首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The system of GABA transporters in neural cells constitutes an efficient mechanism for terminating inhibitory GABAergic neurotransmission. This transport system is an important therapeutical target in epileptic disorders, but potentially also in other neurological disorders. Thus, selective intervention in GABA uptake has been the subject of extensive research for several decades. In a series of lipophilic diaromatic derivatives of (RS)-3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole (exo-THPO), N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-hydroxy-4-(methylamino)-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (EF1502) turned out to be an equipotent inhibitor at the mouse transporters GAT1 and GAT2 (BGT-1) but inactive at GAT3 and GAT4. This novel pharmacological profile among GABA uptake inhibitors prompted a thorough investigation of the in vivo properties of this compound. These investigations have for the first time demonstrated a functional role for GABA transporter subtype GAT2/BGT-1, which points to the therapeutic relevance of inhibiting this transporter subtype. An overview of the development and characterisation of EF1502 is presented here.  相似文献   

2.
The audiogenic seizure-susceptible mouse, Frings, is genetically susceptible to sound-induced seizures and provides a reliable model of reflex epilepsy that lasts throughout the life span of the animal. We used immunohistochemistry to examine if the expression of the non-N-methyl-D -aspartate glutamate receptor (GluR) subunits GluR1, GluR2, or GluR3 were altered subsequent to multiple seizures. Following a regimen of one seizure per day for 3 weeks, GluR1 immunoreactivity, but not GluR2 or GluR3, was substantially elevated in the outer shell of the nucleus accumbens in 21 of 31 chronically seized Frings mice. No other brain regions such as the hippocampus exhibited any qualitative changes in expression of these subunits. In 9 of the 21 Frings mice exhibiting increased GluR1, but in none of the controls, bilateral structural lesions were observed in the lateral hypothalamus. These results support a model where highly localized changes in the expression of GluR1 occur in response to repeated audiogenic seizure. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 209–216, 1998  相似文献   

3.
The adaptation of cells to hyperosmotic conditions involves accumulation of organic osmolytes to achieve osmotic equilibrium and maintenance of cell volume. The Na+ and Cl-coupled betaine/GABA transporter, designated BGT-1, is responsible for the cellular accumulation of betaine and has been proposed to play a role in osmoregulation in the brain. BGT-1 is also called GAT2 (GABA transporter 2) when referring to the mouse transporter homologue. Using Western Blotting the expression of the mouse GAT2 protein was investigated in astrocyte primary cultures exposed to a growth medium made hyperosmotic (353±2.5 mosmol/kg) by adding sodium chloride. A polyclonal anti-BGT-1 antibody revealed the presence of two characteristic bands at 69 and 138 kDa. When astrocytes were grown for 24 h under hyperosmotic conditions GAT2 protein was up-regulated 2–4-fold compared to the level of the isotonic control. Furthermore, the expected dimer of GAT2 was also up-regulated after 24 h under the hyperosmotic conditions. The [3H]GABA uptake was examined in the hyperosmotic treated astrocytes, and characterized using different selective GABA transport inhibitors. The up-regulation of GAT2 protein was not affecting total GABA uptake but the hyperosmotic condition did change total GABA uptake possibly involving GAT1. Immunocytochemical studies revealed cell membrane localization of GAT2 throughout astroglial processes. Taken together, these results indicate that astroglial GAT2 expression and function may be regulated by hyperosmolarity in cultured mouse astrocytes, suggesting a role of GAT2 in osmoregulation in neural cells.  相似文献   

4.
The cerebral concentrations of pyridoxal-5'-phosphate and divalent transition metal ions (Cu2+ and Zn2+) are appreciably higher in the seizure-susceptible strain of mouse (DBA/2J) than those in normal strains (CBA/Ca and Parkes ). By injecting metal ions intracranially and pyridoxal-5'-phosphate intraperitoneally, we could render the normal mouse prone to sound-induced epilepsy. The behaviour of the treated seizure-susceptible strain of mouse. The levels of glutamate and aspartate in its inferior colliculus were elevated and the concentration of gamma-aminobutyrate was lowered. Glutaminase inhibitors, 6-diazo-5-oxo-L-norleucine (DON) and 0-diazo-acetyl-L-serine (azaserine), and a transaminase inhibitor, 4-amino-3- isoxazolidone (L-cycloserine), when injected intraperitoneally, protected the seizure-susceptible mouse from undergoing convulsions, whereas pyridoxal-5'-phosphate and methionine sulphoximine, a glutamine synthetase inhibitor, exacerbated its epileptic condition. We propose a possible sequence of biochemical events associated with susceptibility to audiogenic seizures.  相似文献   

5.
D L Burgess 《Neuron》2001,31(4):507-508
Neurologists have long sought to understand what precipitates individual seizures in epileptic patients. Studies of reflex epilepsies seem well suited to this task. In this issue of Neuron, Skradski et al. describe a mutation in a novel gene underlying audiogenic seizures in the Frings mouse, providing a valuable resource for elucidating the pathophysiological mechanisms of this inherited form of reflex epilepsy.  相似文献   

6.
The present study aimed to elucidate the distribution of betaine/γ-aminobutyric acid (GABA) transporter-1 (BGT-1) in the normal monkey cerebral neocortex and hippocampus by immunoperoxidase and Immunogold labelling. BGT-1 was observed in pyramidal neurons in the cerebral neocortex and the CA fields of the hippocampus. Large numbers of small diameter dendrites or dendritic spines were observed in the neuropil. These made asymmetrical synaptic contacts with unlabelled axon terminals containing small round vesicles, characteristic of glutamatergic terminals. BGT-1 label was observed in an extra-perisynaptic region, away from the post-synaptic density. Immunoreactivity was not observed in portions of dendrites that formed symmetrical synapses, axon terminals, or glial cells. The distribution of BGT-1 on dendritic spines, rather than at GABAergic axon terminals, suggests that the transporter is unlikely to play a major role in terminating the action of GABA at a synapse. Instead, the osmolyte betaine is more likely to be the physiological substrate of BGT-1 in the brain, and the presence of the transporter in pyramidal neurons suggests that these neurons utilize betaine to maintain osmolarity.  相似文献   

7.
Abstract: A cDNA clone encoding a human γ-aminobutyric acid (GABA) transporter has been isolated from a brain cDNA library, and its functional properties have been examined in mammalian cells. The nucleotide sequence predicts a transporter with 614 amino acids and 12 putative transmembrane domains. The highest degree of amino acid identity is with a betaine/GABA transporter originally cloned from the dog termed BGT-1 (91%) and a related transporter from mouse brain (87%). These identities are similar to those for species homologues of other neurotransmitter transporters and suggest that the new clone represents the human homologue of BGT-1. The transporter displays high affinity for GABA (IC50 of 30 µM) and is also sensitive to phloretin, l -2,4-diaminobutyric acid, and hypotaurine (IC50 values of ~150–400 µM). The osmolyte betaine is ~25-fold weaker than GABA, displaying an IC50 of ~1 mM. The relative potencies of these inhibitors at human BGT-1 differ from those of mouse and dog BGT-1. Northern blot analysis reveals that BGT-1 mRNA is widely distributed throughout the human brain. The cloning of the human homologue of BGT-1 will further our understanding of the roles of GABA and betaine in neural function.  相似文献   

8.
9.
Cultures of dissociated cerebellum from 7-day-old mice were used to investigate the mechanism involved in synthesis and cellular redistribution of GABA in these cultures consisting primarily of glutamatergic granule neurons and a smaller population of GABAergic Golgi and stellate neurons. The distribution of GAD, GABA and the vesicular glutamate transporter VGlut-1 was assessed using specific antibodies combined with immunofluorescence microscopy. Additionally, tiagabine, SKF 89976-A, betaine, β-alanine, nipecotic acid and guvacine were used to inhibit the GAT1, betaine/GABA (BGT1), GAT2 and GAT3 transporters. Only a small population of cells were immuno-stained for GAD while many cells exhibited VGlut-1 like immuno-reactivity which, however, never co-localized with GAD positive neurons. This likely reflects the small number of GABAergic neurons compared to the glutamatergic granule neurons constituting the majority of the cells. GABA uptake exhibited the kinetics of high affinity transport and could be partly (20%) inhibited by betaine (IC50 142 μM), β-alanine (30%) and almost fully (90%) inhibited by SKF 89976-A (IC50 0.8 μM) or nipecotic acid and guvacine at 1 mM concentrations (95%). Essentially all neurons showed GABA like immunostaining albeit with differences in intensity. The results indicate that GABA which is synthesized in a small population of GAD-positive neurons is redistributed to essentially all neurons including the glutamatergic granule cells. GAT1 is not likely involved in this redistribution since addition of 15 μM tiagabine (GAT1 inhibitor) to the culture medium had no effect on the overall GABA content of the cells. Likewise the BGT1 transporter cannot alone account for the redistribution since inclusion of 3 mM betaine in the culture medium had no effect on the overall GABA content. The inhibitory action of β-alanine and high concentrations of nipecotic acid and guvacine on GABA transport strongly suggests that also GAT2 or GAT3 (HUGO nomenclature) could play a role.  相似文献   

10.
Evidence indicates that synchronization of cortical activity at gamma-band frequencies, mediated through GABA-A receptors, is important for perceptual/cognitive processes. To study GABA signaling in vivo, we recently used a novel positron emission tomography (PET) paradigm measuring the change in binding of the benzodiazepine (BDZ) site radiotracer [(11)C]flumazenil associated with increases in extracellular GABA induced via GABA membrane transporter (GAT1) blockade with tiagabine. GAT1 blockade resulted in significant increases in [(11)C]flumazenil binding potential (BPND) over baseline in the major functional domains of the cortex, consistent with preclinical studies showing that increased GABA levels enhance the affinity of GABA-A receptors for BDZ ligands. In the current study we sought to replicate our previous results and to further validate this approach by demonstrating that the magnitude of increase in [(11)C]flumazenil binding observed with PET is directly correlated with tiagabine dose. [(11)C]flumazenil distribution volume (VT) was measured in 18 healthy volunteers before and after GAT1 blockade with tiagabine. Two dose groups were studied (n = 9 per group; Group I: tiagabine 0.15 mg/kg; Group II: tiagabine 0.25 mg/kg). GAT1 blockade resulted in increases in mean (± SD) [(11)C]flumazenil VT in Group II in association cortices (6.8 ± 0.8 mL g-1 vs. 7.3 ± 0.4 mL g-1;p = 0.03), sensory cortices (6.7 ± 0.8 mL g-1 vs. 7.3 ± 0.5 mL g-1;p = 0.02) and limbic regions (5.2 ± 0.6 mL g-1 vs. 5.7 ± 0.3 mL g-1;p = 0.03). No change was observed at the low dose (Group I). Increased orbital frontal cortex binding of [(11)C]flumazenil in Group II correlated with the ability to entrain cortical networks (r = 0.67, p = 0.05) measured via EEG during a cognitive control task. These data provide a replication of our previous study demonstrating the ability to measure in vivo, with PET, acute shifts in extracellular GABA.  相似文献   

11.
The human ortholog of the gene responsible for audiogenic seizure susceptibility in Frings and BUB/BnJ mice (mouse gene symbol Mass1) recently was shown to underlie Usher syndrome type IIC (USH2C). Here we report that the Mass1frings mutation is responsible for the early onset hearing impairment of BUB/BnJ mice. We found highly significant linkage of Mass1 with ABR threshold variation among mice from two backcrosses involving BUB/BnJ mice with mice of strains CAST/EiJ and MOLD/RkJ. We also show an additive effect of the Cdh23 locus in modulating the progression of hearing loss in backcross mice. Together, these two loci account for more than 70% of the total ABR threshold variation among the backcross mice at all ages. The modifying effect of the strain-specific Cdh23ahl variant may account for the hearing and audiogenic seizure differences observed between Frings and BUB/BnJ mice, which share the Mass1frings mutation. During postnatal cochlear development in BUB/BnJ mice, stereocilia bundles develop abnormally and remain immature and splayed into adulthood, corresponding with the early onset hearing impairment associated with Mass1frings. Progressive base-apex hair cell degeneration occurs at older ages, corresponding with the age-related hearing loss associated with Cdh23ahl. The molecular basis and pathophysiology of hearing loss suggest BUB/BnJ and Frings mice as models to study cellular and molecular mechanisms underlying USH2C auditory pathology.  相似文献   

12.
Mouse GABA transporters belong to the family of Na(+) and Cl(-) dependent neurotransmitter transporter. GABA transport, by these family members, was shown to be electrogenic and driven by sodium ions. It was demonstrated that, as in several other transporters, sodium binding and release by GAT1, GAT3 and BGT-1, the canine homolog of GAT2, resulted in the appearance of presteady-state currents. In this work we show that each of the four GABA transporters exhibit unique presteady-state currents when expressed in Xenopus oocytes. The properties of the presteady-state currents correspond to the transporters affinities to Na(+). At 100 mM GAT1 exhibited symmetric presteady-state currents at all imposed potentials, whereas GAT2 exhibited asymmetric presteady-state currents exclusively at negative imposed potentials, GAT3 or GAT4 exhibited presteady-state currents predominantly at positive imposed potentials. GABA uptake by GAT2 and GAT4 was much more sensitive to external pH than GAT1 and GAT3. Reducing the external Na(+) concentration rendered the GABA uptake activity by GAT1 and GAT3 to be sensitive to pH. Lowering the external pH reduced the Na(+) affinity of GAT1. Substitution of the external Na(+) to Li(+) resulted in the appearance of leak currents exclusively at negative potentials in Xenopus oocyte expressing GAT1 and GAT3. Low Na(+) concentrations inhibited the leak currents of GAT1 but Na(+) had little effect on the leak currents of GAT3. Washing of occluded Na(+) in GAT1 enhanced the leak currents. Similarly addition of GABA in the presence of 80 mM Li(+), that presumably accelerated the release of the bound Na(+), also induced the leak currents. Conversely, addition of GABA to GAT3 expressing oocytes, in the presence of 80 mM Li(+), inhibited the leak currents.  相似文献   

13.
Betaine/γ-aminobutyric acid (GABA) transporter 1 (BGT-1 or Slc6a12) is a transporter for the neurotransmitter GABA and osmolyte betaine. To date, most studies on BGT-1 have focused on its functions in the nervous system and renal osmotic homeostasis. Despite its dominant distribution in the liver, the function of BGT-1 in hepatic physiology or disease remains unknown. Here, we report that BGT-1 was significantly downregulated in patients with liver failure as well as in mice with experimental acute liver failure (ALF). Furthermore, mice deficient in BGT-1 showed significant resistance to ALF compared with wild type (WT) mice, manifesting as improved survival rate, reduced alanine transaminase/aspartate aminotransferase levels, better histopathological symptoms and fewer apoptotic cells in the liver. Similarly, in primary hepatocytes, BGT-1 deficiency or treatment with a BGT-1 inhibitor, NNC 05-2090, attenuated TNF-α mediated apoptosis. In addition, BGT-1 deficiency or dosing with NNC 05-2090 stimulated the expression of the anti-apoptotic gene, c-Met in the liver, suggesting the involvement of c-Met in the function on hepatocytes of BGT-1 apoptosis. Our findings suggest BGT-1 is a promising candidate drug target to prevent and treat hepatocyte apoptosis related diseases, such as ALF.  相似文献   

14.
JinXP HuangF 《Cell research》2001,11(2):161-163
INTRODUCTIONIn the vertebrate central nervous system (CNS),GABA transporters (GAT) are believed to play animportant role in termination of GABAergiC transInission. GATI was the first cloned member of neurotransmitter transporters superfanilly[1], and soon,other three subtypes (GAT2-4) were subsequentlycloned. Since GABA is the predominant inhibitoryneurotranslliltter in CNS, abnormallty of GATs hasa direct relationship with certain kinds of nervousdisorders, such as epilepsy a…  相似文献   

15.
16.
A high density of neurotransmitter transporters on axons and presynaptic boutons is required for the efficient clearance of neurotransmitters from the synapse. Therefore, regulators of transporter trafficking (insertion, retrieval, and confinement) can play an important role in maintaining the transporter density necessary for effective function. We determined the interactions that confine GAT1 at the membrane by investigating the lateral mobility of GAT1-yellow fluorescent protein-8 (YFP8) expressed in neuroblastoma 2a cells. Through fluorescence recovery after photobleaching, we found that a significant fraction (∼50%) of membrane-localized GAT1 is immobile on the time scale investigated (∼150 s). The mobility of the transporter can be increased by depolymerizing actin or by interrupting the GAT1 postsynaptic density 95/Discs large/zona occludens 1 (PDZ)-interacting domain. Microtubule depolymerization, in contrast, does not affect GAT1 membrane mobility. We also identified ezrin as a major GAT1 adaptor to actin. Förster resonance energy transfer suggests that GAT1-YFP8 and cyan fluorescent (CFP) tagged ezrin (ezrin-CFP) exist within a complex that has a Förster resonance energy transfer efficiency of 19% ± 2%. This interaction can be diminished by disrupting the actin cytoskeleton. In addition, the disruption of actin results in a >3-fold increase in γ-aminobutyric acid uptake, apparently via a mechanism distinct from the PDZ-interacting protein. Our data reveal that actin confines GAT1 to the plasma membrane via ezrin, and this interaction is mediated through the PDZ-interacting domain of GAT1.  相似文献   

17.
The system of GABA transporters in neural cells constitutes an efficient mechanism for terminating inhibitory GABAergic neurotransmission. As such these transporter are important therapeutical targets in epilepsy and potentially other neurological diseases related to the GABA system. In this study a number of analogs of 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazol (exo-THPO), a promising lead structure for inhibitors of GABA uptake were investigated. It was found that the selectivity of N-acetyloxyethyl-exo-THPO for inhibition of the astroglial GABA uptake system was 10-fold as compared to inhibition of the neuronal GABA uptake system. Selectivity in this magnitude may provide potent anti-convulsant activity as has recently been demonstrated with the likewise glia-selective GABA uptake inhibitor, N-methyl-exo-THPO. In contrast to the competitive inhibition of GABA uptake exhibited by N-substituted analogs of 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol (THPO), nipecotic acid, and guvacine, N-4,4-diphenyl-3-butenyl(DPB)-N-methyl-exo-THPO and 4-phenylbutyl-exo-THPO exhibited non-competitive type inhibition kinetics. The lipophilic character of a number of GABA analogs was concluded by far to constitute the determining factor for the potency of these compounds as inhibitors of GAT1-mediated uptake of GABA. This finding underscores the complexity of the pharmacology of the GABA transport system, since these non-competitive inhibitors are structurally very similar to some competitive GABA uptake inhibitors. Whether these structure-activity relationships for inhibition of GABA uptake may provide sufficient information for the development of new structural leads and to what extent these compounds may be efficient as therapeutical anti-convulsant agents remain to be elucidated.  相似文献   

18.
A series of new (R)-1-(2-diarylmethylthio/sulfinyl)ethyl-piperidine-3-carboxylic acid hydrochlorides 5a-d/6a-d and (R)-1-(3-diarylmethylthio)propyl-piperidine-3-carboxylic acid hydrochlorides 5'a-d were synthesized and evaluated as gamma-aminobutyric acid uptake inhibitors through cultured cell lines expressing mouse GAT1. Biological screening results demonstrated that the compounds 6a-d with diarylmethylsulfinyl ethyl side chain show more potent GAT1 inhibitory activities than 5a-d/5'a-d with diarylmethylthio ethyl/propyl moieties. Some of them, such as 6a, exhibited excellent inhibitions of [(3)H]-GABA uptake in cultured cells, which is 496-fold higher than (R)-nipecotic acid and 11.5 times less than tiagabine. The synthesis and structure-activity relationships are discussed.  相似文献   

19.
Hu JH  Zhang JF  Ma YH  Jiang J  Yang N  Li XB  Yu Chi ZG  Fei J  Guo LH 《Cell research》2004,14(1):54-59
It is well documented that 7-aminobutyric acid (GABA) system existed in reproductive organs. Recent researches showed that GABAA and GABAB receptors were present in testis and sperm, and might mediate the acrosome reaction induced by GABA and progesterone. GABA transporter I (GAT1) also existed in testis and sperm, but its physiological function was unknown. In the present study, we used GAT1 overexpressing mice to explore GAT1 function in male reproductive system. We found that the expression level of GAT1 continuously increased in wild-type mouse testis from 1 month to 2 months after birth. GAT1 overexpression in mouse affected testis development, which embodied reduced testis mass and slowed spermatogenesis in transgenic mice. Moreover, transgenic mice showed increase of the percentage of broken sperm. The further study revealed that the reproductive capacity was impaired in GAT1 overexpressing mice. In addition, testosterone level was significantly low in transgenic mice compared with that in wild-type mice. Our findings provided the first evidence that abnormal expression of GAT1 could result in dysgenesis,and indicated that GAT1 might be therapeutically targeted for contraception or dysgenesis treatment.  相似文献   

20.
Neurotransmitter transporters regulate synaptic transmitter levels and are themselves functionally regulated by a number of different signal transduction cascades. A common theme in transporter regulation is redistribution of transporter protein between intracellular stores and the plasma membrane. The triggers and mechanisms underlying this regulation are important in the control of extracellular transmitter concentrations and hence synaptic signaling. Previously, we demonstrated that the gamma-aminobutyric acid transporter GAT1 is regulated by direct tyrosine phosphorylation, resulting in an up-regulation of transporter expression on the plasma membrane. In the present report, we show that two tyrosine residues on GAT1 contribute to the phosphorylation and transporter redistribution. Tyrosine phosphorylation is concomitant with a decrease in the rate of transporter internalization from the plasma membrane. A decrease in GAT internalization rates also occurs in the presence of GAT1 substrates, suggesting the hypothesis that tyrosine phosphorylation is required for the substrate-induced up-regulation of GAT1 surface expression. In support of this hypothesis, incubation of GAT1-expressing cells with transporter ligands alters the amount of GAT1 tyrosine phosphorylation, and substrate-induced surface expression is unchanged in a GAT1 mutant lacking tyrosine phosphorylation sites. These data suggest a model in which substrates permit the phosphorylation of GAT1 on tyrosine residues and that the phosphorylated state of the transporter is refractory for internalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号