首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
1. The two subunits alpha and beta of Halobacterium cutirubrum DNA-dependent RNA polymerase are required in equimolar amounts for RNA synthesis to occur in vitro at the maximum rate. 2. In the absence of bivalent cations no interaction occurs between alpha and beta subunits or between the subunits and DNA. 3. Mn(2+) causes the subunits to form a 1:1 complex that still does not bind to the template. 4. Mg(2+) permits binding of the Mn(2+)-mediated complex to DNA. 5. The complete enzyme, alphabeta, is inhibited by rifampicin and only the beta subunit relieves the inhibition when added in excess. 6. Rifampicin-insensitive, template-dependent RNA synthesis occurs in the presence of protein alpha alone provided an oligonucleotide with a 5'-purine terminus is supplied as primer. 7. In the primed reaction with the alpha protein and an oligonucleotide, the template specificity is independent of the ionic strength, in contrast with the marked effect of salt concentration on the template specificity of the complete enzyme. 8. It is concluded that the beta protein controls the specificity of chain initiation and the template specificity of the complete enzyme and also carries the rifampicin-binding site, whereas the catalytic site is on the alpha subunit.  相似文献   

4.
5.
The polymerization of alfalfa mosaic virus (AMV) protein in the presence of homologous nucleic acids and a number of other natural and synthetic nucleic acids was studied. The conditions for optimal assembly were found to be pH 6.0 and low ionic strength (I = 0.1 M) at room temperature, irrespective of the type of nucleic acid. The resulting nucleoprotein particles exhibited the same structural characteristics as the virus. This information emerged from optical diffraction and computer filtering of electron micrographs from the reconstituted particles. Irrespective of the type of nucleic acid present the polymerization of the protein resulting in a nucleoprotein particle is a cooperative process. Evidence for this was obtained by nitrocellulose filter binding assay, sodium dodecylsulphate/polyacrylamide gel electrophoresis, sedimentation velocity and electron microscopy of the reaction mixtures. The rates and efficiencies of reconstitution were of the same order of magnitude for a number of ribonucleic acids. Sedimentation data derived from AMV protein and AMV RNA mixtures suggested the existence of a specific nucleation product in the first stage of assembly. The results are discussed in terms of a tentative model of the assembly, in which at least two different steps (nucleation and elongation) can be distinguished, each characterized by an association constant.  相似文献   

6.
Cyclohexene nucleic acids (CeNA), which are characterized by the presence of a cyclohexene moiety instead of a natural (deoxy)ribose sugar, are known to increase the thermal and enzymatic stability when incorporated in RNA oligonucleotides. As it has been demonstrated that even a single cyclohexenyl nucleoside, when incorporated in an oligonucleotide, can have a profound effect on the biological activity of the oligonucleotide, further research is warranted to study the complex of such oligonucleotides with target proteins. In order to analyse the influence of CeNA residues onto the helix conformation and hydration of natural nucleic acid structures, a cyclohexenyl-adenine building block (xAr) was incorporated into the Dickerson sequence CGCGA(xAr)TTCGCG. The crystal structure of this sequence determined to a resolution of 1.90 Å. The global helix belongs to the B-type family and shows a water spine, which is partially broken up by the apolar cyclohexene residue. The cyclohexene ring adopts the 2E-conformation allowing a better incorporation of the residue in the dodecamer sequence. The crystal packing is stabilized by cobalt hexamine residues and belongs to space group P2221, never before reported for nucleic acids.  相似文献   

7.
Many fundamental cellular processes depend on enzymes that utilize chemical energy to catalyse unfavourable reactions. Certain classes of ATPases provide a particularly vivid example of the process of energy conversion, employing cycles of nucleotide turnover to move and/or rearrange biological polymers such as proteins and nucleic acids. Four well-characterized classes of ATP-dependent protein/nucleic acid translocases and remodelling factors are found in all three domains of life (bacteria, archaea and eukarya): additional strand catalytic 'E' (ASCE) P-loop NTPases, GHL proteins, actin-fold enzymes and chaperonins. These unrelated protein superfamilies have each evolved the ability to couple ATP binding and hydrolysis to the generation of motion and force along or within their substrates. The past several years have witnessed the emergence of a wealth of structural data that help explain how such molecular engines link nucleotide turnover to conformational change. In this review, we highlight several recent advances to illustrate some of the mechanisms by which each family of ATP-dependent motors facilitates the rearrangement and movement of proteins, protein complexes and nucleic acids.  相似文献   

8.
Weiner AM 《Current biology : CB》2004,14(20):R883-R885
The CCA-adding enzyme, which builds and repairs the 3' terminal CCA sequence of tRNA, is the only RNA polymerase that can synthesize a defined nucleotide sequence without using a nucleic acid template. New cocrystal structures tell us how this remarkable enzyme works.  相似文献   

9.
The interaction between the three Drosophila DNA-dependent RNA polymerases (EC 2.7.7.6) and the DNA template or the RNA product was investigated by photochemical cross-linking and binding studies, using RNA polymerase subunits immobilized on nitro-cellulose filters. It can be shown that the two largest subunits are responsible for the binding of the enzymes to both template and newly-synthesized RNA.  相似文献   

10.
Nucleic acid nanotechnology exploits the programmable molecular recognition properties of natural and synthetic nucleic acids to assemble structures with nanometer-scale precision. In 2006, DNA origami transformed the field by providing a versatile platform for self-assembly of arbitrary shapes from one long DNA strand held in place by hundreds of short, site-specific (spatially addressable) DNA 'staples'. This revolutionary approach has led to the creation of a multitude of two-dimensional and three-dimensional scaffolds that form the basis for functional nanodevices. Not limited to nucleic acids, these nanodevices can incorporate other structural and functional materials, such as proteins and nanoparticles, making them broadly useful for current and future applications in emerging fields such as nanomedicine, nanoelectronics, and alternative energy.  相似文献   

11.
12.
Dahm R 《Human genetics》2008,122(6):565-581
In the winter of 1868/9 the young Swiss doctor Friedrich Miescher, working in the laboratory of Felix Hoppe-Seyler at the University of Tübingen, performed experiments on the chemical composition of leukocytes that lead to the discovery of DNA. In his experiments, Miescher noticed a precipitate of an unknown substance, which he characterised further. Its properties during the isolation procedure and its resistance to protease digestion indicated that the novel substance was not a protein or lipid. Analyses of its elementary composition revealed that, unlike proteins, it contained large amounts of phosphorous and, as Miescher confirmed later, lacked sulphur. Miescher recognised that he had discovered a novel molecule. Since he had isolated it from the cells’ nuclei he named it nuclein, a name preserved in today’s designation deoxyribonucleic acid. In subsequent work Miescher showed that nuclein was a characteristic component of all nuclei and hypothesised that it would prove to be inextricably linked to the function of this organelle. He suggested that its abundance in tissues might be related to their physiological status with increases in “nuclear substances” preceding cell division. Miescher even speculated that it might have a role in the transmission of hereditary traits, but subsequently rejected the idea. This article reviews the events and circumstances leading to Miescher’s discovery of DNA and places them within their historic context. It also tries to elucidate why it was Miescher who discovered DNA and why his name is not universally associated with this molecule today. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Ralf DahmEmail:
  相似文献   

13.
DNA probes: applications of the principles of nucleic acid hybridization.   总被引:26,自引:0,他引:26  
Nucleic acid hybridization with a labeled probe is the only practical way to detect a complementary target sequence in a complex nucleic acid mixture. The first section of this article covers quantitative aspects of nucleic acid hybridization thermodynamics and kinetics. The probes considered are oligonucleotides or polynucleotides, DNA or RNA, single- or double-stranded, and natural or modified, either in the nucleotide bases or in the backbone. The hybridization products are duplexes or triplexes formed with targets in solution or on solid supports. Additional topics include hybridization acceleration and reactions involving branch migration. The second section deals with synthesis or biosynthesis and detection of labeled probes, with a discussion of their sensitivity and specificity limits. Direct labeling is illustrated with radioactive probes. The discussion of indirect labels begins with biotinylated probes as prototypes. Reporter groups considered include radioactive, fluorescent, and chemiluminescent nucleotides, as well as enzymes with colorimetric, fluorescent, and luminescent substrates.  相似文献   

14.
Plasma membranes were prepared from the human lymphocyte cell line WIL23A by hypotonic swelling, Dounce homogenization, differential and equilibrium centrifugation. The resulting vesiculated membrane fragments were found to have densities of 1.10 and 1.17 g/ml, and were defined by lactoperoxidase mediated whole cell iodination, L-[3H] fucose incorporation, 5'-nucleotidase activity (EC 3.1.3.5) and electron micrographic visualization. Recovery of plasma membrane from whole cell homogenates was estimated to be approximately 30-35% as judged by the recovery of 125I-labeled cell surface protein. When plasma membranes were prepared from cells which had been incubated for 18 h in the presence of 0.5 muCi/ml [3H] thymidine such that greater than 10(9) acid insoluble counts could be demonstrated in the whole cell homogenates, no [3H] thymidine label and presumably, therefore, no DNA, could be shown to be coincident with either the 1.10 or 1.17 density. Similar experiments with [3H] uridine suggested that 90% of the plasma membranes did not contain RNA, while 10% remained questionable.  相似文献   

15.
16.
The diaminobenzoic acid (DABA) reaction with DNA, first described by Kissane and Robbins (J. M. Kissane and E. Robbins, 1958, J. Biol. Chem.233, 184–188) and variously modified, was reinvestigated and applied to the measurement of submicrogram quantities of DNA in nuclear fractions and nucleic acid preparations. The reaction conditions were optimized using a small volume of DABA. This method measures 0.1 μg of DNA with a fluorescence twice that of background and is linear to 10 μg of DNA. DABA yeilds a 1000-fold higher fluorescence with DNA compared with RNA, protein, and polysaccharides, and 0.1 μg of DNA is detectable in the presence of 200 μg of RNA or protein. The method is useful for detecting contaminating DNA in RNA preparations prior to hybridization. A simple procedure using ethanol precipitation was developed for removal of common interfering reagents such as sucrose, glycerol, salts, and Triton X-100. Nuclei isolated using detergents and assayed by this method are also free of measurable interfering lipids.  相似文献   

17.
The effect on oligonucleotide-template duplex stability upon cohybridization of adjacently annealing oligonucleotides, the modular primer effect, was studied with biosensor technology. DNA and peptide nucleic acid (PNA) hexamer modules and sensor chip-immobilized template DNA strands were designed for analysis of nick, overlap, and gap modular hybridization situations. The fast hybridization kinetics for such hexamer modules allowed for the determination of apparent duplex affinities from equilibrium responses. The results showed that the hybridizational stability of modular hexamer pairs is strongly dependent on the positioning, concentration, and inherent affinity of the adjacently annealing hexamer module. Up to 80-fold increases in apparent affinities could be observed for adjacent modular oligonucleotide pairs compared to affinities determined for single hexamer oligonucleotide hybridizations. Interestingly, also for coinjections of different module combinations where DNA hexamer modules were replaced by their PNA counterparts, a modular primer effect was observed. The introduction of a single base gap between two hexamer modules significantly reduced the stabilization effect, whereas a gap of two bases resulted in a complete loss of the effect. The results suggest that the described biosensor-based methodology should be useful for the selection of appropriate modules and working concentrations for use in different modular hybridization applications.  相似文献   

18.
Chemical derivatization of nucleic stains such as ethidium bromide or DAPI with tailored, photoresponsive caging groups, allows for "on demand" spatiotemporal control of their in vivo nucleic acid binding, as well as for improving their cellular uptake. This effect was particularly noteworthy for a nitro-veratryloxycarbonyl-caged derivative of ethidium bromide that, in contrast with the parent stain, is effectively internalized into living cells. The activation strategy works in light-accessible, therapeutically relevant settings, such as human retinas, and can even be applied for the release of active compounds in the eyes of living mice.  相似文献   

19.
Water soluble polyethyleneimine derivatives containing nucleic acid bases were found to interact with polynucleotides, DNA, RNA. The conformational change by formation of complex was observed by CD spectra and was discussed with the hypochromicity in UV spectra. The rates of interactions between nucleic acid bases in polymers were slow as shown by UV spectra, but the conformational changes of the polynucleotides were fast as shown by CD spectra. In the case of the uracil derivative (PEI-Hse-Ura), high value of CD spectra [theta] 2.80 = -8.0 x 10(-4) for the complex with DNA might be caused by psi type conformation of DNA.  相似文献   

20.
Ion-mediated interaction is critical to the structure and stability of nucleic acids. Recent experiments suggest that the multivalent ion-induced aggregation of double-stranded (ds) RNAs and DNAs may strongly depend on the topological nature of helices, while there is still lack of an understanding on the relevant ion-mediated interactions at atomistic level. In this work, we have directly calculated the potentials of mean force (PMF) between two dsRNAs and between two dsDNAs in Co(NH3)63+ (Co-Hex) solutions by the atomistic molecular dynamics simulations. Our calculations show that at low [Co-Hex], the PMFs between B-DNAs and between A-RNAs are both (strongly) repulsive. However, at high [Co-Hex], the PMF between B-DNAs is strongly attractive, while those between A-RNAs and between A-DNAs are still (weakly) repulsive. The microscopic analyses show that for A-form helices, Co-Hex would become ‘internal binding’ into the deep major groove and consequently cannot form the evident ion-bridge between adjacent helices, while for B-form helices without deep grooves, Co-Hex would exhibit ‘external binding’ to strongly bridge adjacent helices. In addition, our further calculations show that, the PMF between A-RNAs could become strongly attractive either at very high [Co-Hex] or when the bottom of deep major groove is fixed with a layer of water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号