首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biofilms are complex microbial communities that tend to attach to either biotic or abiotic surface. Enclosed in a self-produced extracellular polymeric substance (EPS) matrix, the biofilms often cause persistent infections. The objective of this study was to investigate the antibiofilm activity of dimethyl sulfoxide (DMSO) and afatinib against Gram-negative pathogens. Test microorganisms used in this study were Escherichia coli ATCC 1299, Pseudomonas aeruginosa ATCC 10145, and Salmonella typhimurium ATCC 14028. Biofilms were developed in 96-well microplate at 37°C for 24 h. Following removal of non-adherent cells, analysis of biofilm viability, biofilm biomass, and extracellular polymeric substances (EPS) matrix were performed using resazurin assay, crystal violet assay, and attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy, respectively. Bradford protein assay was conducted to determine the total amount of EPS proteins. The results demonstrated that both 32% DMSO alone and its combination with 3.2 μg/mL afatinib were effective in killing biofilm cells and reducing biofilm biomass. IR spectral variations of EPS matrix of biofilms in the range between 1700 and 900 cm?1 were also observed. Reduction in EPS proteins verified the chemical modifications of EPS matrix. In conclusion, 32% DMSO alone and its combination with 3.2 μg/mL afatinib showed remarkable antibiofilm activities against Gram-negative pathogens. It was suggested that the biofilm inhibition was mediated by the chemical modification of EPS matrix.  相似文献   

2.
Staphylococcus aureus is one of the most important pathogens causing chronic biofilm infections. These are becoming more difficult to treat owing to drug resistance, particularly because S. aureus biofilms limit the efficacy of antimicrobial agents, leading to high morbidity and mortality. In the present study, we screened for inhibitors of S. aureus biofilm formation using a natural product library from the Korea Chemical Bank (KCB). Screening by crystal violet-based biomass staining assay identified hit compounds. Further examination of antibiofilm properties of these compounds was conducted and led to the identification of celastrol and telithromycin. In vitro, both celastrol and telithromycin were toxic to planktonic S. aureus and also active against a clinical methicillin-resistant S. aureus (MRSA) isolate. The effect of the compounds on preformed biofilms of clinical MRSA isolates was evaluated by confocal laser scanning microscopy (CLSM), which revealed the absence of typical biofilm architecture. In addition, celastrol and telithromycin inhibited the production of extracellular protein at selected sub-MIC concentrations, which revealed the reduced extracellular polymeric substance (EPS) secretion. Celastrol exhibited greater cytotoxicity than telithromycin. These data suggest that the hit compounds, especially telithromycin, could be considered novel inhibitors of S. aureus biofilm. Although the mechanisms of the effects on S. aureus biofilms are not fully understood, our data suggest that telithromycin could be a useful adjuvant therapeutic agent for S. aureus biofilm-related infections.  相似文献   

3.

Background

Diverse aquatic microorganisms are capable of colonizing living and non-living surfaces leading to the formation of biofilms. Commonly visualized as a slimy layer, these biofilms are filled with hundreds of other microorganisms compared to free living planktonic cells. Microbial surface colonization and surface-associated metabolic activities also exert several macroscale deleterious effects, including biofouling, biocorrosion and the persistence and transmission of harmful or pathogenic microorganisms and virulence determinants. The present study deals with the isolation and screening of marine bacteria for biofilm formation. The screened isolates were characterized and identified as Pychrobacter celer, Pychrobacter alimentarius and Kocuria rhizophila by 16S rRNA sequencing.

Methods

Biofilm forming bacteria were isolated by spread plate technique and subjected to screening by microtiter plate assay. The potent biofilm formers were identified by molecular characterization using 16S rRNA gene sequencing.

Results

Twelve bacterial isolates were obtained by pour plate technique and subjected to biofilm assay. Among the 12 isolates three isolates which showed maximum biofilm formation were subjected to molecular characterizationby 16S rRNA gene sequencing method. The isolates were identified as Pychrobacter celer, Pychrobacter alimentarius and Kocuria rhizophila. The EPS produced by the three biofilm forming bacteria was extracted and the protein and carbohydrate content determined.

Conclusion

Among the isolates screened, isolate 8 (Kocuria rhizophila) produced maximum protein and carbohydrate which was also in accordance with the results of microtiter plate assay.
  相似文献   

4.
This study aimed to propose a new approach to understand the binding interaction between bacteriophages and antibiotic-resistant Salmonella typhimurium. The antibiotic susceptibilities of S. typhimurium strains were determined using a broth dilution method. The phage adsorption rates were determined to evaluate the lytic ability of bacteriophages against S. typhimurium strains. Bacterial outer membrane proteins and lipopolysaccharide (LPS) were analyzed to evaluate the antibiotic-induced alteration in bacterial cell surface receptors. The relative expression levels of outer membrane-, flagella-, porin-, and O-antigen-related genes were estimated using a qPCR assay. Compared to STWT, the STCIP exhibited a reduced susceptibility to cefotaxime (32-fold), ciprofloxacin (32-fold), meropenem (16-fold), and norfloxacin (64-fold). PBST35 produced adsorption rates of 82–95% at STWT, STCIP, and STCCARM within the first 10 min of infection. Compared to STWT, STCIP exhibited less protein bands between 24 and 36 kDa, corresponding to the low adsorption rates of P22 and PBST10. The relative expression levels of outer membrane-related genes (btuB, ompC, and tolC), flagellar-related genes (fliC, fljB, and fliK), porin-related gene (fhuA), and O-antigen-related genes (rfaL) were decreased in STCIP. The alteration in bacteriophage-binding receptors resulted in the low adsorption rate. Our findings provide new insights for effective treatment against antibiotic-resistant bacteria. The results would help to develop new therapeutic strategy as a prospective alternative control of antibiotic-resistant bacteria.  相似文献   

5.
Oral bacteria initiate biofilm formation by attaching to tooth surfaces via an interaction of a lectin-like bacterial protein with carbohydrate chains on the pellicle. This study aimed to find naturally derived lectins that inhibit the initial attachment of a cariogenic bacterial species, Streptococcus mutans (S. mutans), to carbohydrate chains in saliva in vitro. Seventy kinds of lectins were screened for candidate motifs that inhibit the attachment of S. mutans ATCC 25175 to a saliva-coated culture plate. The inhibitory effect of the lectins on attachment of the S. mutans to the plates was quantified by crystal violet staining, and the biofilm was observed under a scanning electron microscope (SEM). Surface plasmon resonance (SPR) analysis was performed to examine the binding of S. mutans to carbohydrate chains and the binding of candidate lectins to carbohydrate chains, respectively. Moreover, binding assay between the biotinylated-lectins and the saliva components was conducted to measure the lectin binding. Lectins recognizing a salivary carbohydrate chain, Galβ1-3GalNAc, inhibited the binding of S. mutans to the plate. In particular, Agaricus bisporus agglutinin (ABA) markedly inhibited the binding. This inhibition was confirmed by SEM observation. SPR analysis indicated that S. mutans strongly binds to Galβ1-3GalNAc, and ABA binds to Galβ1-3GalNAc. Finally, the biotinylated Galβ1-3GalNAc-binding lectins including ABA demonstrated marked binding to the saliva components. These results suggest that ABA lectin inhibited the attachment of S. mutans to Galβ1-3GalNAc in saliva and ABA can be useful as a potent inhibitor for initial attachment of oral bacteria and biofilm formation.  相似文献   

6.
Biofilm formation can make significant effects on bacteria habits and biological functions. In this study, diketopiperazines (DKPs) produced by strain of Bacillus amyloliquefaciens Q-426 was found to inhibit biofilm formed in the gas–liquid interface. Four kinds of DKPs were extracted from B. amyloliquefaciens Q-426, and we found that 0.04 mg ml?1 DKPs could obviously inhibit the biofilm formation of the strain. DKPs produced by B. amyloliquefaciens Q-426 made a reduction on extracellular polymeric substance (EPS) components, polysaccharides, proteins, DNAs, etc. Real-time PCR was performed to determine that whether DKPs could make an obvious effect on the expression level for genes related to biofilm formation in the strain. The relative expression level of genes tasA, epsH, epsG and remB which related to proteins, extracellular matrix, and polysaccharides, were downregulated with 0.04 mg ml?1 DKPs, while the expression level of nuclease gene nuc was significantly upregulated. The quantitative results of the mRNA expression level for these genes concerted with the quantitative results on EPS levels. All of the experimental results ultimately indicated that DKPs could inhibit the biofilm formation of the strain B. amyloliquefaciens Q-426.  相似文献   

7.
8.
9.
10.
Pseudomonas aeruginosa, a Gram-negative, rod-shaped bacterium causes widespread diseases in humans. This bacterium is frequently related to nosocomial infections such as pneumonia, urinary tract infections (UTIs) and bacteriaemia especially in immunocompromised patients. The current review focuses on the recent perspectives on biofilms formation by these bacteria. Biofilms are communities of microorganisms in which cells stick to each other and often adhere to a surface. These adherent cells are usually embedded within a self-produced matrix of extracellular polymeric substance (EPS). Pel, psl and alg operons present in P. aeruginosa are responsible for the biosynthesis of extracellular polysaccharide which plays an important role in cell surface interactions during biofilm formation. Recent studies suggested that cAMP signalling pathway, quorum-sensing pathway, Gac/Rsm pathway and c-di-GMP signalling pathway are the main mechanism that leads to the biofilm formation. Understanding the bacterial virulence depends on a number of cell-associated and extracellular factors and is very essential for the development of potential drug targets. Thus, the review focuses on the major genes involved in the biofilm formation, the state of art update on the biofilm treatment and the dispersal approaches such as targeting adhesion and maturation, targeting virulence factors and other strategies such as small molecule-based inhibitors, phytochemicals, bacteriophage therapy, photodynamic therapy, antimicrobial peptides and natural therapies and vaccines to curtail the biofilm formation by P. aeruginosa.  相似文献   

11.
Adhesion and biofilm formation, which can occur on abiotic and biotic surfaces, are key components in Candida pathogenicity. The aims of this study were to infer about the C. tropicalis clinical isolates ability to adhere and form biofilm on abiotic and biotic surfaces and to correlate that with the multilocus sequence typing and other virulence factors. Adhesion and biofilm formation were measured in 68 C. tropicalis isolates from 3 hospitals in China on abiotic (polystyrene) and biotic (human urinary bladder epithelial cell) surfaces by crystal violet assay and 2,3-bis (2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide reduction assay. In our study, almost all C. tropicalis isolates could adhere and produce biofilm on abiotic and biotic surfaces in a strain-dependent manner. The isolates from blood showed relatively lower adhesion and biofilm capacity on polystyrene surface, but had strong secreted aspartyl proteinase activity. Moreover, significant differences were found among MLST groups for adhesion and biofilm capacity. C. tropicalis in multilocus sequence typing group5 and group6 showed high adhesion and biofilm, while isolates in group1 exhibited low adhesion and biofilm formation. Overall, it is important to note that C. tropicalis isolates adhere to and produce biofilm on abiotic and biotic surfaces with strain specificity. These data will play an important role in subsequent research on the pathogenesis of C. tropicalis.  相似文献   

12.
Biofilms are structured consortia of microbial cells that grow on living and non living surfaces and surround themselves with secreted polymers. Infections with bacterial biofilms have emerged as a foremost public health concern because biofilm growing cells can be highly resistant to both antibiotics and host immune defenses. Zinc oxide nanoparticles have been reported as a potential antimicrobial agent, thus, in the current study, we have evaluated the antimicrobial as well as antibiofilm activity of zinc oxide nanoparticles against the bacterium Streptococcus pneumoniae which is a significant cause of disease. Zinc oxide nanoparticles showed strong antimicrobial activity against S. pneumoniae, with an MIC value of 40 μg/ml. Biofilm inhibition of S. pneumoniae was also evaluated by performing a series of experiments such as crystal violet assay, microscopic observation, protein count, EPS secretion etc. using sub-MIC concentrations (3, 6 and 12 µg/ml) of zinc oxide nanoparticles. The results showed that the sub-MIC doses of zinc oxide nanoparticles exhibited significant anti-biofilm activity against S. pneumoniae, with maximum biofilm attenuation found at 12 μg/ml. Taken together, the results indicate that zinc oxide nanoparticles can be considered as a potential agent for the inhibition of microbial biofilms.  相似文献   

13.

Introduction

Pseudomonas aeruginosa and Acinetobacter spp. are found to be associated with biofilm and metallo-β-lactamase production and are the common causes of serious infections mainly in hospitalized patients. So, the main aims of this study were to determine the rates of biofilm production and metallo beta-lactamase production (MBL) among the strains of Pseudomonas aeruginosa and Acinetobacter spp. isolated from hospitalized patients.

Methods

A total of 85 P. aeruginosa isolates and 50 Acinetobacter spp. isolates isolated from different clinical specimens from patients admitted to Shree Birendra Hospital, Kathmandu, Nepal from July 2013 to May 2014 were included in this study. The bacterial isolates were identified with the help of biochemical tests. Modified Kirby-Bauer disc diffusion technique was used for antimicrobial susceptibility testing. Combined disc diffusion technique was used for the detection of MBL production, while Congo red agar method and tube adherence method were used for detection of biofilm production.

Results

Around 16.4% of P. aeruginosa isolates and 22% of the strains of Acinetobacter spp. were metallo β-lactamase producers. Out of 85 P. aeruginosa isolates, 23 (27.05%) were biofilm producers according to tube adherence test while, only 13 (15.29%) were biofilm producers as per Congo red agar method. Similarly, out of 50 Acinetobacter spp. 7 (14%) isolates were biofilm producers on the basis of tube adherence test, while only 5 (10%) were positive for biofilm production by Congo red agar method. Highest rates of susceptibility of P. aeruginosa as well as Acinetobacter spp. were seen toward colistin.

Conclusion

In our study, biofilm production and metallo beta-lactamase production were observed among Pseudomonas aeruginosa and Acinetobacter spp. However, no statistically significant association could be established between biofilm production and metallo beta-lactamase production.
  相似文献   

14.
Oenococcus oeni is the main bacterial species that drives malolactic fermentation in wine. Most O. oeni strains produce capsular exopolysaccharides (EPS) that may contribute to protect them in the wine hostile environment. In O. oeni genome sequences, several genes are predicted to encode priming glycosyltransferases (pGTs). These enzymes are essential for EPS formation as they catalyze the first biosynthetic step through the formation of a phosphoanhydride bond between a hexose-1-phosphate and a lipid carrier undecaprenyl phosphate. In many microorganisms, mutations abolishing the pGT activity also abolish the EPS formation. We first made an in silico analysis of all the genes encoding putative pGT over 50 distinct O. oeni genome sequences. Two polyisoprenyl-phosphate-hexose-1-phosphate transferases, WoaA and WobA, and a glycosyltransferase (It3) were particularly examined for their topology and amino acid sequence. Several isoforms of these enzymes were then expressed in E. coli, and their substrate specificity was examined in vitro. The substrate specificity varied depending on the protein isoform examined, and several mutations were shown to abolish WobA activity but not EPS synthesis. Further analysis of woaA and wobA gene expression levels suggests that WoaA could replace the deficient WobA and maintain EPS formation.  相似文献   

15.
16.
Different molecular sizes of protein hydrolysates were prepared from the crude protein extract of Ficus deltoidea using the technique of membrane ultrafiltration after trypsin hydrolysis. Gel electrophoretic images shows the presence of 12, 8, 7 and 7 protein bands for the protein fractions prepared from the molecular weight cut-off of 3, 10, 30 and 100 kDa, respectively. The protein hydrolysates were found to have higher radical scavenging activity than those unhydrolysed fractions at the similar molecular size. They exhibited significant differences in the radical scavenging activities based on one-way analysis of variance, except for the protein hydrolysates of 30 and 100 kDa. The smallest protein hydrolysates, 3 kDa appeared to have the comparable activity (30%) with bovine serum albumin as a positive control in this study. Similarly, the 3 kDa protein hydrolysates achieved the highest inhibitory activity (87.5%) against Pseudomonas aeruginosa at the concentration of 128 µg/mL. The protein hydrolysates were found to be more effective against gram negative bacteria (P. aeruginosa and Escherichia coli) because of lower minimum inhibitory concentration (MIC) and effective inhibitory concentration at 50% (EC50) than gram positive bacterium (Staphylococcus aureus). Trypsin catalysed hydrolysis seemed to improve the anti-bacterial activity of protein hydrolysates in a bacterial strain dependent manner. The MIC could achieve 1–55 µg/mL at different molecular sizes of protein fractions. Mass spectra matching revealed that 26% of 226 identified proteins belonged to the category of plant defensive proteins in stress management and metal handling.  相似文献   

17.
Bacillus sphaericus produces a two-chain binary toxin composed of BinA (42 kDa) and BinB (51 kDa), which are deposited as parasporal crystals during sporulation. The toxin is highly active against Culex larvae and Aedes and Anopheles mosquitoes, which are the principal vectors for the transmission of malaria, yellow fever, encephalitis, and dengue. The use of B. sphaericus and Bacillus thuringiensis in mosquito control programs is limited by their sedimentation in still water. In this study, the binA and binB genes were cloned and the recombinant BinAB protein was expressed in three strains of Escherichia coli. These recombinant strains were used in a toxicity assay against Culex quinquefasciatus larvae. The highest expression level was achieved when both proteins were expressed in a single operon construct. The BinAB protein expressed in the E. coli Arctic strain showed higher larvicidal activity than either of the recombinant proteins from the E. coli Ril or pLysS strains. Furthermore, it had the highest oviposition attraction (49.1%, P?相似文献   

18.
Listeria monocytogenes is a Gram-positive bacterium commonly associated with foodborne diseases. Due its ability to survive under adverse environmental conditions and to form biofilm, this bacterium is a major concern for the food industry, since it can compromise sanitation procedures and increase the risk of post-processing contamination. Little is known about the interaction between L. monocytogenes and Gram-negative bacteria on biofilm formation. Thus, in order to evaluate this interaction, Escherichia coli and L. monocytogenes were tested for their ability to form biofilms together or in monoculture. We also aimed to evaluate the ability of L. monocytogenes 1/2a and its isogenic mutant strain (ΔprfA ΔsigB) to form biofilm in the presence of E. coli. We assessed the importance of the virulence regulators, PrfA and σB, in this process since they are involved in many aspects of L. monocytogenes pathogenicity. Biofilm formation was assessed using stainless steel AISI 304 #4 slides immersed into brain heart infusion broth, reconstituted powder milk and E. coli preconditioned medium at 25 °C. Our results indicated that a higher amount of biofilm was formed by the wild type strain of L. monocytogenes than by its isogenic mutant, indicating that prfA and sigB are important for biofilm development, especially maturation under our experimental conditions. The presence of E. coli or its metabolites in preconditioned medium did not influence biofilm formation by L. monocytogenes. Our results confirm the possibility of concomitant biofilm formation by L. monocytogenes and E. coli, two bacteria of major significance in the food industry.  相似文献   

19.

Introduction

ClpXP protease is an important proteolytic system in Salmonella enterica serovar typhimurium (S. typhimurium). Inactivation of ClpXP by deletion of clpP resulted in overproduction of RpoS and a growth defect phenotype. Only one report has indicated that deleting rpoS can restore the growth of a S. typhimurium clpP mutant to the wild-type level. Whether overproduction of RpoS is responsible for the growth deficiency resulting from clpP disruption and how ClpXP affects the cell metabolism of S. typhimurium remain to be elucidated.

Objectives

The aim of this study is to investigate the effect of ClpXP on cell metabolism of S. typhimurium and explore the possible co-effect of RpoS associated with ClpXP in cell metabolism.

Method

We constructed a clpP rpoS double deletion mutant TT-19 (ΔclpP ΔrpoS TT-1) using a two-step phage transduction technique. We then compared the metabolite fingerprints of Salmonella rpoS deletion mutant TT-14 (ΔrpoS TT-1), clpP deletion mutant TT-16 (ΔclpP TT-1), and clpP rpoS double deletion mutant TT-19 (ΔclpP ΔrpoS TT-1) with those of the wild-type strain TT-1 by using gas chromatography coupled with mass spectrometry (GC–MS).

Results

Deletion of rpoS recovered only a part of the growth of Salmonella clpP mutant. Further metabolome analysis indicated that clpP disruption changed the levels of 16 extra- and 19 intracellular substances, while the extracellular concentrations of 4 compounds (serine, l-5-oxoproline, l-glutamic acid, and l-tryptophan) and intracellular concentrations of 10 compounds (l-isoleucine, glycine, serine, l-methionine, l-phenylalanine, malic acid, citric acid, urea, putrescine, and 6-hydroxypurine) returned to their wild-type levels when rpoS was also deleted.

Conclusion

ClpXP affects the cell metabolism of S. typhimurium partially in an RpoS-dependent manner.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号