首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
31-Phosphorus magnetic resonance spectroscopy was used to investigate in vivo the kinetics of inorganic phosphate transport and intracellular pH after exercise in human skeletal muscle. Intracellular pH further decreased from the value reached at the end of work showing a minimum between 25 and 45 sec and then increased back to the resting value. Inorganic phosphate showed an initial fast rate of recovery corresponding to the decreasing phase of pH, and a second phase in which a slow rate of recovery corresponded to increasing pH. The biphasic patterns of both phosphate and pH recoveries are in agreement with and support in vitro evidence that Pi transport into mitochondria is modulated by pH.  相似文献   

2.
31P-NMR has been used extensively for the study of cytosolic small molecule phosphates in vivo and phospholipid structures in vitro. We present in this paper a series of studies of the brain by 31P-NMR, both in vivo and in extracts, showing the information that can be derived about phospholipids. 31P-NMR spectra of mouse brain at 73 mHz are characterised by almost a complete absence of the large phosphodiester peak in comparison to equivalent spectra at 32 mHz. Proton decoupled spectra in vivo, and spectra of extracts, show that the phosphodiester peak observed in 32 mHz spectra in vivo is mainly due to phospholipid bilayers. Homogenates of quaking and control mouse brains, and of bovine grey matter, show another narrower phosphodiester peak possibly from small phospholipid vesicles. This peak is increased in intensity in the affected mice. These experiments demonstrate the presence of three major components contributing to the phosphodiester resonance: bilayer phospholipids, more mobile phospholipids, and the freely soluble cytosolic molecules glycerophosphocholine and glycerophosphoethanolamine. These NMR methods for non-invasive investigation of phospholipid structures in the brain might be extended to studies of patients with membrane involved diseases such as multiple sclerosis.  相似文献   

3.
Recent human isolated muscle fiber studies suggest that phosphocreatine (PCr) and creatine (Cr) concentrations play a role in the regulation of mitochondrial respiration rate. To determine whether similar regulatory mechanisms are present in vivo, this study examined the relationship between skeletal muscle mitochondrial respiration rate and end-exercise PCr, Cr, PCr-to-Cr ratio (PCr/Cr), ADP, and pH by using (31)P-magnetic resonance spectroscopy in 16 men and women (36.9 +/- 4.6 yr). The initial PCr resynthesis rate and time constant (T(c)) were used as indicators of mitochondrial respiration after brief (10-12 s) and exhaustive (1-4 min) dynamic knee extension exercise performed in placebo and creatine-supplemented conditions. The results show that the initial PCr resynthesis rate has a strong relationship with end-exercise PCr, Cr, and PCr/Cr (r > 0.80, P < 0.001), a moderate relationship with end-exercise ADP (r = 0.77, P < 0.001), and no relationship with end-exercise pH (r = -0.14, P = 0.34). The PCr T(c) was not as strongly related to PCr, Cr, PCr/Cr, and ADP (r < 0.77, P < 0.001-0.18) and was significantly influenced by end-exercise pH (r = -0.43, P < 0.01). These findings suggest that end-exercise PCr and Cr should be taken into consideration when PCr recovery kinetics is used as an indicator of mitochondrial respiration and that the initial PCr resynthesis rate is a more reliable indicator of mitochondrial respiration compared with the PCr T(c).  相似文献   

4.
We now report a mouse model system of brain tumor for 31P-NMR spectroscopic study of in vivo cerebral metabolism. In vivo 31P-NMR (109 MHz) spectra were taken on the 9th day by the Faraday shield method of the brain of mice (3-week-old) transplanted intracerebrally with mKS X A tumor cells. In tumor-bearing mice, the amount of creatine phosphate decreased markedly and that of inorganic phosphate plus sugar phosphate increased accordingly. Furthermore, the broadening and splitting of individual signals were also noted with tumor-bearing mice; this is interpreted as indicating a variety of changes in chemical shift occurring in the brain of the animals due to heterogeneous distribution of pH. Binding or detaching of divalent cations to and from phosphometabolites may also be responsible for these changes.  相似文献   

5.
Three fish species with different strategies for anoxic survival (goldfish, tilapia, and common carp) were exposed to environmental anoxia (4, 3, and 1 h, respectively). The concentrations of high energy phosphate compounds and inorganic phosphate, besides the intracellular pH in the epaxial muscle were measured during anoxia and recovery by in vivo 31P NMR spectroscopy. The concentration of free ADP was calculated from the equilibrium constant of creatine kinase. During anoxia the patterns of phosphocreatine utilization and tissue acidification are remarkedly similar. Free ADP rises rapidly during the initial period of oxygen deficiency and reaches a plateau in goldfish and tilapia, while it keeps rising in the common carp. At elevated levels of free ADP, the creatine kinase reaction and anaerobic glycolysis are functionally coupled by H+ as a common intermediate. The coupling between both processes disappears upon reoxygenation, when mitochondrial respiration induces a rapid drop of [free ADP]. The removal of ADP shifts the creatine kinase equilibrium toward phosphocreatine synthesis despite the low pH.  相似文献   

6.
7.
Phase-modulated rotating-frame imaging (p.m.r.f.i.), a localization technique for 31P-n.m.r. spectroscopy, has been applied to obtain information on the heterogeneity of phosphorus-containing metabolites and pH in the skeletal muscle of control and streptozotocin-diabetic rats. Using this method, the metabolic changes in four spatially resolved longitudinal slices (where slice I is superficial and slice IV is deep muscle) through the ankle flexor muscles have been investigated at rest and during steady-state isometric twitch-contraction at 2 Hz. At rest, intracellular pH was lower, and phosphocreatine (PCr)/ATP was higher, throughout the muscle mass in diabetic compared with control animals. The change in PCr/ATP in diabetic muscle correlated with a decrease in the chemically determined ATP concentration. During the muscle stimulation period, the decrease in pH observed in diabetic muscle at rest was maintained, but not exacerbated, by the contractile stimulus. Stimulation of muscle contraction caused more marked changes in PCr/(PCr + Pi), PCr/ATP and Pi/ATP in the diabetic group. These changes were most evident in slice III, which contains the greatest proportion of fast glycolytic-oxidative (type IIa) fibres, in which statistically significant differences were observed for all metabolite ratios. The results presented suggest that some degree of heterogeneity occurs in diabetic skeletal muscle in vivo with respect to the extent of metabolic dysfunction caused by the diabetic insult and that regions of the muscle containing high proportions of type IIa fibres appear to be most severely affected.  相似文献   

8.

Background

Mitochondria are both the cellular powerhouse and the major source of reactive oxygen species. Coenzyme Q10 plays a key role in mitochondrial energy production and is recognized as a powerful antioxidant. For these reasons it can be argued that higher mitochondrial ubiquinone levels may enhance the energy state and protect from oxidative stress. Despite the large number of clinical studies on the effect of CoQ10 supplementation, there are very few experimental data about the mitochondrial ubiquinone content and the cellular bioenergetic state after supplementation. Controversial clinical and in vitro results are mainly due to the high hydrophobicity of this compound, which reduces its bioavailability.

Principal Findings

We measured the cellular and mitochondrial ubiquinone content in two cell lines (T67 and H9c2) after supplementation with a hydrophilic CoQ10 formulation (Qter®) and native CoQ10. Our results show that the water soluble formulation is more efficient in increasing ubiquinone levels. We have evaluated the bioenergetics effect of ubiquinone treatment, demonstrating that intracellular CoQ10 content after Qter supplementation positively correlates with an improved mitochondrial functionality (increased oxygen consumption rate, transmembrane potential, ATP synthesis) and resistance to oxidative stress.

Conclusions

The improved cellular energy metabolism related to increased CoQ10 content represents a strong rationale for the clinical use of coenzyme Q10 and highlights the biological effects of Qter®, that make it the eligible CoQ10 formulation for the ubiquinone supplementation.  相似文献   

9.
Flight metabolism of locusts has been extensively studied, but biochemical and physiological methods have led to conflicting results. For this reason the non-invasive and non-destructive method of 31P NMR spectroscopy was used to study migratory locusts, Locusta migratoria, at rest and during flight.
1.  In the flight muscle of resting locusts the ratio of phosphoarginine to ATP was the same whether determined by NMR (1.76) or biochemically, but the NMR-visible content of inorganic phosphate (Pi) was only 40% of ATP, i.e., much lower than total Pi as determined biochemically. This suggests that most of the Pi in flight muscle is not free, and hence not available as substrate or effector for cytosolic enzymes. Similarly, the free content of ADP and AMP in resting muscle was calculated to be much lower than the total content.
2.  Flight brought about a marked increase in Pi and a decrease in phosphoarginine in flight muscle although there was no change in intracellular pH.
3.  At the initiation of flight a new steady state of ATP, Pi, and phosphoarginine was rapidly established and minimal changes occurred after the first 2 s of flight.
4.  From the free contents of ATP and phosphoarginine in working flight muscle the flight-induced fractional increases in free ADP and free AMP were calculated to be 5.0-fold and 27.4-fold, respectively. As Pi, ADP, and AMP are substrates and potent effectors of enzymes, the flight-induced increase in their contents is likely to have marked effects on metabolic flux in working muscle.
5.  After short-term flight as well as prolonged flight, phosphoarginine, ATP, and Pi returned rapidly to their preflight levels, indicating that metabolic recovery from flight is rapid.
6.  The locust appears to be an appropriate model for the study of metabolic regulation in aerobic muscle during exercise.
Dedicated to Professor Dr. Ernst Zebe (University of Münster) on occasion of his 65th birthday.  相似文献   

10.
The aim of this study was to measure the diffusion of ATP and phosphocreatine (PCr) in intact rat skeletal muscle, using (31)P-NMR. The acquisition of the diffusion-sensitized spectra was optimized in terms of the signal-to-noise ratio for ATP by using a frequency-selective stimulated echo sequence in combination with adiabatic radio-frequency pulses and surface coil signal excitation and reception. Diffusion restriction was studied by measuring the apparent diffusion coefficients of ATP and PCr as a function of the diffusion time. Orientation effects were eliminated by determining the trace of the diffusion tensor. The data were fitted to a cylindrical restriction model to estimate the unbounded diffusion coefficient and the radial dimensions of the restricting compartment. The unbounded diffusion coefficients of ATP and PCr were approximately 90% of their in vitro values at 37 degrees C. The diameters of the cylindrical restriction compartment were approximately 16 and approximately 22 microm for ATP and PCr, respectively. The diameters of rat skeletal muscle fibers are known to range from 60 to 80 microm. The modelling therefore suggests that the in vivo restriction of ATP and PCr diffusion is not imposed by the sarcolemma but by other, intracellular structures with an overall cylindrical orientation.  相似文献   

11.
The introduction of new paramagnetic shift reagents in the nuclear magnetic resonance (NMR) method has made it possible to distinguish intra- and extracellular ions in tissues or organs in vitro. We measured the intra- and extracellular 23Na and 1H in vivo in the gerbil brain and skeletal muscle by NMR spectroscopy employing the shift reagent, dysprosium triethylenetetraminehexaacetate (Dy[TTHA]3-). Without Dy(TTHA)3-, the 23Na and 1H signals were seen only as single peaks, but gradual intravenous infusion of Dy(TTHA)3- separated these signals into two peaks, respectively. The unshifted peaks reflected the intracellular 23Na and 1H signals, while the shifted peaks reflected the extracellular signals. In the brain spectra, an additional small peak, which represented intravascular signals, was detected and its intensity increased after injection of papaverine hydrochloride. The present method is advantageous over the microelectrode technique because of its nondestructiveness and its capability for obtaining intra- and extracellular volume information from measurements of the 1H spectra, the peaks of which reflect the intra- and extracellular water amounts. The intracellular Na+ increase associating with increased cellular volume after ouabain in the muscle was clearly visualized by this method. The technique is clearly of use for physiological and pathophysiological studies of organs.  相似文献   

12.
31-Phosphorus magnetic resonance spectroscopy was used to study in vivo the effect of cytosolic [H+] on the kinetics of initial post-exercise recovery of inorganic phosphate (Pi) in human gastrocnemius muscle. Linear correlations were found between the rate of initial phosphate recovery and: a) the minimum value of cytosolic pH reached during recovery, and b) the minimum percentage of divalent anion present. These linear relationships are consistent with the current knowledge of Pi transport, and represent new invariant parameters for the study of muscle pathologies that may involve Pi and/or H+ transport.  相似文献   

13.
Coupled and uncoupled respiration, and energy-dependent phosphate swelling have been studied in rat liver mitochondria in the presence of various concentration of Triton X-100. Detergent concentrations up to 10(-5) M do not affect any of the processes under study. At 10(-5) M, Triton X-100 produces a slight decrease of coupled respiration and a considerable inhibition of mersalyl-induced shrinking in swollen mitochondria. Increasing the surfactant concentration to 10(-4), coupled as well as uncoupled O2 consumption is decreased, succinate-dependent phosphate swelling is inhibited and an energy-dependent phosphate swelling in the absence of valinomycin is observed. At 2 X 10(-4) M. Triton X-100, ATP- dependent phosphate swelling is abolished, and passive swelling may be induced by various ions. Higher detergent concentrations do not allow observation of any of these events. On the basis of these results, a model of membrane-detergent interaction is proposed.  相似文献   

14.
15.
The efficiency of stimulation of mitochondrial respiration in permeabilized muscle cells by ADP produced at different intracellular sites, e.g. cytosolic or mitochondrial intermembrane space, was evaluated in wild-type and creatine kinase (CK)-deficient mice. To activate respiration by endogenous production of ADP in permeabilized cells, ATP was added either alone or together with creatine. In cardiac fibers, while ATP alone activated respiration to half of the maximal rate, creatine plus ATP increased the respiratory rate up to its maximum. To find out whether the stimulation by creatine is a consequence of extramitochondrial [ADP] increase, or whether it directly correlates with ADP generation by mitochondrial CK in the mitochondrial intermembrane space, an exogenous ADP-trap system was added to rephosphorylate all cytosolic ADP. Under these conditions, creatine plus ATP still increased the respiration rate by 2.5 times, compared with ATP alone, for the same extramitochondrial [ADP] of 14 microM. Moreover, this stimulatory effect of creatine, observed in wild-type cardiac fibers disappeared in mitochondrial CK deficient, but not in cytosolic CK-deficient muscle. It is concluded that respiration rates can be dissociated from cytosolic [ADP], and ADP generated by mitochondrial CK is an important regulator of oxidative phosphorylation.  相似文献   

16.
In saponin-skinned muscle fibers from adult rat heart and m. soleus the apparent affinity of the mitochondrial oxidative phosphorylation system for ADP (Km = 200-400 M) is much lower than in isolated mitochondria (Km = 10-20 M). This suggests a limited permeability of the outer mitochondrial membrane (OMM) to adenine nucleotides in slow-twitch muscle cells. We have studied the postnatal changes in the affinity of mitochondrial respiration for ADP, in relation to morphological alterations and expression of mitochondrial creatine kinase (mi-CK) in rat heart in vivo. Analysis of respiration of skinned fibers revealed a gradual decrease in the apparent affinity of mitochondria to ADP throughout 6 weeks post partum that indicates the development of mechanism which increasingly limits the access of ADP to mitochondria. The expression of mi-CK started between the 1st and 2nd weeks and reached the adult levels after 6 weeks. This process was associated with increases in creatine-activated respiration and affinity of oxidative phosphorylation to ADP thus reflecting the progressive coupling of mi-CK to adenine nucleotide translocase. Laser confocal microscopy revealed significant changes in rearrangement of mitochondria in cardiac cells: while the mitochondria of variable shape and size appeared to be random-clustered in the cardiomyocytes of 1 day old rat, they formed a fine network between the myofibrils by the age of 3 weeks. These results allow to conclude that in early period of development, i.e. within 2-3 weeks, the diffusion of ADP to mitochondria becomes progressively restricted, that appears to be related to significant structural rearrangements such as formation of the mitochondrial network. Later (after 3 weeks) the control shifts to mi-CK, which by coupling to adenine nucleotide translocase, allows to maximally activate the processes of oxidative phosphorylation despite limited access of ADP through the OMM.  相似文献   

17.
In this study we assessed ΔG'(ATP) hydrolysis, cytosolic [ADP], and the rate of phosphocreatine recovery using Phosphorus Magnetic Resonance Spectroscopy in the calf muscle of a group of patients affected by glycogen myo-phosphorylase deficiency (McArdle disease). The goal was to ascertain whether and to what extent the deficit of the glycogenolytic pathway would affect the muscle energy balance. A typical feature of this pathology is the lack of intracellular acidosis. Therefore we posed the question of whether, in the absence of pH decrease, the rate of phosphocreatine recovery depends on the amount of phosphocreatine consumed during exercise. Results showed that at the end of exercise both [ADP] and ΔG'(ATP) of patients were significantly higher than those of matched control groups reaching comparable levels of phosphocreatine concentration. Furthermore, in these patients we found that the rate of phosphocreatine recovery is not influenced by the amount of phosphocreatine consumed during exercise. These outcomes provide experimental evidence that: i) the intracellular acidification occurring in exercising skeletal muscle is a protective factor for the energy consumption; and ii) the influence of pH on the phosphocreatine recovery rate is at least in part related to the kinetic mechanisms of mitochondrial creatine kinase enzyme.  相似文献   

18.
Both in vivo and in vitro 31P-NMR spectroscopy were used to demonstrate metabolic changes in rat liver as a function of time after exposure to either carbon tetrachloride (CCl4) or bromotrichloromethane (BrCCl3). The inorganic phosphate resonance, measured in vivo, moves upfield, which is associated with a decrease in cytosolic pH over a 12 or 20 h period (for BrCCl3 or CCl4, respectively). Intoxication by CCl4 or BrCCl3 causes an intracellular acidosis to pH 7.05 or 6.82 (+/- 0.05), respectively. Also, it has been found that halocarbon exposure increases the amounts of phosphomonoesters (PME) detected. High resolution in vitro 31P-NMR spectroscopy studies of perchloric acid extracts of CCl4-treated rat livers indicated a significant increase in the height of the phosphocholine resonance in the PME region 4-5 h after CCl4 exposure.  相似文献   

19.
Hyperammonemia is a major contributing factor to the neurological abnormalities observed in hepatic encephalopathy and in congenital defects of ammonia detoxication. In rats variable changes in labile energy rich phosphates in the brain have been observed in hyperammonemia using biochemical methods. Using 31P-NMR spectroscopy however no significant changes of the relative concentrations of the energy rich phosphates alpha, beta and gamma-ATP, phosphocreatine, inorganic phosphate and the pH were found in the fronto parietal cortex of the urease treated hyperammonemic rat. Alterations in the metabolites of these compounds do not appear to be a major pathomechanism of ammonia toxicity in this brain area.  相似文献   

20.
Respiration of submitochondrial preparations can be inhibited by the cationic detergent cetyl trimethyl ammonium bromide and the anionic detergent sodium dodecyl sulfate in the range of 0.3-2 mumol of detergent per mg of mitochondrial membrane protein depending on the substrate and detergent used. This inhibition can be rapidly reversed by neutralizing a given detergent by the detergent of the opposite charge. At higher levels of the inhibiting detergent, no such reactivation was observed. Spin labeling assays of membrane structure were used to correlate structural effects with the loss and recovery of respiratory functions. Because the detergents progressively disrupt membrane structure, mitochondrial were cross-linked with bifunctional imidoesters to an extent that osmotic properties and detergent lysis were gone, but respiration remained. Such fixed respiring mitochondria also show inhibition reactivation phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号