首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
Gentner R  Classen J 《Neuron》2006,52(4):731-742
The motor system may generate automated movements, such as walking, by combining modular spinal motor synergies. However, it remains unknown whether a modular neuronal architecture is sufficient to generate the unique flexibility of human finger movements, which rely on cortical structures. Here we show that finger movements evoked by transcranial magnetic stimulation (TMS) of the primary motor cortex reproduced distinctive features of the spatial representation of voluntary movements as identified in previous neuroimaging studies, consistent with naturalistic activation of neuronal elements. Principal component analysis revealed that the dimensionality of TMS-evoked movements was low. Principal components extracted from TMS-induced finger movements resembled those derived from end-postures of voluntary movements performed to grasp imagined objects, and a small subset of them was sufficient to reconstruct these movements with remarkable fidelity. The motor system may coordinate even the most dexterous movements by using a modular architecture involving cortical components.  相似文献   

7.
8.
9.
10.
One of several factors affecting the secretion of renin by the kidneys is the sympathetic nervous system. The sympathetic input is excitatory and is mediated by beta-adrenergic receptors, which are probably located on the membranes of the juxtaglomerular cells. Stimulation of sympathetic areas in the medulla, midbrain and hypothalamus raises blood pressure and increases renin secretion, whereas stimulation of other parts of the hypothalamus decreases blood pressure and renin output. The centrally active alpha-adrenergic agonist clonidine decreases renin secretion, lowers blood pressure, inhibits ACTH and vasopressin secretion, and increases growth hormone secretion in dogs. The effects on ACTH and growth hormone are abolished by administration of phenoxybenzamine into the third ventricle, whereas the effect on blood pressure is abolished by administration of phenoxybenzamine in the fourth ventricle without any effect on the ACTH and growth hormone responses. Fourth ventricular phenoxybenzamine decreases but does not abolish the inhibitory effect of clonidine on renin secretion. Circulating angiotensin II acts on the brain via the area postrema to raise blood pressure and via the subfornical organ to increase water intake. Its effect on vasopressin secretion is debated. The brain contains a renin-like enzyme, converting enzyme, renin substrate, and angiotensin. There is debate about the nature and physiological significance of the angiotensin II-generating enzyme in the brain, and about the nature of the angiotensin I and angiotensin II that have been reported to be present in the central nervous system. However, injection of angiotensin II into the cerebral ventricles produces drinking, increased secretion of vasopressin and ACTH, and increased blood pressure. The same responses are produced by intraventricular renin. Angiotensin II also facilitates sympathetic discharge in the periphery, and the possibility that it exerts a similar action on the adrenergic neurons in the brain merits investigation.  相似文献   

11.
12.
13.
Oxygen-sensing neurons in the central nervous system.   总被引:9,自引:0,他引:9  
This mini-review summarizes the present knowledge regarding central oxygen-chemosensitive sites with special emphasis on their function in regulating changes in cardiovascular and respiratory responses. These oxygen-chemosensitive sites are distributed throughout the brain stem from the thalamus to the medulla and may form an oxygen-chemosensitive network. The ultimate effect on respiratory or sympathetic activity presumably depends on the specific neural projections from each of these brain stem oxygen-sensitive regions as well as on the developmental age of the animal. Little is known regarding the cellular mechanisms involved in the chemotransduction process of the central oxygen sensors. The limited information available suggests some conservation of mechanisms used by other oxygen-sensing systems, e.g., carotid body glomus cells and pulmonary vascular smooth muscle cells. However, major gaps exist in our understanding of the specific ion channels and oxygen sensors required for transducing central hypoxia by these central oxygen-sensitive neurons. Adaptation of these central oxygen-sensitive neurons during chronic or intermittent hypoxia likely contributes to responses in both physiological conditions (ascent to high altitude, hypoxic conditioning) and clinical conditions (heart failure, chronic obstructive pulmonary disease, obstructive sleep apnea syndrome, hypoventilation syndromes). This review underscores the lack of knowledge about central oxygen chemosensors and highlights real opportunities for future research.  相似文献   

14.
The recent discovery that familial hemiplegic migraine, episodic ataxia type 2, and spinocerebellar ataxia type 6 are allelic disorders caused by different mutations in CACNA1A, a calcium-channel-encoding gene, adds to a growing list of channelopathies causing paroxysmal neurologic disturbance and progressive neurodegeneration. Calcium channelopathies in the central nervous system provide a model to study the important roles that calcium channels play in neuronal function.  相似文献   

15.
Dopamine receptors in the central nervous system can be studied by measuring the specific binding of [3H]dopamine, [3H]haloperidol, d-[3H]LSD, [3H]dihydroergocryptine or [3H]apomorphine. The receptors are stereoselectively blocked by +)-butaclamol, a neuroleptic. All neuroleptics inhibit the specific binding of [3H]haloperidol in relation to their clinical potencies. The radioligand that desorbs most slowly from the receptor is [3H]apomorphine, thus making it a reliable ligand for dopamine receptors. Dopamine agonists that compete for [3H]apomorphine binding do so at concentrations that correlate with their potency in stimulating striatal adenylate cyclase. Structure-activity analysis, using [3H]apomorphine, confirms that the active dopamine-mimetic conformation is the beta rotamer of dopamine. Prolonged exposure in vitro of caudate homogenate to high concentrations of dopamine leads to increased binding of [3H]apomorphine or [3H]haloperidol, suggesting receptor "sensitization." Chronic haloperidol treatment of rats leads to an increased number of dopamine/neuroleptic receptors in the striatum, but a decrease in the pituitary.  相似文献   

16.
17.
18.
Chordate origins of the vertebrate central nervous system.   总被引:6,自引:0,他引:6  
Fine structural, computerized three-dimensional (3D) mapping of cell connectivity in the amphioxus nervous system and comparative molecular genetic studies of amphioxus and tunicates have provided recent insights into the phylogenetic origin of the vertebrate nervous system. The results suggest that several of the genetic mechanisms for establishing and patterning the vertebrate nervous system already operated in the ancestral chordate and that the nerve cord of the proximate invertebrate ancestor of the vertebrates included a diencephalon, midbrain, hindbrain, and spinal cord. In contrast, the telencephalon, a midbrain-hindbrain boundary region with organizer properties, and the definitive neural crest appear to be vertebrate innovations.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号