首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scleroderma (systemic sclerosis) is a chronic multisystem autoimmune disease in which oxidative stress is suspected to play a role in the pathophysiology. Therefore, it was postulated that patients with scleroderma would have abnormally high breath ethane concentrations, which is a volatile product of free-radical-mediated lipid peroxidation, compared with a group of controls. There was a significant difference (p<0.05) between the mean exhaled ethane concentration of 5.27 pmol ml(-1) CO(2) (SEM=0.76) in the scleroderma patients (n=36) versus the mean exhaled concentration of 2.72 pmol ml(-1) CO(2) (SEM=0.71) in a group of healthy controls (n=21). Within the scleroderma group, those subjects taking a calcium channel blocker had lower ethane concentrations compared with patients who were not taking these drugs (p=0.05). There was a significant inverse association between lung diffusion capacity for carbon monoxide (per cent of predicted) and ethane concentration (b=-2.8, p=0.026, CI=-5.2 to -0.35). These data support the presence of increased oxidative stress among patients with scleroderma that is detected by measuring breath ethane concentrations.  相似文献   

2.
The relationship of exhaled ethane and n-pentane to exhaled NO, carbonylated proteins, and indoor/outdoor atmospheric pollutants were examined in order to evaluate ethane and n-pentane as potential markers of airway inflammation and/or oxidative stress. Exhaled NO and carbonylated proteins were found to have no significant associations with either ethane (p = 0.96 and p = 0.81, respectively) or n-pentane (p = 0.44 and 0.28, respectively) when outliers were included. In the case where outliers were removed n-pentane was found to be inversely associated with carbonylated proteins. Exhaled hydrocarbons adjusted for indoor hydrocarbon concentrations were instead found to be positively associated with air pollutants (NO, NO2 and CO), suggesting pollutant exposure is driving exhaled hydrocarbon concentrations. Given these findings, ethane and n-pentane do not appear to be markers of airway inflammation or oxidative stress.  相似文献   

3.
Abstract

Scleroderma (systemic sclerosis) is a chronic multisystem autoimmune disease in which oxidative stress is suspected to play a role in the pathophysiology. Therefore, it was postulated that patients with scleroderma would have abnormally high breath ethane concentrations, which is a volatile product of free-radical-mediated lipid peroxidation, compared with a group of controls. There was a significant difference (p<0.05) between the mean exhaled ethane concentration of 5.27 pmol ml–1 CO2 (SEM=0.76) in the scleroderma patients (n=36) versus the mean exhaled concentration of 2.72 pmol ml?1 CO2 (SEM=0.71) in a group of healthy controls (n=21). Within the scleroderma group, those subjects taking a calcium channel blocker had lower ethane concentrations compared with patients who were not taking these drugs (p=0.05). There was a significant inverse association between lung diffusion capacity for carbon monoxide (per cent of predicted) and ethane concentration (b=?2.8, p=0.026, CI=?5.2 to ?0.35). These data support the presence of increased oxidative stress among patients with scleroderma that is detected by measuring breath ethane concentrations.  相似文献   

4.
Oxidative stress may initiate lipid peroxidation that generates ethane. Ethane, at low concentrations, is eliminated by pulmonary exhalation. Previous methods have not allowed frequent sampling, thus ethane kinetics has not been studied in man. A validated method over the range 3.8-100,000 ppb with a limit of quantitation of 3.8 ppb (CV 9.3%) based on cryofocusing technique of a 60 ml breath sample allowed frequent sampling. Due to a rapid analytical procedure batches of more than 100 samples may be analyzed. In human volunteers (24-55 years) uptake was studied for up to 23 min (n=9), elimination was studied for 210 min (n=9). Ethane was inhaled (concentrations varied from 16 to 29 ppm (parts per million)) through a non-rebreathing system; sampling was performed with short intervals from the expiratory limb. Samples were also drawn from the inhalatory limb. Ninety-five percent of steady state (inspired) concentration was reached within 1.75 min. Five percent of the initially inhaled concentrations was found in exhaled air 1.5 min after termination of inhalation. A terminal mean half life of 31 min for ethane was also observed. The data indicate that frequent sampling will be necessary to capture relevant changes in breath ethane.  相似文献   

5.
A method is described for rapidly measuring the ethane concentration in exhaled human breath. Ethane is considered a volatile marker for lipid peroxidation. The breath samples are analyzed in real time during single exhalations by means of infrared cavity leak-out spectroscopy. This is an ultrasensitive laser-based method for the analysis of trace gases on the sub-parts per billion level. We demonstrate that this technique is capable of online quantifying of ethane traces in exhaled human breath down to 500 parts per trillion with a time resolution of better than 800 ms. This study includes what we believe to be the first measured expirograms for trace fractions of ethane. The expirograms were recorded after a controlled inhalation exposure to 1 part per million of ethane. The normalized slope of the alveolar plateau was determined, which shows a linear increase over the first breathing cycles and ends in a mean value between 0.21 and 0.39 liter-1. The washout process was observed for a time period of 30 min and was modelled by a threefold exponential decay function, with decay times ranging from 12 to 24, 341 to 481, and 370 to 1770 s. Our analyzer provides a promising noninvasive tool for online monitoring of the oxidative stress status.  相似文献   

6.
Physical activity is known to play a cardioprotective role. Nevertheless, a paradox seems to arise when considering that aerobic exercise enhances oxidative stress. In previous works, we showed that free radical formation during physical activity was counteracted by an increase in antioxidant defenses. Low density lipoprotein (LDL) oxidation is a crucial step in atherosclerosis, process that can be inhibited by high density lipoprotein (HDL) through its oxidable components or associated enzymes like paraoxonase (PON) and platelet-activating factor acetylhydrolase (PAF-AH). In this study, we evaluated copper-induced oxidation in isolated LDL and HDL fractions, and the effect of HDL on LDL oxidation in samples from well trained amateur athletes who were participating in an ultra-distance triathlon (n=18) in comparison with healthy sedentary controls (n=18). PON and PAF-AH activities and PON phenotype were also evaluated. The oxidability of isolated lipoproteins, as well as HDL antioxidant capacity, was similar in both groups of subjects. After classification by paraoxonase phenotype, only sportsmen belonging to the QR phenotype showed higher HDL susceptibility to in vitro oxidation (thiobarbituric reactive substances, TBARS) than controls (p<0.05). HDL oxidability exhibited a positive correlation with its triglyceride content (r=0.58; p<0.01). Similarly, HDL capacity to inhibit LDL oxidation was increased in athletes (p<0.05) which was positively associated with HDL oxidability (HDL-TBARS: r=0.55, p<0.005; HDL-lag time: r=0.45, p<0.01; HDL-D max: r=0.35, p<0.05). In conclusion, regular aerobic exercise was associated to a more efficient antioxidant function played by HDL from PON-QR carriers, which could constitute an adaptive response to the increased oxidative stress.  相似文献   

7.
Oxidative stress and hypoxia, which may occur in cystic fibrosis patients (CF) at rest and may be worsened by exercise, induce the expression of heme oxygenase (HO)-1, resulting in increased carbon monoxide (CO) formation. We tested that exhaled CO level (eCO) was higher in CF patients than in healthy subjects, and that exercise increased CO production. Exhaled CO was measured electrochemically in 15 CF patients and 15 control subjects at rest (T0), immediately (T1) and 60 minutes after a symptom-limited incremental bicycle exercise test (T60). Arterial oxygen saturation (TcO2) was monitored transcutaneously. Data are given as mean+/-SEM. Baseline eCO was 1.90+/-0.26 ppm in the control and 1.93+/-0.27 ppm in the CF group. In both groups eCO was lower at T1 than at rest. In the control group eCO was also low at T60, but in the CF group it was increased compared to baseline level at this timepoint. Exercise caused oxyhemoglobin desaturation in CF patients which was related to the increase in eCO measured at T60 (r=0.67, p<0.01). Our findings suggest that exercise modulates the level of exhaled CO partly by worsening oxygenation in CF patients.  相似文献   

8.
Antioxidant supplementation has become a common practice among athletes to boost sport achievement. Likewise, melatonin (MEL) has been ingested as an ergogenic aid to improve physical performance. To date, no study has checked whether the multiple beneficial effects of MEL have an outcome during a maximum running exercise until exhaustion. Therefore, the present study aimed to evaluate the effect of MEL ingestion on physical performance and biochemical responses (i.e., oxidative stress) during exhaustive exercise. In a double blind randomized study, thirteen professional soccer players [age: 17.5 ± 0.8 years, body mass: 70.3 ± 3.9 kg, body height: 1.80 ± 0.08 m; maximal aerobic speed (MAS): 16.85 ± 0.63 km/h; mean ± standard deviation], members of a first league squad, performed a running exercise until exhaustion at 100% of MAS, after either MEL or placebo ingestion. Physical performance was assessed, and blood samples were obtained at rest and following the exercise. Compared to placebo, MEL intake prevented the increase in oxidative stress markers (i.e., malondialdehyde), alleviated the alteration of antioxidant status (i.e., glutathione peroxidase, uric acid and total bilirubin) and decreased post-exercise biomarkers of muscle damage (i.e., creatine kinase and lactate dehydrogenase) (p < 0.05). However, physical performance was not affected by MEL ingestion (p > 0.05). In conclusion, acute MEL intake before a maximal running exercise protected athletes from oxidative stress and cellular damage but without an effect on physical performance.  相似文献   

9.
《Free radical research》2013,47(8):948-955
Abstract

Exercise-induced oxidative stress is a state that primarily occurs in athletes involved in high-intensity sports when pro-oxidants overwhelm the antioxidant defense system to oxidize proteins, lipids, and nucleic acids. During exercise, oxidative stress is linked to muscle metabolism and muscle damage, because exercise increases free radical production. The T allele of the Ala16Val (rs4880 C/T) polymorphism in the mitochondrial superoxide dismutase 2 (SOD2) gene has been reported to reduce SOD2 efficiency against oxidative stress. In the present study we tested the hypothesis that the SOD2 TT genotype would be underrepresented in elite athletes involved in high-intensity sports and associated with increased values of muscle and liver damage biomarkers. The study involved 2664 Caucasian (2262 Russian and 402 Polish) athletes. SOD2 genotype and allele frequencies were compared to 917 controls. Muscle and liver damage markers [creatine kinase (CK), creatinine, alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP)] were examined in serum from 1444 Russian athletes. The frequency of the SOD2 TT genotype (18.6%) was significantly lower in power/strength athletes (n = 524) compared to controls (25.0%, p = 0.0076) or athletes involved in low-intensity sports (n = 180; 33.9%, p < 0.0001). Furthermore, the SOD2 T allele was significantly associated with increased activity of CK (females: p = 0.0144) and creatinine level (females: p = 0.0276; males: p = 0.0135) in athletes. Our data show that the SOD2 TT genotype might be unfavorable for high-intensity athletic events.  相似文献   

10.
Elite athletes show a high prevalence of symptoms and signs of asthma, but no study has assessed the acute effects of endurance exercise on airway cells in nonasthmatic athletes. We measured exhaled nitric oxide (NO) and collected samples of induced sputum after 3% NaCl aerosol administration for 20 min in nonasthmatic middle-aged amateur runners after the Fourth Palermo International Marathon and 6--9 wk later (habitual training period) at baseline. After the marathon, exhaled NO (n = 9 subjects) was higher [27 +/- 9 parts/billion (ppb)] than at baseline (12 +/- 4 ppb; P < 0.0005). Polymorphonuclear neutrophil (PMN) counts in induced sputum were much higher in runners (91.2 +/- 3.6% of total cells postmarathon and 78.7 +/- 9.1% at baseline) than in sedentary control subjects (9.9 +/- 5.9%; P < 0.001). Expression of L-selectin and CD11b/CD18 in sputum PMNs was lower after the race than at baseline and inversely related to the amount of exhaled NO (r = -0.66 and -0.69, respectively; P < 0.05). Our data indicate that sputum PMNs are increased in nonasthmatic runners both after a marathon and at baseline and suggest that NO may modulate exercise-associated inflammatory airway changes.  相似文献   

11.
This study comprised 2 main experiments: one was to determine the oxidative DNA damage under hyperbaric hyperoxia (HBO), and the other was to evaluate the effects of pre-exposure to HBO on high-intensity exercise performance. Healthy subjects (n = 8) inspired 100% O2 in an experimental chamber at a pressure of 1.3 atmospheres absolute (ATA) for 50 minutes once per week for 2 weeks. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) was measured as a marker of DNA oxidative damage on day 0 and on days 1, 3, and 5 after each HBO exposure. To investigate the effects of pre-exposure to HBO on high-intensity exercise performance, subjects (n = 6) performed maximal isometric knee extensor exercise (30 repetitions x 2 sets) with and without HBO pre-exposure (100% O2 at 1.3 ATA for 50 minutes). Urinary 8-OHdG did not show any significant change after HBO exposure. Isometric knee extensor torque was significantly lower during the first half of the first set of exercises after HBO pre-exposure compared with the normobaric normoxia (NBO) trial. The decreased torque was associated with the lower integrated electromyography with respect to time. Changes in the degree of ischemia-reperfusion in the vastus lateralis muscle during exercise were larger in the HBO pre-exposure trial than in the NBO trial. Muscle fatigue index, serum lactate concentration, heart rate, and systolic blood pressure showed no differences between the 2 trials. These results indicated that HBO exposure was harmless to DNA, and HBO pre-exposure did not enhance high-intensity exercise performance. As a practical application, athletes who require maximal muscle strength should not inspire high-concentration of O2 just before their competitions because it might, as the case may be, impair their performance.  相似文献   

12.
The aim of this study was to analyze the effects of exercise training on oxidative stress in sickle cell trait carriers. Plasma levels of oxidative stress [advanced oxidation protein products (AOPP), protein carbonyl, malondialdehyde (MDA), and nitrotyrosine], antioxidant markers [catalase, glutathione peroxidase (GPX), and superoxide dismutase (SOD)], and nitrite and nitrate (NOx) were assessed at baseline, immediately following a maximal exercise test (T(ex)), and during recovery (T(1h), T(2h), T(24h)) in trained (T: 8 h/wk minimum) and untrained (U: no regular physical activity) sickle cell trait (SCT) carriers or control (CON) subjects (T-SCT, n = 10; U-SCT, n = 8; T-CON, n = 11; and U-CON, n = 11; age: 23.5 ± 2.2 yr). The trained subjects had higher SOD activities (7.6 ± 5.4 vs. 5.2 ± 2.1 U/ml, P = 0.016) and lower levels of AOPP (142 ± 102 vs. 177 ± 102 μM, P = 0.028) and protein carbonyl (82.1 ± 26.0 vs. 107.3 ± 30.6 nm/ml, P = 0.010) than the untrained subjects in response to exercise. In response to exercise, U-SCT had a higher level of AOPP (224 ± 130 vs. 174 ± 121 μM, P = 0.012), nitrotyrosine (127 ± 29.1 vs.70.6 ± 46.6 nM, P = 0.003), and protein carbonyl (114 ± 34.0 vs. 86.9 ± 26.8 nm/ml, P = 0.006) compared with T-SCT. T-SCT had a higher SOD activity (8.50 ± 7.2 vs. 4.30 ± 2.5 U/ml, P = 0.002) and NOx (28.8 ± 11.4 vs. 14.6 ± 7.0 μmol·l(-1)·min(-1), P = 0.003) in response to exercise than U-SCT. Our data indicate that the overall oxidative stress and nitric oxide response is improved in exercise-trained SCT carriers compared with their untrained counterparts. These results suggest that physical activity could be a viable method of controlling the oxidative stress. This could have a beneficial impact because of its involvement in endothelial dysfunction and subsequent vascular impairment in hemoglobin S carriers.  相似文献   

13.
Oxidant stress may play a role in the accelerated pathology of patients on dialysis, especially in the development of cardiovascular disease, which is a frequent condition in end-stage renal disease (ESRD) patients. Measurement of hydrocarbons can be employed to assess oxidant stress since breath hydrocarbons have been directly traced to in vivo breakdown of lipid hydroperoxides. We undertook to measure ethane, a major breath hydrocarbon, in 15 control subjects, 13 patients on peritoneal dialysis (PD), and 35 patients on hemodialysis (HD). Within the HD group, we separately examined 12 diabetic and 23 nondiabetic patients. Breath samples were collected after patients had breathed purified air for 4 min, and ethane content was measured by GC and expressed as pmoles/kg-body weight-minute (pmol/kg-min). As the data for the hemodialysis patients appeared skewed, nonparametric statistical techniques were employed to analyze these data, which are reported as median and interquartile range (IQR). Ethane levels were similar in 15 control subjects (median, 2.50 pmol [1.38-3.30]/kg-min] and 13 PD patients (median, 2.51 pmol [1.57-3.17]/kg-min). Breath ethane was significantly elevated in a portion (18 of 35 patients, 52%) of the HD patients (median, 6.16 pmol [4.46-8.88]/kg-min) (p <.001 vs. control, Mann-Whitney U test). Two of the diabetic HD patients showed extremely high values of breath ethane. Breath ethane was not altered by a single hemodialysis session, suggesting that long-term metabolic processes contribute to its elevation. Measurement of breath ethane may provide insight into severity of oxidant stress and metabolic disturbances, and provide guidance for optimal therapy and prevention of pathology in patients on long-term hemodialysis.  相似文献   

14.
Human endurance performance can be predicted from maximal oxygen consumption (Vo(2max)), lactate threshold, and exercise efficiency. These physiological parameters, however, are not wholly exclusive from one another, and their interplay is complex. Accordingly, we sought to identify more specific measurements explaining the range of performance among athletes. Out of 150 separate variables we identified 10 principal factors responsible for hematological, cardiovascular, respiratory, musculoskeletal, and neurological variation in 16 highly trained cyclists. These principal factors were then correlated with a 26-km time trial and test of maximal incremental power output. Average power output during the 26-km time trial was attributed to, in order of importance, oxidative phosphorylation capacity of the vastus lateralis muscle (P = 0.0005), steady-state submaximal blood lactate concentrations (P = 0.0017), and maximal leg oxygenation (sO(2LEG)) (P = 0.0295), accounting for 78% of the variation in time trial performance. Variability in maximal power output, on the other hand, was attributed to total body hemoglobin mass (Hb(mass); P = 0.0038), Vo(2max) (P = 0.0213), and sO(2LEG) (P = 0.0463). In conclusion, 1) skeletal muscle oxidative capacity is the primary predictor of time trial performance in highly trained cyclists; 2) the strongest predictor for maximal incremental power output is Hb(mass); and 3) overall exercise performance (time trial performance + maximal incremental power output) correlates most strongly to measures regarding the capability for oxygen transport, high Vo(2max) and Hb(mass), in addition to measures of oxygen utilization, maximal oxidative phosphorylation, and electron transport system capacities in the skeletal muscle.  相似文献   

15.
16.
3-Nitrotyrosine (3-NT) is considered as a marker of oxidative stress, which occurs during inflammation. Since 3-NT levels in exhaled breath condensate (EBC) are very low, we applied a specific and sensitive gas chromatography-negative ion chemical ionization-mass spectrometry (GC-NICI-MS) method and high performance liquid chromatography (HPLC) with electrochemical detection for the analysis of free 3-NT in EBC. A total of 42 children (aged 5-17 years) were enrolled in this study, including children with asthma (n=12), cystic fibrosis (n=12), and healthy controls (n=18). Additionally, 14 healthy non-smoking adults (aged 18-59 years) were included. An EcoScreen system was used for the collection of EBC samples. Free 3-NT levels in EBC ranged from 0.54-6.8 nM. Median (interquartile range) concentrations (nM) were similar in all groups: 1.46 (0.97-2.49) in healthy adults, 2.51 (1.22-3.51) in healthy children, 1.46 (0.88-2.02) in children with asthma, and 1.97 (1.37-2.35) in CF children, respectively (p=0.24, Kruskall-Walis test). No difference was found between the children with airway disease and age-matched healthy controls. In healthy subjects, there was no effect of age on 3-NT concentrations. HPLC analyses provided similar concentration ranges for EBC 3-NT when compared with GC-NICI-MS. Our study has clearly demonstrated that free 3-NT in EBC fails as a marker for oxidative stress in children with stable CF and asthma.  相似文献   

17.
It is well recognized that acute strenuous exercise is accompanied by an increase in free-radical production and subsequent oxidative stress, in addition to changes in blood antioxidant status. Chronic exercise provides protection against exercise-induced oxidative stress by upregulating endogenous antioxidant defense systems. Little is known regarding the protective effect afforded by judo exercise. Therefore, we determined antioxidant and oxidative stress biomarkers at rest and in response to acute exercise in 10 competitive judokas and 10 sedentary subjects after mixed exercise (anaerobic followed by aerobic). The subjects performed a Wingate test, followed by 30 minutes of aerobic exercise performed at 60% of maximal aerobic power. Blood samples were taken, by an intravenous catheter, at rest (R), immediately after the physical exercise (P0), and at 5 (P5), 10 (P10), and 20 (P20) minutes postexercise. The measured parameters included the activity of the antioxidant enzymes superoxide dismutase, glutathione peroxidase, and glutathione reductase, in addition to α-tocopherol, and total antioxidant status. Malondialdehyde was measured as a representation of lipid peroxidation. At rest, the judokas had higher values for all antioxidant and oxidative stress markers as compared to the sedentary subjects (p < 0.05). Plasma concentrations of all parameters except for α-tocopherol increased significantly above resting values for both the judokas and sedentary subjects (p < 0.05) and remained elevated at 20 minutes postexercise. A significant postexercise decrease was observed for α-tocopherol (p < 0.05) at P20 for judokas and at P5 for sedentary subjects. These data indicate that competitive judo athletes have higher endogenous antioxidant protection compared to sedentary subjects. However, both groups of subjects experience an increase in exercise-induced oxidative stress that is not different.  相似文献   

18.
Exercise in thermally stressful environmental conditions can enhance oxidative stress. We sought to measure the plasma antioxidant defenses and cytokine response together with oxidative damage post-exercise in a temperate versus a hot environment. The plasma concentrations of vasoactive endothelin-1 and vascular angiogenic growth factor were also evaluated. Male athletes (n=9) volunteered to participate. The athletes randomly performed two bouts of treadmill exercise of 45 min at 75–80% of maximal oxygen uptake in a climatic-controlled chamber under two different conditions: temperate environment (10–12 °C, 40–55% humidity) and hot, humid environment (30–32 °C, 75–78% humidity). Venous blood samples were obtained immediately pre- and post-bout and on recovery after 2 h. Serum glucose, malondialdehyde and lactate concentrations were significantly increased post-exercise in hot but maintained in the temperate environment; these post-exercise values were significantly higher after exercise in hot than in temperate. Urinary 8-hydroxy-2′-deoxyguanosine concentration, plasma phosphocreatine kinase and catalase activities, creatinine and monocyte chemoattractant protein-1, and interleukin-6 significantly increased post-exercise in hot but maintained in temperate environment. The post-exercise circulating values of antioxidant enzyme paraoxonase-1 and endothelin were significantly higher in the hot than in temperate environment. Exercise in a hot and humid environment resulted in mild hyperthermia with elevated perceived exertion and thermal stress. Hyperthermic environment induced hyperglycemia, lactatecidemia and more cellular and oxidative damage than exercise in a temperate environment but also induced a post-exercise antioxidant and anti-inflammatory response in plasma. These results suggest that environmental temperature needs to be taken into account when evaluating exercise-related oxidative stress and inflammation.  相似文献   

19.
The prevalence of Achilles tendon (AT) injury is high in various sports, and AT rupture patients have been reported to have a 200-fold risk of sustaining a contralateral rupture. Tendon adaptation to different exercise modes is not fully understood. The present study investigated the structural properties of the AT in male elite athletes that subject their AT to different exercise modes as well as in Achilles rupture patients. Magnetic resonance imaging of the foot and leg, anthropometric measurements, and maximal isometric plantar flexion force were obtained in 6 male AT rupture patients and 25 male elite athletes (kayak/control group n = 9, volleyball n = 8 and endurance running n = 8). AT cross-sectional area (CSA) was normalized to body mass. Runners had a larger normalized AT CSA along the entire length of the tendon compared with the control group (P < 0.05). The volleyball subjects had a larger normalized CSA compared with the control group (P < 0.05) in the area of thinnest tendon CSA. No structural differences of the AT were found in the rupture subjects compared with the control group. Rupture subjects did not subject their AT to greater force or stress during a maximal voluntary isometric plantar flexion than the other groups. The CSA of the triceps surae musculature was the strongest predictor of AT CSA (r(s) = 0.569, P < 0.001). This study is the first to show larger CSA in tendons that are subjected to intermittent high loads. AT rupture patients did not display differences in structural or loading properties of the tendons.  相似文献   

20.
Exercise,free radicals and oxidative stress   总被引:7,自引:0,他引:7  
This article reviews the role of free radicals in causing oxidative stress during exercise. High intensity exercise induces oxidative stress and although there is no evidence that this affects sporting performance in the short term, it may have longer term health consequences. The mechanisms of exercise-induced oxidative stress are not well understood. Mitochondria are sometimes considered to be the main source of free radicals, but in vitro studies suggest they may play a more minor role than was first thought. There is a growing acceptance of the importance of haem proteins in inducing oxidative stress. The release of metmyoglobin from damaged muscle is known to cause renal failure in exercise rhabdomyolysis. Furthermore, levels of methaemoglobin increase during high intensity exercise, while levels of antioxidants, such as reduced glutathione, decrease. We suggest that the free-radical-mediated damage caused by the interaction of metmyoglobin and methaemoglobin with peroxides may be an important source of oxidative stress during exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号