首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Growth and detachment of cell clusters from mature mixed-species biofilms.   总被引:1,自引:0,他引:1  
Detachment from biofilms is an important consideration in the dissemination of infection and the contamination of industrial systems but is the least-studied biofilm process. By using digital time-lapse microscopy and biofilm flow cells, we visualized localized growth and detachment of discrete cell clusters in mature mixed-species biofilms growing under steady conditions in turbulent flow in situ. The detaching biomass ranged from single cells to an aggregate with a diameter of approximately 500 microm. Direct evidence of local cell cluster detachment from the biofilms was supported by microscopic examination of filtered effluent. Single cells and small clusters detached more frequently, but larger aggregates contained a disproportionately high fraction of total detached biomass. These results have significance in the establishment of an infectious dose and public health risk assessment.  相似文献   

2.
A combination of experimental and theoretical approaches was used to investigate the role of nutrient starvation as a potential trigger for biofilm detachment. Experimental observations of detachment in a variety of biofilm systems were made with pure cultures of Pseudomonas aeruginosa. These observations indicated that biofilms grown under continuous-flow conditions detached after flow was stopped, that hollow cell clusters were sometimes observed in biofilms grown in flow cells, and that lysed cells were apparent in the internal strata of colony biofilms. When biofilms were nutrient starved under continuous-flow conditions, detachment still occurred, suggesting that starvation and not the accumulation of a metabolic product was responsible for triggering detachment in this particular system. A cellular automata computer model of biofilm dynamics was used to explore the starvation-dependent detachment mechanism. The model predicted biofilm structures and dynamics that were qualitatively similar to those observed experimentally. The predicted features included centrally located voids appearing in sufficiently large cell clusters, gradients in growth rate within these clusters, and the release of most of the biofilm with simulated stopped-flow conditions. The model was also able to predict biofilm sloughing resulting solely from this detachment mechanism. These results support the conjecture that nutrient starvation is an environmental cue for the release of microbes from a biofilm.  相似文献   

3.
A combination of experimental and theoretical approaches was used to investigate the role of nutrient starvation as a potential trigger for biofilm detachment. Experimental observations of detachment in a variety of biofilm systems were made with pure cultures of Pseudomonas aeruginosa. These observations indicated that biofilms grown under continuous-flow conditions detached after flow was stopped, that hollow cell clusters were sometimes observed in biofilms grown in flow cells, and that lysed cells were apparent in the internal strata of colony biofilms. When biofilms were nutrient starved under continuous-flow conditions, detachment still occurred, suggesting that starvation and not the accumulation of a metabolic product was responsible for triggering detachment in this particular system. A cellular automata computer model of biofilm dynamics was used to explore the starvation-dependent detachment mechanism. The model predicted biofilm structures and dynamics that were qualitatively similar to those observed experimentally. The predicted features included centrally located voids appearing in sufficiently large cell clusters, gradients in growth rate within these clusters, and the release of most of the biofilm with simulated stopped-flow conditions. The model was also able to predict biofilm sloughing resulting solely from this detachment mechanism. These results support the conjecture that nutrient starvation is an environmental cue for the release of microbes from a biofilm.  相似文献   

4.
Although the detachment of cells from biofilms is of fundamental importance to the dissemination of organisms in both public health and clinical settings, the disinfection efficacies of commonly used biocides on detached biofilm particles have not been investigated. Therefore, the question arises whether cells in detached aggregates can be killed with disinfectant concentrations sufficient to inactivate planktonic cells. Burkholderia cepacia and Pseudomonas aeruginosa were grown in standardized laboratory reactors as single species and in coculture. Cluster size distributions in chemostats and biofilm reactor effluent were measured. Chlorine susceptibility was assessed for planktonic cultures, attached biofilm, and particles and cells detached from the biofilm. Disinfection tolerance generally increased with a higher percentage of larger cell clusters in the chemostat and detached biofilm. Samples with a lower percentage of large clusters were more easily disinfected. Thus, disinfection tolerance depended on the cluster size distribution rather than sample type for chemostat and detached biofilm. Intact biofilms were more tolerant to chlorine independent of species. Homogenization of samples led to significantly increased susceptibility in all biofilm samples as well as detached clusters for single-species B. cepacia, B. cepacia in coculture, and P. aeruginosa in coculture. The disinfection efficacy was also dependent on species composition; coculture was advantageous to the survival of both species when grown as a biofilm or as clusters detached from biofilm but, surprisingly, resulted in a lower disinfection tolerance when they were grown as a mixed planktonic culture.  相似文献   

5.
6.
A fast, highly selective and sensitive method to quantify specific biomasses in mixed-culture biofilms is described. It consists of detachment of a biofilm from its support material, resolution of the detached biofilm flocs in order to separate the enclosed cells and antigens, and quantification of specific biomass by an enzyme-linked immunosorbent assay.  相似文献   

7.
A suite of techniques was utilized to evaluate the correlation between biofilm physiology, fluid‐induced shear stress, and detachment in hollow fiber membrane aerated bioreactors. Two monoculture species biofilms were grown on silicone fibers in a hollow fiber membrane aerated bioreactors (HfMBR) to assess detachment under laminar fluid flow conditions. Both physiology (biofilm thickness and roughness) and nutrient mass transport data indicated the presence of a steady state mature biofilm after 3 weeks of development. Surface shear stress proved to be an important parameter for predicting passive detachment for the two biofilms. The average shear stress at the surface of Nitrosomonas europaea biofilms (54.5 ± 3.2 mPa) was approximately 20% higher than for Pseudomonas aeruginosa biofilms (45.8 ± 7.7 mPa), resulting in higher biomass detachment. No significant difference in shear stress was measured between immature and mature biofilms of the same species. There was a significant difference in detached biomass for immature vs. mature biofilms in both species. However, there was no difference in detachment rate between the two species. Biotechnol. Bioeng. 2013; 110: 525–534. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
A two-dimensional model for biofilm growth and detachment was used to evaluate the effect of detachment on biofilm structures. The detachment process is considered to be due to internal stress created by moving liquid past the biofilm. This model generated a variety of realistic biofilm-formation patterns. It was possible to model in a unified way two different biofilm detachment processes, erosion (small-particle loss), and sloughing (large-biomass-particle removal). The distribution of the fraction from total biomass detached as a function of detached particle mass, gives indications about which of the two mechanisms is dominant. Model simulations indicate that erosion makes the biofilm surface smoother. Sloughing, in contrast, leads to an increased biofilm-surface roughness. Faster growing biofilms have a faster detachment rate than slow-growing biofilms, under similar hydrodynamic conditions and biofilm strength. This is in perfect accordance with the experimental evidence showing that detachment is dependent on both shear- and microbial-growth rates. High growth rates trigger instability in biofilm accumulation and abrupt biomass loss (sloughing). Massive sloughing can be avoided by high liquid shear, combined with low biomass growth rates. As the modeling results show, the causes for sloughing must be sought not only in the biofilm strength, but also in its shape. Several "mushroom-like" biofilm structures like those repeatedly reported in the literature occurred, due to a combined effect of nutrient depletion and breaking at the colony base. A rough carrier surface promotes biofilm development in hydrodynamic conditions in which the biofilm on a flat surface would not form. Although biofilm patches filled completely the cavity in which they started to grow, they were unable to spill over the carrier peaks and to fully colonize the substratum.  相似文献   

9.
Biofilm cells differ phenotypically from their free-floating counterparts. Differential growth rates in biofilms are often referred to, particularly in response to limited diffusion of oxygen and nutrients. We observed growth rates of attached Pseudomonas sp. strain CT07 cells that were notably higher than the maximum specific growth rate measured in batch culture. Despite dilution rates in continuous flow cells that exceeded the maximum planktonic specific growth rate by 58 times, sampling of the effluent revealed >10(9) cells ml(-1), suggesting that biofilms function as a source of planktonic cells through high cell yield and detachment. Further investigation demonstrated considerable planktonic cell yield from biofilms as young as 6 h, indicating that detachment is not limited to established biofilms. These biofilm-detached cells were more sensitive to a commercial biocide than associated biofilm- and chemostat-cultivated populations, implying that detached biofilm cells exhibit a character that is distinct from that of attached and planktonic cell populations.  相似文献   

10.
Biofilm-embedded bacteria are generally more resistant to antimicrobial agents than are planktonic bacteria. Two possible mechanisms for biofilm resistance are that the glycocalyx matrix secreted by cells in a biofilm reacts with and neutralizes the antimicrobial agent and that the matrix creates a diffusion barrier to the antimicrobial agent. This study was therefore conducted to examine the relationship between glycocalyx and enhanced povidone-iodine resistance in biofilms of Pseudomonas aeruginosa (ATCC 27853). Biofilms were generated by inoculation of polycarbonate membranes with broth-grown cells and incubation of them on the surfaces of nutrient agar plates. The quantities of glycocalyx material per cell were found not to be significantly different between biofilm and planktonic samples. Transmission electron microscopy showed that the distributions of glycocalyx material around cells differed in biofilm and in planktonic samples. Addition of alginic acid to planktonic cell suspensions resulted in a slight increase in resistance to povidone-iodine, suggesting some neutralizing interaction. However, the iodine demands created by biofilm and planktonic samples of equivalent biomass were not significantly different and, therefore, do not explain the contrast in resistance observed between biofilm and planktonic samples. Examination of the relationship between cell death and biomass detachment from the glycocalyx matrix revealed that most cell death occurred in the fraction of biomass that detached from a biofilm during treatment. The overall rate of iodine diffusion through biofilms was not different from that of planktonic cells collected on a polycarbonate membrane.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Planktonic-Cell Yield of a Pseudomonad Biofilm   总被引:1,自引:1,他引:0  
Biofilm cells differ phenotypically from their free-floating counterparts. Differential growth rates in biofilms are often referred to, particularly in response to limited diffusion of oxygen and nutrients. We observed growth rates of attached Pseudomonas sp. strain CT07 cells that were notably higher than the maximum specific growth rate measured in batch culture. Despite dilution rates in continuous flow cells that exceeded the maximum planktonic specific growth rate by 58 times, sampling of the effluent revealed >109 cells ml−1, suggesting that biofilms function as a source of planktonic cells through high cell yield and detachment. Further investigation demonstrated considerable planktonic cell yield from biofilms as young as 6 h, indicating that detachment is not limited to established biofilms. These biofilm-detached cells were more sensitive to a commercial biocide than associated biofilm- and chemostat-cultivated populations, implying that detached biofilm cells exhibit a character that is distinct from that of attached and planktonic cell populations.  相似文献   

12.
The detachment of cells from bacterial biofilms is an important, yet poorly understood and largely unquantified phenomenon. Detached cell clumps from medical devices may form microemboli and lead to metastasis, especially if they are resistant to host defenses and antibiotics. In manufacturing plants detached clumps entering a process stream decrease product quality. Two strains of Pseudomonas aeruginosa, a wild type (PAO1) and a cell signaling mutant (JP1), were studied to (i) quantify and model detachment patterns and (ii) determine the influence of cell signaling on detachment. We collected effluent from a biofilm flowthrough reactor and determined the size distribution for cell detachment events by microscopic examination and image analysis. The two strains were similar in terms of both biofilm structure and detachment patterns. Most of the detachment events were single-cell events; however, multiple-cell detachment events contributed a large fraction of the total detached cells. The rates at which events containing multiple cells detached from the biofilm were estimated by fitting a statistical model to the size distribution data. For events consisting of at least 1,000 cells, the estimated rates were 4.5 events mm−2 min−1 for PAO1 and 4.3 events mm−2 min−1 for JP1. These rates may be significant when they are scaled up to the total area of a real biofilm-contaminated medical device surface and to the hours or days of patient exposure.  相似文献   

13.
The detachment of cells from bacterial biofilms is an important, yet poorly understood and largely unquantified phenomenon. Detached cell clumps from medical devices may form microemboli and lead to metastasis, especially if they are resistant to host defenses and antibiotics. In manufacturing plants detached clumps entering a process stream decrease product quality. Two strains of Pseudomonas aeruginosa, a wild type (PAO1) and a cell signaling mutant (JP1), were studied to (i) quantify and model detachment patterns and (ii) determine the influence of cell signaling on detachment. We collected effluent from a biofilm flowthrough reactor and determined the size distribution for cell detachment events by microscopic examination and image analysis. The two strains were similar in terms of both biofilm structure and detachment patterns. Most of the detachment events were single-cell events; however, multiple-cell detachment events contributed a large fraction of the total detached cells. The rates at which events containing multiple cells detached from the biofilm were estimated by fitting a statistical model to the size distribution data. For events consisting of at least 1,000 cells, the estimated rates were 4.5 events mm(-2) min(-1) for PAO1 and 4.3 events mm(-2) min(-1) for JP1. These rates may be significant when they are scaled up to the total area of a real biofilm-contaminated medical device surface and to the hours or days of patient exposure.  相似文献   

14.
Quorum sensing in Staphylococcus aureus biofilms   总被引:7,自引:0,他引:7       下载免费PDF全文
  相似文献   

15.
The maintenance of a steady-state biofilm in a continuous-flow fixed-bed reactor, as a consequence of the reproduction-detachment of cells (an interfacial cell physiology phenomenon of steady-state biofilm) during the biodegradation of 2,4,6-trichlorophenol by Pseudomonas cells, was determined. After cell adhesion on an open-pore glass support, the biofilm was formed in a packed-bed recirculated reactor. After the steady-state biofilm was reached, the mechanisms of the interfacial cell detachment (at the biofilm-liquid interface) were determined. It was established that (i) the hydrophobicity of immobilized sessile cells (parent cells) increased (from 50 to 80%) as the dilution rate increased, while the hydrophobicity of detached suspended cells (daughter cells) remained constant (about 45%); and (ii) the immediately detached suspended cells showed a synchronized growth in about three generations. These results indicate that (i) the immobilized sessile and suspended detached cells grew synchronically at the end and at the beginning of the cell cycle, respectively; and (ii) the hydrophobicity difference of immobilized sessile and suspended detached cells permitted the cells detachment. Therefore, it is probable that independent of shear stress (due to recirculated flow), the synchronized growth and hydrophobicity of cells (which vary during the cell cycle) are the main factors permitting the maintenance of a steady-state xenobiotic-degrading biofilm reactor (in which the overall accumulation of biofilm is determined by the average growth rate of the biofilm cells minus the rate of detachment of cells from the biofilm).  相似文献   

16.
Hydrodynamic conditions control two interlinked parameters; mass transfer and drag, and will, therefore, significantly influence many of the processes involved in biofilm development. The goal of this research was to determine the effect of flow velocity and nutrients on biofilm structure. Biofilms were grown in square glass capillary flow cells under laminar and turbulent flows. Biofilms were observed microscopically under flow conditions using image analysis. Mixed species bacterial biofilms were grown with glucose (40 mg/l) as the limiting nutrient. Biofilms grown under laminar conditions were patchy and consisted of roughly circular cell clusters separated by interstitial voids. Biofilms in the turbulent flow cell were also patchy but these biofilms consisted of patches of ripples and elongated 'streamers' which oscillated in the flow. To assess the influence of changing nutrient conditions on biofilm structure the glucose concentration was increased from 40 to 400 mg/l on an established 21 day old biofilm growing in turbulent flow. The cell clusters grew rapidly and the thickness of the biofilm increased from 30 μ to 130 μ within 17 h. The ripples disappeared after 10 hours. After 5 d the glucose concentration was reduced back to 40 mg/l. There was a loss of biomass and patches of ripples were re-established within a further 2 d.  相似文献   

17.
Simultaneous binary population biofilm formation by a bacterium and filamentous fungus was demonstrated by time-lapse image analysis in a flow cell system. The accumulation of attached bacterial cells followed an S-shaped graph similar to batch culture bacterial growth, with continual attachment, detachment, rotation, and movement of bacteria over the surface. An extensive hyphal network formed on the surface of the flow cell, protruding into the bulk flow, which subsequently detached. Multiple species mixed fungal–bacterial model biofilms were tested for isothiazolone biocide susceptibility. Biofilms were less susceptible to biocide treatment than planktonic cells of the same organisms. Mixed species biofilms, particularly for the bacterial species, offered greater protection against the action of the biocide compared to single species biofilms. Microbial loss as a result of biocide activity was shown by reduced cell surface coverage in electron micrographs. Received 11 March 2002/ Accepted in revised form 08 August 2002  相似文献   

18.
Stewart PS 《Biofouling》2012,28(2):187-198
Water that flows around a biofilm influences the transport of solutes into and out of the biofilm and applies forces to the biofilm that can cause it to deform and detach. Engineering approaches to quantifying and understanding these phenomena are reviewed in the context of biofilm systems. The slow-moving fluid adjacent to the biofilm acts as an insulator for diffusive exchange. External mass transfer resistance is important because it can exacerbate oxygen or nutrient limitation in biofilms, worsen product inhibition, affect quorum sensing, and contribute to the development of tall, fingerlike biofilm clusters. Measurements of fluid motion around biofilms by particle velocimetry and magnetic resonance imaging indicate that water flows around, but not through biofilm cell clusters. Moving fluid applies forces to biofilms resulting in diverse outcomes including viscoelastic deformation, rolling, development of streamers, oscillatory movement, and material failure or detachment. The primary force applied to the biofilm is a shear force in the main direction of fluid flow, but complex hydrodynamics including eddies, vortex streets, turbulent wakes, and turbulent bursts result in additional force components.  相似文献   

19.
In biotechnology, composition of biofilms and suspended bioaggregates can be crucial for system performance or product quality. Consequently, understanding biofilm dynamics is important for any process optimisation. The aim of this study was to investigate biofilm development and detachment under different hydrodynamic conditions and varying glucose load. Confocal laser scanning microscopy proved to be a fast method providing information about structure, distribution and volume ratio of bacteria and extra cellular polymers (EPS) within biofilms and detached biomass. As a result, it could be shown that biofilm structure, in terms of density and EPS volume, was largely influenced by hydrodynamic conditions. Furthermore, it was demonstrated that the EPS:bacteria ratio and distribution was largely influenced by substrate load. Finally, the characteristics in biofilm structure and development were reflected in the composition and quantity of the detached biomass.  相似文献   

20.
A two-dimensional pore-scale numerical model was developed to evaluate the dynamics of preferential flow paths in porous media caused by bioclogging. The liquid flow and solute transport through the pore network were coupled with a biofilm model including biomass attachment, growth, decay, lysis, and detachment. Blocking of all but one flow path was obtained under constant liquid inlet flow rate and biomass detachment caused by shear forces only. The stable flow path formed when biofilm detachment balances growth, even with biomass weakened by decay. However, shear forces combined with biomass lysis upon starvation could produce an intermittently shifting location of flow channels. Dynamic flow pathways may also occur when combined liquid shear and pressure forces act on the biofilm. In spite of repeated clogging and unclogging of interconnected pore spaces, the average permeability reached a quasi-constant value. Oscillations in the medium permeability were more pronounced for weaker biofilms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号