hydrolysis, which are not a mere duplication of those occurring at the plasma membrane. Among the enzymes of the cycle, nuclear phosphoinositide-specific phospholipase C (PI-PLC) has been analyzed quite extensively. In this context, PI-PLCbeta1 appears to play a key role as a check point in the G1 phase of the cell cycle. It has also been shown that its activation and/or up-regulation is upon the control of type 1 insulin-like growth factor receptor (IGF-R) in both mouse fibroblast and myoblasts, suggesting that its signaling activity is essential for the normal behavior of the cell, at least in culture. The recent discovery of a possible involvement of the deletion of PI-PLCbeta1 gene in the progression of myelodysplastic syndrome (MDS) to acute myeloid leukemia (AML) in humans strengthens the contention that nuclear PI-PLC signaling is essential for physiological processes such as cell growth and differentiation. Even though PI-PLCbeta1 is present and does not translocate to eukaryotic nuclei, this organelle, even though only in some conditions contains also PI-PLCgamma1 which acts not only as a PI-PLC but also as guanine nucleotide exchange factor (GEF) for PI 3-kinase enhancer (PIKE) and is somehow linked to PI 3-kinase (PI3K) activity. Also members of PI-PLCdelta family are shuttling from the nucleus to the cytoplasm and return and are possibly involved in the control of cell growth. We must also take into account the presence in the nucleus of other phospholipases such as phospholipase A2 (PLA2) and phospholipase D (PLD), which also exert a signaling activity upon external stimuli. On the whole this review highlights the latest development in the PI-PLC cycle in the nucleus, which in terms of activation, regulation and down-stream targets differs substantially from that located at the plasma membrane.  相似文献   

17.
Three phosphatidylinositol 4-kinase isoforms, PI4K 230, 92 and 55 have been cloned and sequenced allowing a much wider characterization than the previously employed enzymological typing into type II and III enzymes. PI4K 230 and 92 contain a highly conserved catalytic core, PI4K55 one with a much lower degree of similarity. Candidate kinase motifs, deduced from the protein kinase super family, are absolutely conserved in all isoforms. Kinase activities are described based on their sensitivity and reactivity towards wortmannin, phenylarsine oxide (PAO) and 5'-p-fluorosulfonylbenzoyladenosine (FSBA). Localization of all isoforms in the cell is reported. All enzymes contain nuclear localization and export sequence motifs (NLS and NES) leading to the expectation that they can be transferred to the nucleus. PI4K230 has been found in the nucleolus, PI4K92 in the nucleus, additionally further broadening the function of these enzymes. In the cytoplasm of neuronal cells, PI4K230 is distributed evenly on membranes that are ultra structurally cisterns of the rough endoplasmatic reticulum, outer membranes of mitochondria, multivesicular bodies, and are in close vicinity of synaptic contacts. PI4K92 is functionally characterized as a key enzyme regulating Golgi disintegration/reorganization during mitosis probably via phosphorylation by cyclin-dependent kinases on well-defined sites. PI4K55 is involved in the production of second messengers, diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (InsP3) at the plasma membrane, moreover, in the endocytotic pathway in the cytoplasm.  相似文献   

18.
Chan CB  Chen Y  Liu X  Tang X  Lee CW  Mei L  Ye K 《The EMBO journal》2011,30(20):4274-4286
AMPAR (α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptor) is an ion channel involved in the formation of synaptic plasticity. However, the molecular mechanism that couples plasticity stimuli to the trafficking of postsynaptic AMPAR remains poorly understood. Here, we show that PIKE (phosphoinositide 3-kinase enhancer) GTPases regulate neuronal AMPAR activity by promoting GluA2/GRIP1 association. PIKE-L directly interacts with both GluA2 and GRIP1 and forms a tertiary complex upon glycine-induced NMDA receptor activation. PIKE-L is also essential for glycine-induced GluA2-associated PI3K activation. Genetic ablation of PIKE (PIKE(-/-)) in neurons suppresses GluA2-associated PI3K activation, therefore inhibiting the subsequent surface expression of GluA2 and the formation of long-term potentiation. Our findings suggest that PIKE-L is a critical factor in controlling synaptic AMPAR insertion.  相似文献   

19.
The G protein-coupled delta opioid receptor gene (dor) has been associated with neuronal survival, differentiation, and neuroprotection. Our previous study identified PI3K/Akt/NF-κB signaling is a main downstream signaling pathway in nerve growth factor (NGF)-induced temporal expression of the dor gene in the PC12 cell model. It is still unknown how NGF/PI3K signaling regulates the expression of the dor gene in the nucleus. In the current study, we investigated how PI3K signaling affected epigenetic modifications of histone H3 Lys9 (H3K9) in the 5′-UTR region of the rat dor gene locus. NGF treatment resulted in the global reversal of H3K9 trimethylation in cells. Moreover, the locus-specific reversal of H3K9 trimethylation and acetylation of H3K9 were dependent upon NGF/PI3K signaling and temporally well correlated with NGF-induced gene expression. These results indicate the importance of epigenetic modifications of H3K9, particularly the reversal of trimethylated H3K9, in the regulation of NGF/PI3K-dependent genes during neuronal differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号