首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A series of monoacylated glycolipids with even-numbered acyl chain lengths ranging from saturated C11 to C15 and an unsaturated C17:1 fatty acid connected by an amide in linkage to the disaccharide head groups maltose, melibiose and lactose were synthesized. The structural polymorphism of the glycolipids was investigated using Fourier-transform infrared spectroscopy and differential scanning calorimetry for the detection of the gel to liquid-crystalline acyl chain melting behaviour and small-angle X-ray scattering for the elucidation of the physical structure of the lipid aggregates. Also, the phase morphology was studied by polarizing microscopy in contact preparations. The data clearly show the existence of uni- and multilamellar structures. Although only one acyl chain is present, there is no evidence for the existence of micelles - of spherical or of cylindrical (HI) type - or of interdigitated phases. The preference for lamellar phases seems to be correlated with the intrinsic high conformational order of the amide linkage of these compounds which inhibits the formation of highly curved structures.  相似文献   

2.
R N Lewis  N Mak  R N McElhaney 《Biochemistry》1987,26(19):6118-6126
The thermotropic phase behavior of a series of 1,2-diacylphosphatidylcholines containing linear saturated acyl chains of 10-22 carbons was studied by differential scanning calorimetry. When fully hydrated and thoroughly equilibrated by prolonged incubation at appropriate low temperatures, all of the compounds studied form an apparently stable subgel phase (the Lc phase). The formation of the stable Lc phase is a complex process which apparently proceeds via a number of metastable intermediates after being nucleated by incubation at appropriate low temperatures. The process of Lc phase formation is subject to considerable hysteresis, and our observations indicate that the kinetic limitations become more severe as the length of the acyl chain increases. The kinetics of Lc phase formation also depend upon whether the acyl chains contain an odd or an even number of carbon atoms. The Lc phase is unstable at higher temperatures and upon heating converts to the so-called liquid-crystalline state (the L alpha phase). The conversion from the stable Lc to the L alpha phase can be a direct, albeit a multistage process, as observed with very short chain phosphatidylcholines, or one or more stable gel states may exist between the Lc and L alpha states. For the longer chain compounds, conversions from one stable gel phase to another become separated on the temperature scale, so that discrete subtransition, pretransition, and gel/liquid-crystalline phase transition events are observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Acholeplasma laidlawii was grown with different fatty acids for membrane lipid synthesis (saturated straight- and branched-chain acids and mono- and di-unsaturated acids). The ability of 12 different sterols to affect cell growth, lipid head group composition, the order parameter of the acyl chains, and the phase equilibria of in vivo lipid mixtures was studied. The following two effects were observed with respect to cell growth: with a given acyl chain composition of the membrane lipids, growth was stimulated, unaffected, reduced, or completely inhibited (lysis), depending on the sterol structure; and the effect of a certain sterol depended on the acyl chain composition (most striking for epicoprostanol, cholest-4-en-3-one, and cholest-5-en-3-one, which stimulated growth with saturated acyl chains but caused lysis with unsaturated chains). The three lytic sterols were the only sterols that caused a marked decrease in the ratio between the major lipids monoglucosyldiglyceride and diglucosyldiglyceride and hence a decrease in bilayer stability when the membranes were enriched in saturated (palmitoyl) chains. With these chains correlations were found for several sterols between the glucolipid ratio and the order parameter of the acyl chains, as well as the lamellar-reversed hexagonal phase transition, in model systems. A shaft experiment revealed a marked decrease in the ratio of monoglucosyldiglyceride to diglucosyldiglyceride with the lytic sterols in unsaturated (oleoyl) membranes. The two cholestenes induced nonlamellar phases in in vivo mixtures of oleoyl A. laidlawii lipids. The order parameters of the oleoyl chains were almost unaffected by the sterols. Generally, the observed effects cannot be explained by an influence of the sterols on the gel-to-liquid crystalline phase transition.  相似文献   

4.
Synthesis and polymorphism of 3-acyl-sn-glycerols   总被引:2,自引:0,他引:2  
3-Acyl-sn-glycerols with even-numbered saturated fatty acyl chains from decanoate to lignocerate were synthesized. Successful hydrolysis of the long acyl chain intermediate 1,2-isopropylidene-3-acyl-sn-glycerols from stearate to lignocerate was accomplished by applying the compounds to silica gel and exposing them to hydrogen chloride gas at -75 degrees C. The purity of the compounds was checked by boric acid impregnated thin-layer chromatography, 13C NMR, and reverse-phase high-pressure liquid chromatography. Differential scanning calorimetry and X-ray diffraction techniques were used to study the polymorphism of the compounds. In the beta phase obtained from solvent of crystallization, the acyl chain packing was in a two-dimensional oblique lattice with specific chain-chain interactions with a tilt angle of 55.4 degrees from the bilayer plane. The thickness of the region containing two glycerol head groups was 12.7 A. The phase transition enthalpy of melting for the beta phase was 1.06 kcal/mol of CH2. On being cooled these compounds crystallized reversibly to an unstable alpha phase, which on being further cooled underwent a second crystallization to a beta or beta' phase. The thermodynamic parameters and long spacings of these compounds in both beta and alpha phases were linear, indicating isostructural packing in each phase. The enthalpy of the melting transition of the alpha phase was 0.69 kcal/mol of CH2. In this phase, the chains were packed in a hexagonal lattice with nonspecific chain-chain interactions. The thickness of the head-group region (12.2 A) and the tilt angle (55 degrees) of the acyl chains in the alpha phase were very similar to those in the beta phase.  相似文献   

5.
Thermal, structural, and cohesive measurements have been obtained for both bovine brain sphingomyelin (BSM) and N-tetracosanoylsphingomyelin (C24-SM) in the presence and absence of cholesterol. A goal of these experiments has been to clarify the mechanisms responsible for the strong interaction between sphingomyelin and cholesterol. Differential scanning calorimetry shows that fully hydrated bilayers of BSM and C24-SM have main endothermic phase transitions at 39 and 46 degrees C, respectively, that reflect the melting of the acyl chains from a gel to a liquid-crystalline phase. For each lipid, the addition of cholesterol monotonically reduces the enthalpy of this transition, so that at equimolar cholesterol the transition enthalpy is zero. The addition of equimolar cholesterol to either BSM or C24-SM coverts the wide-angle X-ray diffraction reflection at 4.15 A to a broad band centered at 4.5 A. Electron density profiles of gel-phase C24-SM bilayers contain two terminal methyl dips in the center of the bilayer, indicating that the lipid hydrocarbon chains partially interdigitate so that the long saturated 24-carbon acyl chains in one monolayer cross the bilayer center and appose the shorter sphingosine chains from the other monolayer. The incorporation of cholesterol adds electron density to the hydrocarbon chain region near the head group and removes the double terminal methyl dip. These wide- and low-angle X-ray data indicate that cholesterol packs into the hydrocarbon chain region near the sphingomyelin head group, fluidizes the methylene chains near the center of the bilayer compared to the gel phase, and reduces the extent of methylene chain interdigitation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
R N Lewis  R N McElhaney 《Biochemistry》1985,24(10):2431-2439
The thermotropic phase behavior of aqueous dispersions of phosphatidylcholines containing one of a series of methyl iso-branched fatty acyl chains was studied by differential scanning calorimetry. These compounds exhibit a complex phase behavior on heating which includes two endothermic events, a gel/gel transition, involving a molecular packing rearrangement between two gel-state forms, and a gel/liquid-crystalline phase transition, involving the melting of the hydrocarbon chains. The gel to liquid-crystalline transition is a relatively fast, highly cooperative process which exhibits a lower transition temperature and enthalpy than do the chain-melting transitions of saturated straight-chain phosphatidylcholines of similar acyl chain length. In addition, the gel to liquid-crystalline phase transition temperature is relatively insensitive to the composition of the aqueous phase. In contrast, the gel/gel transition is a slow process of lower cooperativity than the gel/liquid-crystalline phase transition and is sensitive to the composition of the bulk aqueous phase. The gel/gel transitions of the methyl iso-branched phosphatidylcholines have very different thermodynamic properties and depend in a different way on hydrocarbon chain length than do either the "subtransitions" or the "pretransitions" observed with linear saturated phosphatidylcholines. The gel/gel and gel/liquid-crystalline transitions are apparently concomitant for the shorter chain iso-branched phosphatidylcholines but diverge on the temperature scale with increasing chain length, with a pronounced odd/even alternation of the characteristic temperatures of the gel/gel transition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The polymorphic phase behavior of aqueous dispersions of a number of representative phosphatidylcholines with methyl iso-branched fatty acyl chains was investigated by Fourier transform infrared (FT-IR) and phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy. For the longer chain phosphatidylcholines, where two transitions are resolved on the temperature scale, the higher temperature event can unequivocally be assigned to the melting of the acyl chains (i.e., a gel/liquid-crystalline phase transition), whereas the lower temperature event is shown to involve a change in the packing mode of the methylene and carbonyl groups of the hydrocarbon chains in the gel state (i.e., a gel/gel transition). The infrared spectroscopic data suggest that the methyl iso-branched phosphatidylcholines assume a partially dehydrated, highly ordered state at low temperatures, resembling the Lc phase recently described for the long-chain n-saturated phosphatidylcholines. At higher temperatures, some branched-chain phosphatidylcholines appear to assume a fully hydrated, loosely packed gel phase similar to but not identical with the P beta, phase of their linear saturated analogues. Thus, the iso-branched phosphatidylcholine gel/gel transition corresponds, at least approximately, to a summation of the structural changes accompanying both the subtransition and the pretransition characteristic of the longer chain n-saturated phosphatidylcholines. The infrared spectroscopic data also show that, in the low-temperature gel state, there are significant differences between the odd- and even-numbered isoacylphosphatidylcholines with respect to their hydrocarbon chain packing modes as well as to their head group and interfacial hydration states.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Fully hydrated dispersions of simple linear saturated diacylphosphatidylcholines with even-numbered acyl chains of lengths from 18 to 24 carbons can exist in a low-temperature, highly ordered, orthorhombic phase (G(o)) that differs from the L beta phase (Gd) normally found for shorter chains. The temperature behavior of these dispersions has been studied by infrared spectroscopy. Chain packing in the G(o) phase was found to be nearly identical to that of the orthorhombic phase of crystalline n-alkanes. With increasing temperature, the G(o) phase undergoes a transition to Gd at approximately 45 degrees C below Tm. This transition occurs at a higher temperature and becomes sharper with increasing chain length. Chain packing in the Gd phase was found to be disordered in a way that can be expressed in terms of a distribution of subcell setting angles. The Gd phase converts to a phase (Gh) with hexagonal-like chain packing at temperatures below Tm. The results support and extend those of a recent x-ray diffraction study of the 24-carbon diacyclphosphatidylcholine gel.  相似文献   

9.
The polymorphic phase behavior of aqueous dispersions of a homologous series of 1,2-di-O-acyl-3-O-(beta-D-glucopyranosyl)-sn-glycerols was studied by differential scanning calorimetry. At fast heating rates, unannealed samples of these lipids exhibit a strongly energetic, lower temperature transition, which is followed by a weakly energetic, higher temperature transition. X-ray diffraction studies have enabled the assignments of these events to a lamellar gel/liquid crystalline (chain-melting) phase transition and a bilayer/nonbilayer phase transition, respectively. Whereas the values for both the temperature and enthalpy of the chain-melting phase transition increase with increasing acyl chain length, those of the bilayer/nonbilayer phase transition show almost no chain-length dependence. However, the nature of the bilayer/nonbilayer transition is affected by the length of the acyl chain. The shorter chain compounds form a nonbilayer 2-D monoclinic phase at high temperature whereas the longer chain compounds from a true inverted hexagonal (HII) phase. Our studies also show that the gel phase that is initially formed on cooling of these lipids is metastable with respect to a more stable gel phase and that prolonged annealing results in a slow conversion to the more stable phase after initial nucleation by incubation at appropriate low temperatures. The formation of these stable gel phases is shown to be markedly dependent upon the length of the acyl chains and whether they contain an odd or an even number of carbon atoms. There is also evidence to suggest that, in the case of the shorter chain compounds at least, the process may proceed via another gel-phase intermediate. In annealed samples of the shorter chain compounds, the stable gel phase converts directly to the L alpha phase upon heating, whereas annealed samples of the longer chain glycolipids convert to a metastable gel phase prior the chain melging.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Sphingomyelin (SM) is a main component of lipid rafts and characteristic of abundance of long and saturated acyl chains. Recently, we reported that fluorescence-labeled lipids including C16:0 and C18:0SMs retained membrane behaviors of inherent lipids. Here, we newly prepared fluorescent SMs with longer acyl chains, C22:0 and C24:1, for observing their partition and diffusion in SM/cholesterol (chol)/dioleoylphosphatidylcholine (DOPC) bilayers. Although fluorescent C24:1SM underwent a uniform distribution between ordered (Lo) and disordered (Ld) phases, other fluorescent SMs with saturated acyl chains were preferentially distributed in the Lo phase. Interestingly, when the acyl chains of fluorescent and membrane SMs are different, distribution of fluorescent SM to the Lo phase was reduced compared to when the acyl chains are the same. This tendency was also observed for C16:0SM/C22:0SM/chol/DOPC quaternary bilayers, where the minor SM was more excluded out of the Lo phase than the major SM. We also found that the coexistence of SMs induces SM efflux out of the Lo phase and simultaneous DOPC influx to the Lo phase, consequently reducing the difference in fluidity between the two phases. These results suggest that physicochemical properties of lipid rafts are regulated by the acyl chain heterogeneity of SMs.  相似文献   

11.
R N Lewis  R N McElhaney 《Biochemistry》1990,29(34):7946-7953
The subgel phases of a homologous series of saturated straight-chain diacylphosphatidylcholines with hydrocarbon chains consisting of 10-18 carbon atoms were studied by Fourier-transform infrared spectroscopy. All of these lipids initially form a subgel phase which is spectroscopically similar to that obtained when fully hydrated multilamellar dispersions of dipalmitoylphosphatidylcholine are incubated at 0-4 degrees C for 2-4 days. However, further low-temperature incubation of those phosphatidylcholines with acyl chains of 16 or fewer carbon atoms results in the sequential formation of 1 or more additional, spectroscopically distinct subgel phases, with the number of such phases increasing as hydrocarbon chain length decreases. Our data indicate that the formation of all of these subgel phases involves both reorientation of the acyl chains and major changes in hydration and/or hydrogen-bonding interactions at the polar/apolar interfacial region of the lipid bilayer. We suggest that the driving force behind the formation of these Lc phases is the formation of an extended hydrogen-bonding network in the interfacial region of the bilayer and that the optimization of this network probably requires some distortion of the optimal packing of the acyl chains. As a result, an increase in acyl chain length makes the formation of these Lc phases less favorable and eventually prevents optimization of the hydrogen-bonding network at the bilayer polar/apolar interface.  相似文献   

12.
M Caffrey  J Hogan  A S Rudolph 《Biochemistry》1991,30(8):2134-2146
Thermotropic and lyotropic mesomorphism in the polymerizable lecithin 1,2-ditricosa-10,12-diynoyl-sn-glycero-3-phosphocholine and its saturated analogue, 1,2-ditricosanoyl-sn-glycero-3-phosphocholine, has been investigated by wide- and low-angle X-ray diffraction of both powder and oriented samples and by differential scanning calorimetry. Previous studies have shown that the hydrated diacetylenic lipid forms novel microstructures (tubules and stacked bilayer sheets) in its low-temperature phase. The diffraction results indicate that at low temperatures fully hydrated tubules and sheets have an identical lamellar repeat size (d001 = 66.4 A) and crystalline-like packing of the acyl chains. Chain packing in the lamellar crystalline phase is hydration independent. A model for the polymerizable lecithin with (1) fully extended all-trans methylene segments, (2) a long-axis tilt of 32 degrees, and (3) minimal chain interdigitation seems most reasonable on energetic grounds, is consistent with the diffraction data (to 3.93-A resolution), and is likely to support facile polymerization. Above the chain "melting" transition the lamellar repeat of the polymerizable lipid increases to 74 A. The conformational similarity between tubules, sheets, and the dry powder is corroborated by calorimetry, which reveals a cooling exotherm at the same temperature where tubules form upon cooling hydrated sheets. The data suggest that although a high degree of conformational order is a pertinent feature of tubules, this character alone is not sufficient to account for tubule formation. The conformation of the corresponding saturated phosphatidylcholine appears to be similar to that of other saturated phosphatidylcholines in the lamellar gel phase. Furthermore, above the main transition temperature, the dry, saturated lipid shows evidence of a P delta phase (112 degrees C), whereas the diacetylenic lipid appears to exhibit a centered rectangular phase, R alpha (55 degrees C).  相似文献   

13.
New structural model for mixed-chain phosphatidylcholine bilayers   总被引:13,自引:0,他引:13  
Multilamellar suspensions of a mixed-chain saturated phosphatidylcholine with 18 carbon atoms in the sn-1 chain and 10 carbon atoms in the sn-2 chain have been analyzed by X-ray diffraction techniques. The structural parameters for this lipid in the gel state are quite different than usual phosphatidylcholine bilayer phases. A symmetric and sharp wide-angle reflection at 4.11 A indicates that the hydrocarbon chains in hydrated C(18):C(10)PC bilayers are more tightly packed than in usual gel-state phosphatidylcholine bilayers and that there is no hydrocarbon chain tilt. The lipid thickness is about 12 A smaller than would be expected in a normal bilayer phase, and the area per molecule is 3 times the area per hydrocarbon chain. In addition, the bilayer thickness increases upon melting to the liquid-crystalline state, whereas normal bilayer phases decrease in thickness upon melting. On the basis of these data, we propose a new lipid packing model for gel-state C(18):C(10)PC bilayers in which the long C(18) chain spans the entire width of the hydrocarbon region of the bilayer and the short C(10) chain aligns or abuts with the C(10) chain from the apposing molecule. This model is novel in that there are three hydrocarbon chains per head group at the lipid-water interface. Calculations show that this phase is energetically favorable for mixed-chain lipids provided the long acyl chain is nearly twice the length of the shorter chain. In the liquid-crystalline state C(18):C(10)PC forms a normal fluid bilayer, with two chains per head group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
A variety of experimental methods indicate unique biophysical properties of membranes containing the highly polyunsaturated ω-3 fatty acid, docosahexaenoic acid (DHA). In the following we review the atomically detailed picture of DHA acyl chains structure and dynamics that has emerged from computational studies of this system in our lab. A comprehensive approach, beginning with ab-initio quantum chemical studies of model compounds representing segments of DHA and ending with large scale classical molecular dynamics simulations of DHA-containing bilayers, is described with particular attention paid to contrasting the properties of DHA with those of saturated fatty acids. Connection with experiment is made primarily through comparison with Nuclear Magnetic Resonance (NMR) studies, particularly those that probe details of the chain structure and dynamics. Our computational results suggest that low torsional energy barriers, comparable to kT at physiological conditions, for the rotatable bonds in the DHA chain are the key to the differences observed between polyunsaturated and saturated acyl chains.  相似文献   

15.
Triacylglycerols, which usually contain at least one unsaturated fatty acid, are the most important forms of stored biological lipids in teleosts, mammals, and most plants. Since the physical properties of such mixed-chain triacylglycerols are poorly understood, a systematic study of such compounds has been initiated. Stereospecific 1,2-dioleoyl-3-acyl-sn-glycerols were synthesized with even carbon saturated fatty acyl chains of 14-24 carbons in length. Their polymorphic behavior was examined by differential scanning calorimetry and X-ray powder diffraction. The thermal behavior revealed from one to four major polymorphic transitions depending upon saturated chain length. Plots of enthalpy of fusion and entropy vs. carbon number for melting of the most stable polymorph were linear throughout the series with slopes of 1.0 kcal/mol per carbon atom and 2.6 cal/(mol K) per carbon atom, respectively. These slopes indicate that the saturated chains are packed in a well-ordered tightly packed lattice. When the compounds were rapidly cooled to 5 degrees C, X-ray powder diffraction revealed strong beta' (ca. 3.8 and 4.2 A) reflections and weak beta (ca. 4.6 A) reflections. The beta subcell reflections intensified when the compounds were heated to within 5 degrees C of the melting temperature of the highest melting polymorph. Evidence of an alpha phase was not seen on 30-min X-ray exposures for any of the compounds. In the proposed packing arrangement the saturated and unsaturated chains are segregated into layers. The stable form of all compounds exhibits a triple layer packing mode in which a bilayer of oleoyl chains is segregated from an interdigitated layer of saturated chains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Sphingomyelins (SMs) containing homogeneous acyl chains with 12, 14, 16, 18, 24, or 26 carbons were synthesized and characterized using an automated Langmuir-type film balance. Surface pressure was monitored as a function of lipid molecular area at constant temperatures between 10 degrees C and 30 degrees C. SM containing lauroyl (12:0) acyl chains displayed only liquid-expanded behavior. Increasing the length of the saturated acyl chain (e.g., 14:0, 16:0, or 18:0) resulted in liquid-expanded to condensed two-dimensional phase transitions at many temperatures in the 10-30 degrees C range. Similar behavior was observed for SMs with lignoceroyl (24:0) or (cerotoyl) 26:0 acyl chains, but isotherms showed only condensed behavior at 10 and 15 degrees C. Insights into the physico-mechanical in-plane interactions occurring within the different SM phases and accompanying changes in SM phase state were provided by analyzing the interfacial area compressibility moduli. At similar surface pressures, SM fluid phases were less compressible than those of phosphatidylcholines with similar chain structures. The area per molecule and compressibility of SM condensed phases depended upon the length of the saturated acyl chain and upon spreading temperature. Spreading of SMs with very long saturated acyl chains at temperatures 30-35 degrees below T(m) resulted in condensed films with lower in-plane compressibilities, but consistently larger cross-sectional molecular areas than the condensed phases achieved by spreading at temperatures only 10-20 degrees below T(m). This behavior is discussed in terms of the enhancement of SM lateral aggregation by temperature reduction, a common approach used during domain isolation from biomembranes.  相似文献   

17.
Sphingomyelins (SMs) are among the most common phospholipid components of plasma membranes, usually constituting a mixture of several molecular species with various fatty acyl chain moieties. In this work, we utilize atomistic molecular dynamics simulations to study the differences in structural and dynamical properties of bilayers comprised of the most common natural SM species. Keeping the sphingosine moiety unchanged, we vary the amide bonded acyl chain from 16 to 24 carbons in length and examine the effect of unsaturation by comparing lipids with saturated and monounsaturated chains. As for structural properties, we find a slight decrease in average area per lipid and a clear linear increase in bilayer thickness with increasing acyl chain length both in saturated and unsaturated systems. Increasing the acyl chain length is found to further the interdigitation across the bilayer center. This is related to the dynamics of SM molecules, as the lateral diffusion rates decrease slightly for an increasing acyl chain length. Interdigitation also plays a role in interleaflet friction, which is stronger for unsaturated chains. The effect of the cis double bond is most significant on the local order parameters and rotation rates of the chains, though unsaturation shows global effects on overall lipid packing and dynamics as well. Regarding hydrogen bonding or properties related to the lipid/water interface region, no significant effects were observed due to varying chain length or unsaturation. The significance of the findings presented is discussed.  相似文献   

18.
R N Lewis  R N McElhaney 《Biochemistry》1985,24(18):4903-4911
The thermotropic phase behavior of aqueous dispersions of 10 phosphatidylcholines containing omega-cyclohexyl-substituted acyl chains was studied by differential scanning calorimetry and 31P nuclear magnetic resonance spectroscopy. The presence of the omega-cyclohexyl group has a profound effect on the thermotropic phase behavior of these compounds in a manner dependent on whether the fatty acyl chains have odd- or even-numbered linear carbon segments. The thermotropic phase behavior of the odd-numbered phosphatidylcholines is characterized by a single heating endotherm that was shown to be a superposition of at least two structural events by calorimetric cooling experiments. 31P NMR spectroscopy also showed that the single endotherm of the odd-chain compounds is the structural equivalent of a concomitant gel-gel and gel to liquid-crystalline phase transition. The calorimetric behavior of the even-numbered phosphatidylcholines is characterized by a complex array of gel-state phenomena, in addition to the chain-melting transition, in both the heating and cooling modes. The gel states of these even-numbered compounds are characterized by a relatively greater mobility of the phosphate head group as seen by 31P NMR spectroscopy. The differences between the odd-numbered and even-numbered compounds are reflected in a pronounced odd-even alternation in the characteristic transition temperatures and enthalpies and in differences in their responses to changes in the composition of the bulk aqueous phase. Moreover, both the odd-numbered and even-numbered omega-cyclohexylphosphatidylcholines exhibit significantly lower chain-melting transition temperatures and enthalpies than do linear saturated phosphatidylcholines of comparable chain length.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
H L Casal  H H Mantsch  H Hauser 《Biochemistry》1987,26(14):4408-4416
The thermotropic phase behavior of fully hydrated Na+ and/or NH4+ salts of 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine (DMPS) was determined by temperature-dependent infrared spectra. The molecular level properties and thermal phase behavior of DMPS-Li+ complexes were also characterized by infrared spectroscopy. With increasing concentrations of Li+, the infrared spectra reveal the appearance of a second, more ordered, lipid phase which shows a gel to liquid-crystal transition at significantly higher temperatures (75-95 degrees C) than the Na+ or NH4+ salts of DMPS (39 degrees C). Li+ binds to the phosphate and carboxylate groups of DMPS, resulting in the following changes: (1) water of hydration is lost from both the carboxylate and phosphate groups; (2) there are changes in the conformation of the glycerol backbone but not in the P-O ester bonds of the phosphate group which remain in the gauche-gauche conformation; and (3) the packing of the fatty acyl chains becomes more ordered. In addition, the properties of the DMPS-Ca2+ complex were studied by infrared spectroscopy. While the DMPS-Ca2+ complex is also characterized by rigidly packed, well-ordered fatty acyl chains, the mode of Ca2+ binding to the DMPS head groups differs significantly from that of Li+ binding. By comparison, with dry DMPS-Ca2+ [Casal, H. L., Mantsch, H. H., Paltauf, F., & Hauser, H. (1987) Biochim. Biophys. Acta (in press)], the phosphate group undergoes a conformational change, probably to the antiplanar-antiplanar conformation, and loses its water of hydration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The thermotropic and barotropic gel-phase polymorphism of a homologous series of saturated, straight-chain beta-D-glucosyldiacylglycerols was studied by Fourier transform infrared spectroscopy. Three spectroscopically distinct lamellar gel phases were detected thermotropically. Upon cooling to temperatures below the gel/liquid-crystalline phase transition temperature, all of these lipids form a metastable L beta gel phase characterized by orientationally disordered all-trans acyl chains. The transformation of the metastable L beta phase to a stable crystalline (Lc2) phase first involves the formation of an intermediate which itself is an ordered crystal-like (Lc1) phase. In the intermediate Lc1 phase, the zigzag planes of the polymethylene chains are nearly perpendicular to one another, and one of the ester carbonyl oxygens is engaged in a strong hydrogen bond, probably to the 2-hydroxyl of the sugar headgroup. The transformation of the Lc1 phase to the Lc2 phase involves a reorientation of the all-trans hydrocarbon chains and is probably driven by the strengthening of the hydrogen bond between the carbonyl ester oxygen and its proton donors. Since a "solid-state" reorganization of the acyl chains is an integral part of that process, it tends to become more sluggish as the chain length increases and is not observed with the longer chain homologues (N greater than 16). The spectroscopic characteristics of the most stable gel phases of the odd- and even-numbered members of this homologous series of compounds exhibit only minor differences, indicating that the structures of these phases are generally similar. The barotropic phase behavior of the shorter and longer chain beta-D-glucosyldiacylglycerols is also different. Compression of the L beta phase of the shorter chain compounds results in immediate conversion to their stable lc phases, whereas compression of the L beta phase of the longer chains does not. Furthermore, compression of the longer chain compounds may result in the formation of chain-interdigitated bilayers, whereas this is not the case for the shorter chain homologues. We suggest that the gel phase formed by any given homologue at a given temperature or pressure is that which maximizes the sometimes competing requirements for the optimal packing of the sugar headgroups and the hydrocarbon chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号