首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The metabolism of acetoacetate via a proposed cytosolic pathway in brain of 1-week-old rats was investigated. (-)-Hydroxycitrate, an inhibitor of ATP citrate lyase, markedly inhibited the incorporation of carbon from labelled glucose and 3-hydroxybutyrate into cerebral lipids, but had no effect on the incorporation of labelled acetate and acetoacetate into brain lipids. Similarly, n-butylmalonate and benzene-1,2,3-tricarboxylate inhibited the incorporation of labelled 3-hydroxybutyrate but not of acetoacetate into cerebral lipids. These inhibitors had no effect on the oxidation to 14CO2 of the labelled substrates used. (-)-Hydroxycitrate decreased the incorporation of 3H from 3H2O into cerebral lipids by slices metabolizing either glucose or 3-hydroxybutyrate, but not in the presence of acetoacetate. (-)-Hydroxycitrate also differentially inhibited the incorporation of [2-14C]-leucine and [U-14C]leucine into cerebral lipids. The data show that, although the acetyl moiety of acetyl-CoA generated in brain mitochondria is largely translocated as citrate from these organelles to the cytosol, a cytosolic pathway exists by which acetoacetate is converted directly into acetyl-COA in this cellular compartment.  相似文献   

7.
1. Diaphragms from 48h-starved rats were incubated in Krebs-Ringer bicarbonate medium at 37degreesC for 30min and then transferred into new medium and incubated for 1, 2 and 3 h. 2. The amount of free amino acids found at the end of each time of incubation was larger than the amount at the beginning of incubation, indicating that in this system proteolysis is prevailing. 3. The diaphragms was releasing mainly alanine and glutamine into the incubation medium. 4. Within the periods of incubation the release and metabolism of free amino acids was proceeding at a constant rate. 5. Addition of sodium DL-3-hydroxybutyrate decreased the tissue content of several amino acids, among which were tyrosine and phenylalanine, suggesting that proteolysis was decreased by ketone bodies. 6. In the presence of glucose (10mM) and branched-chain amino acids (0.5mM), sodium DL-3-hydroxybutyrate at concentrations of 4 or 6 mM resulted in 30% decrease in tissue alanine content and a 20% decline in alanine release. Release of taurine and glutamine was decreased by 19 and 16% respectively with 6 mM-sodium DL-3-hydroxybutyrate. Addition of sodium acetoacetate (1-3mM) also resulted in a 20-35% decrease in tissue content of alanine, glutamine and taurine and in a 15-24% decrease of alanine and glutamine release. Smaller decreases (less than 15%) in the release of glycine, threonine, proline, serine and aspartate were also observed in the presence of sodium DL-3-hydroxybutyrate or sodium acetoacetate. 7. Substitution of pyruvate (1.0mM) for glucose in the presence of acetoacetate restored alanine and glutamine production to control values. In the presence of acetoacetate, pyruvate also increased the tissue content of aspartate by 77% and decreased the tissue content of glutamate by 30%. 8. It is suggested that in diaphragms from starved rats, ketone bodies (a) in the absence of other substrates inhibit protein catabolism and (b) in the presence of glucose and branched-chain amino acids decrease alanine and glutamine production, by inhibiting glycolysis.  相似文献   

8.
9.
Metabolism of ketone bodies, oleate and glucose in lymphocytes of the rat.   总被引:2,自引:1,他引:1  
Isolated incubated lymphocytes utilized acetoacetate, 3-hydroxybutyrate or oleate at about 0.5 mumol/min per g dry wt. These rates were not markedly affected by concanavalin A or by starvation of the donor animal. When ketone bodies replaced glucose in the culture medium, they could not support lymphocyte proliferation when cells were cultured for 48 h. Addition of oleate (0.5 mM) to isolated lymphocytes increased the rate of O2 consumption markedly, suggesting that it could contribute about 30% to O2 consumption. The rate of oleate uptake and the stimulated rate of O2 consumption were maximal at 0.5 M-oleate; this is in contrast with the effect in some other tissues, in which the rate of fatty acid oxidation is linear with concentration up to about 2 mM. Since the normal plasma concentration of fatty acid in the fed state is about 0.5 mM, this suggests that lymphocytes can utilize fatty acids at a maximal rate in the fed state. Ketone bodies or oleate decreased the rate of glucose utilization by incubated lymphocytes; ketone bodies decreased the rate of pyruvate oxidation and increased the intracellular concentration of hexose monophosphate and citrate, suggesting that 6-phosphofructokinase is inhibited by citrate, and hexokinase by glucose 6-phosphate. These effects may be important not so much in conserving glucose in the whole animal but in maintaining the concentrations of glycolytic intermediates necessary for biosynthetic processes during proliferation.  相似文献   

10.
Ketone bodies promote insulin secretion from isolated rat pancreatic islets in the presence of 5 mM-glucose, but are ineffective in its absence. At concentrations of 10 mM or less, the relative abilities of the ketone bodies to potentiate release are in the order D-3-hydroxybutyrate greater than DL-3-hydroxybutyrate greater than acetoacetate. The response curve relating insulin release to D-3-hydroxybutyrate concentration displays a threshold at 1 mM and a maximum at 10 mM. D-3-Hydroxybutyrate (5 mM, but not 10 mM) promotes insulin secretion in the presence of 5 mM concentrations of both L-arginine and DL-glyceraldehyde, but not with L-leucine, L-alanine, L-glutamate or 4-methyl-2-oxopentanoate. The oxidation rates of the exogenous ketone bodies do not correlate well with their capacities to promote insulin release. Moreover, the oxidation of 5 mM-D-3-hydroxybutyrate can be inhibited by 25% with methylmalonate (10 mM) without any diminution of release. The potentiation with D-3-hydroxybutyrate occurs without an observable increase in total islet cyclic AMP. However, a small net efflux matches the relative abilities of the ketone bodies to promote insulin release. With islets from 48 h-starved animals the insulin response is both diminished and less sensitive than in fed animals, since insulin secretion is not significantly raised until a threshold of 5 mM-D-3-hydroxybutyrate is reached. These results suggest that, in the rat at least, there should be a reappraisal of the physiological role of ketone bodies in the promotion of insulin release.  相似文献   

11.
12.
13.
The effect of hyperphenylalaninaemia on the metabolism of ketone bodies in vivo and in vitro by developing rat brain was investigated. The incorporation in vivo of [14C]acetoacetate into cerebral lipids was decreased by both chronic (for 3 days) and acute (for 6h) hyperphenylalaninaemia induced by injecting phenylalanine into 1-week-old rats. In studies in vitro it was observed that the incorporation of the radioactivity from [14C]acetoacetate and 3-hydroxy[14C]butyrate into cerebral lipids was inhibited by phenyl-pyruvate, but not by phenylalanine. Phenylpyruvate also inhibited the incorporation of 3H from 3H2O into lipids by brain slices metabolizing either 3-hydroxybutyrate or acetoacetate in the presence of glucose. These findings suggest that the decrease in the incorporation in vivo of [14C]acetoacetate into cerebral lipids in hyperphenylalaninaemic rats is most likely caused by phenylpyruvate and not by phenylalanine. Phenylpyruvate as well as phenylalanine had no inhibitory effects on ketone-body-catabolizing enzymes, namely 3-hydroxybutyrate dehydrogenase, 3-oxo acid CoA-transferase and acetoacetyl-CoA thiolase, in rat brain. Phenylpyruvate but not phenylalanine inhibited the activity of the 2-oxoglutarate dehydrogenase complex from rat and human brain. These findings suggest that the metabolism of ketone bodies is impaired in brains of untreated phenylketonuric patients, and in turn may contribute to the diminution of mental development and function associated with phenylketonuria.  相似文献   

14.
The activity of pyruvate kinase from the isolated rat hepatocyte was studied under conditions which allow investigation into the hormonal regulation of the enzyme. Incubating hepatocytes from fed or fasted rats with 1 μm glucagon gives approximately 60% inhibition of the enzyme activity determined at 1.6 mm P-enolpyruvate. A good correlation between the regulation of pyruvate kinase and lactate formation from 10 mm dihydroxyacetone is observed in hepatocytes from fasted rats. When hepatocytes are incubated in a Krebs-Ringer phosphate buffer, the inhibition of the pyruvate kinase activity by 1 μm glucagon is not accompanied by a marked inhibition of lactate production from fructose. Half-maximal regulation is observed at 0.26 ± 0.02 nm glucagon and 0.37 ± 0.05 nm glucagon for the enzyme and lactate formation from dihydroxyacetone respectively. Incubating hepatocytes with 10 mm l-alanine enhances inhibition of pyruvate kinase by physiological concentrations of glucagon, lowering the half-maximally effective concentration of glucagon from 0.3 nm to approximately 0.1 nm. A small but consistent inhibition of pyruvate kinase by 10 μm epinephrine is also observed and this inhibition is enhanced by 0.5 mm theophylline and by 10 mm l-alanine. The inhibition of pyruvate kinase by epinephrine both in the absence and presence of theophylline is blocked by the α-adrenergic antagonist phenoxybenzamine. The β-adrenergic blocker propranolol has no influence on the inhibition of the enzyme by epinephrine. Adenosine 3′:5′-monophosphate, N6O2-dibutyryl adenosine 3′:5′-monophosphate, and guanosine 3′:5′-monophosphate also inhibit glycolysis from dihydroxyacetone and modulate pyruvate kinase activity in hepatocytes from fasted rats. Oleate, ethanol, and 3-hydroxybutyrate inhibit dihydroxyacetone glycolysis, but they do not influence the activity of pyruvate kinase. The divalent metal ionophore A23187 slightly stimulates lactate synthesis from dihydroxyacetone, but it has no influence on pyruvate kinase activity.  相似文献   

15.
16.
The chemiluminigenic probe lucigenin has been employed to detect the production of active oxygen species in suspensions of intact rat hepatocytes. Light emission from lucigenin arises from oxygenation by superoxide anion; hydrogen peroxide or a species derived from it may contribute to the reaction. The inhibitory action of antioxidants on the availability of active oxygen species produced by hepatocytes was tested. Propyl gallate was the most potent inhibitor, butylated hydroxyanisole and butylated hydroxytoluene were less active. The latter compounds cause an alteration of the cell membrane at high concentrations.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号