首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The photochemical and pharmacological studies of the novel [Ru(L)(tpy)NO]3+ L = bpy (2,2′-bipyridine), NH · NHq (quinonediimine) and NH2.NH2cat (o-phenylenediamine) were investigated in aqueous medium. The synthesized nitrosyl ruthenium complexes showed nitric oxide (NO) release under light irradiation at 355 nm for [Ru(L)(tpy)NO]3+ complex with quantum yield of 0.14 ± 0.02, 0.47 ± 0.03 and 0.46 ± 0.02 mol Einstein−1 for L = bpy, NH · NHq and NH2 · NH2cat, respectively, and 0.0065 ± 0.001 mol Einstein−1 for light irradiation at 532 nm for [Ru(NH · NHq)(tpy)NO]3+ complex. The photochemical pathway at 355 nm light irradiation was described as a multi-step mechanism, although at 532 nm it was better attributed to a photo-induced electron transfer. The vasorelaxation induced by NO release produced by light irradiation in visible region from physiological solution of [Ru(NH · NHq)(tpy)NO]3+ complex was evaluated and compared with sodium nitroprusside (SNP). The results showed very similar vasodilator power between both species.  相似文献   

2.
Preliminary pharmacological studies of various nitric oxide (NO) photo-releasing agents are reported based on the flash-photolysis studies of the nitro ruthenium complexes cis-[RuII(NO2)L(bpy)2]+ (bpy = 2,2′-bipyridine and L = pyridine, 4-picoline and pyrazine) and [RuII(NO2)(bpy)(terpy)]+ (terpy = terpyridine) in physiological medium. The net photoreactions under these conditions are two primary photoproducts, in (I) there is RuII-NO2 photoaquation, where the photoproducts are RuII-H2O plus and (II) homolytic dissociation of NO from a coordinated nitrito to derive the RuII-OH2 specie and NO. Based on photochemical processes, the nitro ruthenium complexes were incorporated in water in oil (W/O) microemulsion and used in the vasorelaxation induced experiment. Denuded rat aortas were contracted with KCl and nitro ruthenium complexes in microemulsion were added. Perfusion pressures were recorded while arteries were irradiated at 355 nm The time to reach maximum relaxation was longer for [RuII(NO2)(bpy)(terpy)]+ complex (ca. 50 min, n = 6) than for cis-[Ru(NO2)L(bpy)2]+ with L = py and 4-pic complex (ca. 28 min, n = 6) and cis-[Ru(NO2)(bpy)2 (pz)]2+ complex (ca. 24 min, n = 5).  相似文献   

3.
The syntheses of nitrosyl–dimethylsulfoxide–ruthenium(II) complexes with general formula mer-[RuCl3(L)(DMSO)(NO)] (L=DMSO or CD3CN) is reported. The mer-[RuCl3(DMSO)2(NO)] (1) complex was obtained from the reaction of [RuCl3(NO)] with the sulfoxide ligand in acetone. The mer-[RuCl3(CD3CN)(DMSO)(NO)] (2) compound was obtained from mer-[RuCl3(DMSO)2(NO)] maintained in deuterated acetonitrile. These data suggest a slow kinetic reaction due the low lability of the DMSO ligand coordinated to the {RuII–NO+} species. The crystal and molecular structures of (1) and (2) have been determined from X-ray studies. Crystal data: for (1), monoclinic, P21/c, a=8.8340(2) Å, b=12.0230(3) Å, c=13.7064(4) Å, β=114.546(2)°, Z=4, R1=0.0429; for (2), monoclinic, P21/n, a=10.0180(7) Å, b=9.5070(7) Å, c=13.3340(9) Å, β=102.264(4)°, Z=4, R1=0.0472. The spectroscopic characterization of (1), in solid state (infrared spectrum) and in solution (nuclear magnetic resonance and cyclic voltammetry) is also described.  相似文献   

4.
Nitric oxide (NO) has a critical role in several physiological and pathophysiological processes. In this paper, the reactions of the nitrosyl complexes of [Ru(bpy)2L(NO)]n+ type, where L = SO32− and imidazole and bpy = 2,2′-bipiridine, with cysteine and glutathione were studied. The reactions with cysteine and glutathione occurred through the formation of two sequential intermediates, previously described elsewhere, [Ru(bpy)2L(NOSR)]n+ and [Ru(bpy)2L(NOSR)2] (SR = thiol) leading to the final products [Ru(bpy)2L(H2O)]n+ and free NO. The second order rate constant for the second step of this reaction was calculated for cysteine k2(SR) = (2.20 ± 0.12) × 109 M− 1 s− 1 and k2(RSH) = (154 ± 2) M− 1 s− 1 for L = SO32− and k2(SR) = (1.30 ± 0.23) × 109 M− 1 s− 1 and k2(RSH) = (0.84 ± 0.02) M− 1 s− 1 for L = imidazole; while for glutathione they were k2(SR) = (6.70 ± 0.32) × 108 M− 1 s− 1 and k2(RSH) = 11.8 ± 0.3 M− 1 s− 1 for L = SO32− and k2(SR) = (2.50 ± 0.36) × 108 M− 1 s− 1 and k2(RSH) = 0.32 ± 0.01 M− 1 s− 1 for L = imidazole. In all reactions it was possible to detect the release of NO from the complexes, which it is remarkably distinct from other ruthenium metallocompounds described elsewhere with just N2O production. These results shine light on the possible key role of NO release mediated by physiological thiols in reaction with these metallonitrosyl ruthenium complexes.  相似文献   

5.
Nitric oxide (NO) plays an important role on several biological functions. Recently, it has been reported the possibility of modifying the NO release profile from the NO donors through its coupling to gold nanoparticles (AuNPs). Thus, AuNPs were synthesized and they were exposed to the NO donor ruthenium complex Cis-[Ru(bpy)2(NO)(4PySH)].(PF6)3 termed (Ru-4PySH)—forming AuNPs-{Ru-4PySH}n cluster. Our results indicate that AuNPs do not modify the maximum effect (ME) and potency (pD2) in the vasodilation induced by Ru-4PySH. Both complexes induce similar vascular relaxation in concentration-dependent way. However, the NO released from the complex AuNPs-{Ru-4PySH}n is lower than Ru-4PySH. Both complexes release only NO0 specie, but AuNPs-{Ru-4PySH}n releases NO in constant way and exclusively in the extracellular medium. In time-course, Ru-4Py-SH was faster than AuNPs-{Ru-4PySH}n in inducing the maximum vasodilation. Inhibition of soluble guanylyl cyclase (sGC) abolished the vasodilation induced by Ru-4PYSH, but not by AuNPs-{Ru-4PySH}n. Non-selective potassium (K+) channel blocker TEA had no effect on the vasodilation induced by AuNPs-{Ru-4PySH}n, but it reduced the potency to Ru-4PySH. In conclusion, our results suggest that AuNPs can reduce the permeability of NO donor Ru-4PySH due to AuNPs-{Ru-4PySH}n cluster formation. AuNPs reduce NO release, but they do not impair the vasodilator effect induced by the NO donor. Ru-4PySH induces vasodilation by sGC and K+ channels activation, while AuNPs-{Ru-4PySH}n activates mainly sGC. Taken together, these findings represent a new pharmacological strategy to control the NO release which could activate selective biological targets.  相似文献   

6.
The reaction of [RuCl3(2mqn)NO] (H2mqn=2-methyl-8-quinolinol) with 2-chloro-8-quinolinol (H2cqn) afforded cis-1 [RuCl(2cqn)(2mqn)NO] (the oxygen of 2cqn is trans to the NO) (complex 1), cis-1 [RuCl(2cqn)(2mqn)NO] (the oxygen of 2mqn is trans to the NO) (complex 2) and a 1:1 mixture of cis-2 [RuCl(2cqn)(2mqn)NO] (the oxygen of 2mqn is trans to the NO) and cis-2 [RuCl(2cqn)(2mqn)NO] (the oxygen of 2cqn is trans to the NO) (complex 3). The reaction was compared with that of [RuCl3(2mqn)NO] with 8-quinolinol (Hqn) or 5-chloro-8-quinolinol (H5cqn). Photoirradiation reaction of complex 1 at room temperature in deaerated CH2Cl2 in the presence of NO gave trans-[RuCl(2cqn)(2mqn)NO] (the Cl is trans to the NO) and complex 2 with recovery of complex 1. The reaction was contrasted with that of cis-1 [RuCl(qn)(2mqn)NO] or cis-1 [RuCl(5cqn)(2mqn)NO]. The crystal structure of complex 1 was determined by X-ray diffraction. The reactions were examined under consideration of atomic charge of the phenolato oxygen in 8-quinolinol and its derivatives calculated at the restricted Hartree-Fock/6-311G** level.  相似文献   

7.
The positive ion electrospray mass spectrometry (ESI-MS) of trans-[Ru(NO)Cl)(dpaH)2]Cl2 (dpaH=2,2′-dipyridylamine), obtained from the carrier solvent of H2O–CH3OH (50:50), revealed 1+ ions of the formulas [RuII(NO+)Cl(dpaH)(dpa)]+ (m/z=508), [RuIIICl(dpaH)(dpa)]+ (m/z=478), [RuII(NO+)(dpa)2]+ (m/z=472), [RuIII(dpa)2]+ (m/z=442), originating from proton dissociation from the parent [RuII(NO+)Cl(dpaH)2]2+ ion with subsequent loss of NO (17.4% of dissociative events) or loss of HCl (82.6% of dissociative events). Further loss of NO from the m/z=472 fragment yields the m/z=442 fragment. Thus, ionization of the NH moiety of dpaH is a significant factor in controlling the net ionic charge in the gas phase, and allowing preferential dissociation of HCl in the fragmentation processes. With NaCl added, an ion pair, {Na[RuII(NO)Cl(dpa)2]}+ (m/z=530; 532), is detectable. All these positive mass peaks that contain Ru carry a signature ‘handprint’ of adjacent m/z peaks due to the isotopic distribution of 104Ru, 102Ru, 101Ru, 99Ru, 98Ru and 96Ru mass centered around 101Ru for each fragment, and have been matched to the theoretical isotopic distribution for each set of peaks centered on the main isotope peak. When the starting complex is allowed to undergo aquation for two weeks in H2O, loss of the axial Cl is shown by the approximately 77% attenuation of the [RuII(NO+)Cl(dpaH)(dpa)]+ ion, being replaced by the [RuII(NO+)(H2O)(dpa)2]+ (m/z=490) as the most abundant high-mass species. Loss of H2O is observed to form [RuII(NO+)(dpa)2]+ (m/z=472). No positive ion mass spectral peaks were observed for RuCl3(NO)(H2O)2, ‘caged NO’. Negative ions were observed by proton dissociation forming [RuII(NO)Cl3(H2O)(OH)] in the ionization chamber, detecting the parent 1− ion at m/z=274, followed by the loss of NO as the main dissociative pathway that produces [RuIIICl3(H2O)(OH)] (m/z=244). This species undergoes reductive elimination of a chlorine atom, forming [RuIICl2(H2O)(OH)] (m/z=208). The ease of the NO dissociation is increased for the negative ions, which should be more able to stabilize a RuIII product upon NO loss.  相似文献   

8.
The NO donor trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O (py=pyridine) was loaded into poly-lactic-co-glycolic acid (PLGA) microparticles using the double emulsification technique. Scanning electron microscopy (SEM) and dynamic light scattering revealed that the particles are spherical in shape, have a diameter of 1600nm, and have low tendency to aggregate. The entrapment efficiency was 25%. SEM analysis of the melanoma cell B16-F10 in the presence of the microparticles containing the complex trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O (pyMP) showed that the microparticles were adhered to the cell surface after 2h of incubation. The complex with concentrations lower than 1x10(-4)M did not show toxicity in B16-F10 murine cells. The complex in solution is toxic at higher concentrations (>1x10(-3)M), with cell death attributed to NO release following the reduction of the complex. pyMP is not cytotoxic due to the lower bioavailability and availability of the entrapped complex to the medium and its reducing agents. However, pyMP is phototoxic upon light irradiation. The phototoxicity strongly suggests that cell death is due to NO release from trans-[Ru(NO)(NH(3))(4)(py)](3+). This work shows that pyMP can serve as a model for a drug delivery system carrying the NO donor trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O, which can release NO locally at the tumor cell by irradiation with light only.  相似文献   

9.
A new norsesquiterpene named phaeocaulisin N (1), and three new guaiane-type sesquiterpenes named phaeocaulisins O–Q (24), together with a known norsesquiterpene (5) were isolated from the rhizomes of Curcuma phaeocaulis. Their structures were established based on extensive spectroscopic analysis. Compounds 1 and 5, as far as we know, are the first example of 13-norguaiane-type sesquiterpenes isolated from the genus Curcuma. All of the isolated compounds were tested for inhibitory activity against LPS-induced nitric oxide production in RAW 264.7 macrophages. Compound 1 showed strong inhibitory activity on nitric oxide production with IC50 value of 3.58 ± 0.17 μM.  相似文献   

10.
The syntheses of the tetraazamacrocyclic ligands 1,4,7,11-tetraazacyclotetradecane (isocyclam) and 1,5,9,13-tetraazacyclohexadecane ([16]aneN4) in two steps starting from the corresponding tetraamine and diethylmalonate is reported. The trans-dicyanochromium(III) complexes, trans-[Cr(isocyclam)(CN)2]PF6 and trans-[Cr([16]aneN4)(CN)2]PF6 have also been prepared. Both are 2Eg emitters with 0-0 band emission wavelengths at 721.2 and 704.8 nm, respectively. The isocyclam complex has a room temperature excited state lifetime of 147 μs in aqueous solution which increases to 215 μs upon macrocyclic N-H deuteration, whereas the corresponding lifetime of the [16]aneN4 complex is 25 μs and is unaffected by macrocyclic N-H deuteration. The implications of the temperature dependence of the excited state lifetimes are also presented.  相似文献   

11.
Metallothionein-3 (MT-3), or neuronal growth inhibitory factor, which exhibits growth inhibitory activity, is a brain-specific metallothionein. In this study, the effect of nitric oxide (NO) on metal release (using Cd2+ as a probe) from MT-3 was examined by 113Cd and 2D [1H–15N] heteronuclear single-quantum coherence NMR spectroscopy. The exposure of human MT-3 to NO leads to a nonselective release of the three metals from the β-domain. In contrast to metallothionein-1 and metallothionein-2, two of the bound metals in the α-domain were also partially released, with the domain structure remaining almost unchanged. Further addition of NO resulted in the complete release of metals and concomitant unfolding of the protein. The preference of release of the two metals in the α-domain was attributed to the presence of two slightly different coordination environments for the four cadmium/zinc atoms.  相似文献   

12.
Neuronal NO synthase (nNOS) was discovered recently to interact specifically with the protein PIN (protein inhibitor of nNOS) [Jaffrey, S.R. and Snyder, S.H. (1996) Science 274, 774–777]. We have studied the effects on pure NOS enzymes of the same GST-tagged PIN used in the original paper. Unexpectedly, all NOS isoenzymes were inhibited. The IC50 for nNOS was 18±6 μM GST-PIN with 63 nM nNOS after 30 min at 37°C. Uncoupled NADPH oxidation was inhibited similarly, whereas cytochrome c reductase activity, the KM for l-arginine, and dimerization were unaffected. We reconsider the physiological role of PIN in the light of these results.  相似文献   

13.
Trans-[RuCl(NO)(dppe)2]2+ species were prepared. The complexes have been characterized by microanalysis, IR and 31P[1H] NMR spectroscopy and cyclic voltammetry. The trans-[RuCl(NO)(dppe)2](ClO4)2 complex shows a reversible one-electron-reduction process at E(1/2) = 0.200 V and another one-electron-reduction irreversible process at -0.620 V, both centered at the NO+ group. The dissociation of the NO group from the trans-[RuCl(NO)(dppe)2]2+ after two one-electron reductions results in the formation of the trans- and cis-[RuCl2(dppe)2] isomers. The product of an electrolyzed solution of the same complex at -0.300 V shows an EPR signal consistent with the presence of the [RuCl(NO(0))(dppe)2]+ complex. Crystal data for trans-[RuCl(NO)(dppe)2]2+*[RuCl4(NO)(H2O)]*1/2[RuCl6]4-*2[H2O] (I) and trans-[RuCl(NO)(dppe)(2)]2+*2[RuCl4(NO)(CH3O)]-*3[CH3OH] (II) are as follow: (I) Space group P-1, a=10.4040(3) A, b=12.3470(4) A, c=23.5620(8) A, alpha=95.885(2) degrees, beta=99.608(2) degrees, gamma=104.378(2) degrees, R=0.0521; (II) space group P-1, a=10.9769(2) A, b=13.2753(3) A, c=24.0287(4) A, alpha=99.743(1) degrees, beta=95.847(1) degrees, gamma=97.549(1) degrees; R=0.0496. The fac-[RuCl3(NO)(dppe)] (III) complex has been also prepared; its crystal data are: space group P2(1)/n (No. 14), a=11.841(2) A, b=13.775(2) A, c=16.295(4) A, beta=92.81(2) degrees; R1=0.0395.  相似文献   

14.
During the ESR spectroscopic titration of nitrosyl-iron bleomycin, ON---Fe(II)Blm, with DNA, its metal domain undergoes a change in environment as the DNA base pair to drug ratio increases to 50 to 1. The 15N---O stretching frequency of ON---Fe(II)Blm occurs at 1589 cm−1, similar to that for nitrosyl hemoglobin and myoglobin. Upon addition of DNA (3 base pairs per drug molecule), this vibration is substantially broadened. Injection of O2 into a solution of ON---Fe(II)BlmDNA converts the ESR signal of the nitrosyl species to low spin Fe(III) BlmDNA. NO is largely oxidized to NO2. The combination of these products suggests that the initial reaction of ON---Fe(II)Blm with O2 generates Fe(III)Blm and peroxynitrite, O2NO. If peroxynitrite is formed in the reaction, it does not cause detectable DNA damage. The structural integrity of a supercoiled DNA plasmid, pBR322, is not compromised and no base propenals are produced during this reaction.  相似文献   

15.
By careful analysis of experimental X-ray ligand crystallographic protein data across several inhibitor series we have discovered a novel, potent and selective series of iNOS inhibitors exemplified by compound 8.  相似文献   

16.
We examined the roles of nitric oxide (NO) and NO synthase (NOS) isozymes in the healing of indomethacin-induced small intestinal ulcers in rats. Animals were given indomethacin (10 mg/kg, s.c.) and killed 1, 4 and 7 days after the administration. Indomethacin (2 mg/kg), N(G)-nitro-L-arginine methyl ester (L-NAME: a nonselective NOS inhibitor: 10 mg/kg) and aminoguanine (a relatively selective iNOS inhibitor: 20 mg/kg) were given s.c. once daily for 6 days, the first 3 days or the last 3 days during a 7-day experimental period. Both indomethacin and L-NAME significantly impaired healing of these lesions, irrespective of whether they were given for 6 days, first 3 days or last 3 days. The healing was also impaired by aminoguanine given for the first 3 days but not for the last 3 days. Expression of iNOS mRNA in the intestine was up-regulated after ulceration, persisting for 2 days thereafter, and the Ca(2+)-independent iNOS activity also markedly increased with a peak response during 1-2 days after ulceration. Vascular content in the ulcerated mucosa as measured by carmine incorporation was decreased when the healing was impaired by indomethacin and L-NAME given for either the first or last 3 days as well as aminoguanidine given for the first 3 days. These results suggest that endogenous NO plays a role in healing of intestinal lesions, in addition to prostaglandins, yet the NOS isozyme mainly responsible for NO production differs depending on the stage of healing: iNOS in the early stage and cNOS in the late stage.  相似文献   

17.
The present study was designed to investigate the expression of nitric oxide synthase (NOS) isoforms in buffalo ovarian preantral (PFs), antral (AFs) and ovulatory (OFs) follicles (Experiment 1); effect of NO on in vitro survival and growth of PFs (Experiment 2) and NOS activity in immature oocytes by NADPH-diaphorase test (Experiment 3). In Experiment 1, NOS isoforms (neuronal, inducible and endothelial) were localized immunohistochemically; mRNA and protein expression was analyzed by semi-quantitative RT-PCR and western blot, respectively. In Experiment 2, PFs were isolated by micro-dissection method from buffalo ovaries and cultured in 0 (control), 10−3, 10−5, 10−7 and 10−9 M sodium nitroprusside (SNP). PFs were further cultured with 10−5 M SNP + 1.0 mM Nω-nitro-L-arginine methyl ester (L-NAME) or 1.0 μg/ml hemoglobin (Hb) to examine the reversible effect of SNP. Immunohistochemical studies demonstrated that inducible nitric oxide synthase (iNOS) immunoreactivity was predominantly localized in granulosa and theca cells whereas, neuronal (nNOS) and endothelial (eNOS) nitric oxide synthase in the theca, granulosa and cumulus cells of PFs, AFs and OFs. The amount of mRNA as well as protein of nNOS and eNOS was found similar between different stages of follicles. In contrast, higher level of iNOS mRNA was observed in OFs and protein in the AFs. Higher doses of SNP (10−3, 10−5, 10−7 M) inhibited (P < 0.05) while, lower dose of SNP (10−9 M) stimulated (P < 0.05) the survival, growth, and antrum formation of PFs. The inhibitory effects of SNP were reversed by Hb, while L-NAME was not found effective. In conclusion, expression of NOS isoforms mRNA and protein in PFs, AFs, and OFs and NOS enzyme activity in immature follicular oocytes suggest a role for NO during ovarian folliculogenesis in buffalo. NO plays a dual role on growth and survival of PFs depending on its concentration in the culture medium.  相似文献   

18.
Acetylcholine (ACh) is one of the main signals regulating nitric oxide synthase (NOS) expression and nitric oxide (NO) biosynthesis in mammals. However, few comparative studies have been performed on the role of ACh on NOS activity in non-mammalian animals. We have therefore studied the cholinergic control of NOS in the snail Helix pomatia and compared the effects of ACh on NO synthesis in the enteric nervous system of the snail and rat. Analyses by the NADPH-diaphorase reaction, immunocytochemistry, purification with ion-exchange chromatography, Western-blot, and quantitative polymerase chain reaction have revealed the expression of neuronal NOS in the rat intestine and of a 60-kDa subunit of NOS in the enteric nerve plexus of H. pomatia. In H. pomatia, quantification of the NO-derived nitrite ions has established that NO formation is confined to the NOS-containing midintestine. Nitrite production can be elevated by L-arginine but inhibited by Nω-nitro-L-arginine. In rats, ACh moderately elevates nitrite production, whereas ACh, the nicotinic receptor agonists (nicotine, acetyl thiocholine iodide, metacholine) and the cholinesterase inhibitor eserine reduce enteric nitrite formation in snails. The nicotinic receptor antagonist tubocurarine also provokes nitrite liberation, whereas the muscarinic receptor agonists or antagonists have no significant effect in snails. In the presence of EDTA or tetrodotoxin, ACh fails to inhibit nitrite production. In pharmacological studies, we have found that ACh contracts the midintestinal muscles and, in snails, simultaneously reduces the antagonistic muscle relaxant effect of L-arginine. Our experiments provide the first evidence for an inhibitory regulation of neuronal NO synthesis by ACh in an invertebrate species. This article is dedicated to Dr. Gábor Hollósi on the 50th anniversary of his graduation and being a teacher at the University of Debrecen.  相似文献   

19.
The effects of nitric oxide (NO) in protecting maize (Zea mays) leaves against iron deficiency-induced oxidative stress were investigated. The increased contents of hydrogen peroxide (H(2)O(2)) and superoxide (O(2)(-)*) due to iron deficiency suggested oxidative stress. The increased contents of thiobarbituric acid-reacting substances (TBARS) and the decreased contents of protein-bound thiol (PT) and non-protein-bound thiol (NPT) indicated iron deficiency-induced oxidative damage on proteins and lipids. Sodium nitroprusside (SNP), a nitric oxide (NO) donor, partially reversed iron deficiency-induced retardation of plant growth as well as chlorosis. Reduced contents of H(2)O(2), O(2)(-)*, TBARS and increased contents of PT and NPT also indicated that NO alleviated iron deficiency-induced oxidative damage. The activities of SOD and GR decreased sharply while the activities of CAT, POD and APX increased under SNP treatment. Our data suggest that NO can protect maize plants from iron deficiency-induced oxidative stress by reacting with ROS directly or by changing activities of ROS-scavenging enzymes.  相似文献   

20.
Raqeeb A  Sheng J  Ao N  Braun AP 《Cell calcium》2011,49(4):240-248
In blood vessels, stimulation of the vascular endothelium by the Ca(2+)-mobilizing agonist ATP initiates a number of cellular events that cause relaxation of the adjacent smooth muscle layer. Although vascular endothelial cells are reported to express several subtypes of purinergic P2Y and P2X receptors, the major isoform(s) responsible for the ATP-induced generation of vasorelaxant signals in human endothelium has not been well characterized. To address this issue, ATP-evoked changes in cytosolic Ca(2+), membrane potential and acute nitric oxide production were measured in isolated human umbilical vein endothelial cells (HUVECs) and profiled using established P2X and P2Y receptor probes. Whereas selective P2X agonist (i.e. α,β-methyl ATP) and antagonists (i.e. TNP-ATP and PPADS) could neither mimic nor block the observed ATP-evoked cellular responses, the specific P2Y receptor agonist UTP functionally reproduced all the ATP-stimulated effects. Furthermore, both ATP and UTP induced intracellular Ca(2+) mobilization with comparable EC(50) values (i.e. 1-3μM). Collectively, these functional and pharmacological profiles strongly suggest that ATP acts primarily via a P2Y2 receptor sub-type in human endothelial cells. In support, P2Y2 receptor mRNA and protein were readily detected in isolated HUVECs, and siRNA-mediated knockdown of endogenous P2Y2 receptor protein significantly blunted the cytosolic Ca(2+) elevations in response to ATP and UTP, but did not affect the histamine-evoked response. In summary, these results identify the P2Y2 isoform as the major purinergic receptor in human vascular endothelial cells that mediates the cellular actions of ATP linked to vasorelaxation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号