首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly-8-bromoriboadenylic acid was synthesized by the bromination of adenosine-5'-monophosphate to yield 8-bromoadenosine-5'-monophosphate which on conversion to the 5'-diphosphate form was polymerized by polynucleotide phosphorylase (PNPase). The polymer formed a 1:1 hybrid with polyribouridylic acid and the hybrid was found to protect chick embryos against Wesselsbron virus (H10964).  相似文献   

2.
G J Thomas  J Livramento 《Biochemistry》1975,14(23):5210-5217
Pseudo-first-order rate constants governing the deuterium exchange of 8-CH groups in adenosine 5'-monophosphate, adenosine 3':5'-monophosphate, and poly(riboadenylic acid) (poly(rA)) were determined as a function of temperature in the range 20-90 degrees C by means of laser-Raman spectroscopy. For 5'-rAMP, the logarithm of the rate constant exhibits a strictly linear dependence on reciprocal temperature, i.e., kpsi = Ae-Ea/RT, with A = 2.3 X 10(14) hr-1 and Ea = 24.2 +/- 0.6 kcal/mol. For cAMP, above 50 degrees C, kpsi is nearly identical in magnitude and temperature dependence to that of 5'-rAMP. However, below 50 degrees C, isotope exchange in cAMP is much more rapid than in 5'-rAMP, characterized by a lower activation energy (17.7 kcal/mol) and frequency factor (9.6 X 10(9) hr-1). Exchange in poly(rA) is considerably slower than in 5'-rAMP at all temperatures, but like cAMP the in k vs. 1/T plot may be divided into high temperature and low temperature domains, each characterized by different Arrhenius parameters. Above 60 degrees C, poly(rA) gives Ea = 22.0 kcal/mol and A = 3.2 X 10(12) hr-1, while below 60 degrees C, Ea = 27.7 kcal/mol and A = 1.8 X 10(16) hr-1. Thus, increasing the temperature above 60 degrees C does not diminish the retardation of exchange in poly(rA) vis a vis 5'-rAMP. These results indicate that the distribution of electrons in the adenine ring of cAMP is altered by lowering the temperature below 50 degrees C, although no similar perturbation occurs for 5'-rAMP. Retardation of exchange in poly(rA) is most probably due to base stacking at lower temperatures and to steric hindrance from the ribopolymer backbone at higher temperatures. We also report the spectral effects of deuterium exchange on the vibrational Raman frequencies of 5'-rAMP, cAMP, and poly(rA) and suggest a number of new assignments for the 5' and cyclic ribosyl phosphate groups.  相似文献   

3.
D-Galactopyranosyl residues were coupled to poly(L-lysine) and the antiviral agents arabinofuranosyladenine 5'-monophosphate (ara-AMP) and acyclovir were conjugated with this glycosylated polymer. In mice the ara-AMP conjugate accomplished a selective drug delivery to liver cells.  相似文献   

4.
The mechanism of inhibition of DNA synthesis by 1-beta-D-arabinofuranosyl-ATP (ara-ATP) and the potentiation of this inhibition by 6-mercaptopurine ribonucleoside 5'-monophosphate (6-MPR-P) have been investigated with mammalian DNA polymerase delty by using poly(dA-dT) as the template. The inhibition of DNA synthesis by ara-ATP correlates with incorporation of ara-AMP into poly(dA-dT). Nearest-neighbor analysis indicates that ara-AMP does not act as an absolute chain terminator but rather that chains with 3'-terminal arabinosyl nucleotides are extended slowly. The inhibition of DNA synthesis by ara-ATP is markedly enhanced by the addition of the nucleotide derivative of 6-mercaptopurine, 6-mercaptopurine ribonucleoside 5'-monophosphate. The increased inhibition of DNA synthesis in the presence of 6-MPR-P is due to increased incorporation of ara-AMP. The mechanism by which 6-MPR-P increases the incorporation of ara-AMP is by selective inhibition of the 3' to 5' exonuclease activity of DNA polymerase, thereby preventing the removal of newly incorporated ara-AMP at 3' termini of DNA chains.  相似文献   

5.
Y Sawai  N Kitahara  K Tsukada 《FEBS letters》1982,150(1):228-232
In vitro poly(dA) synthesis on poly(dT) template can be initiated by poly(A) primer. Poly(A) chains are covalently extended by DNA polymerase. The reaction product consists of poly(dA) chain with poly(A) at their 5'-ends, hydrogen bonded to the template poly(dT). The primer poly(A) is linked to the product poly(dA) via a 3':5'-phosphodiester bond, and can be specifically removed by ribonuclease H from chick embryos, leaving a 5'-phosphate end of poly(dA). Poly- or oligoriboadenylate longer than the (pA)5 could serve as a priming activity to synthesize poly(A) covalently linked to poly(dA).  相似文献   

6.
The purification scheme for a 5'----3' exoribonuclease of Saccharomyces cerevisiae has been modified to facilitate purification of larger amounts of enzyme and further extended to yield highly purified enzyme by use of poly(A)-agarose chromatography. As determined by either sodium dodecyl sulfate-polyacrylamide gel electrophoresis or physical characterization, the enzyme has a molecular weight of about 160,000. Further studies of its substrate specificity show that poly(C) and poly(U) preparations require 5' phosphorylation for activity and that poly(A) with a 5'-triphosphate end group is hydrolyzed at only 12% of the rate of poly(A) with a 5'-monophosphate end group. DNA is not hydrolyzed, but synthetic polydeoxyribonucleotides are strong competitive inhibitors of the hydrolysis of noncomplementary ribopolymers. Poly(A).poly(U) and poly(A).poly(dT) are hydrolyzed at 60 and 50%, respectively, of the rate of poly(A) at 37 degrees C. The RNase H activity of the enzyme can also be demonstrated using an RNA X M13 DNA hybrid as a substrate. When poly(dT).poly(dA) with a 5'-terminal poly(A) segment on the poly(dA) is used as a substrate, the enzyme hydrolyzes the poly(A) "tail," removing the last ribonucleotide, but does not hydrolyze the poly(dA).  相似文献   

7.
Poly(dG-m5dC)·poly(dG-m5dC) was modified by treatment with N-acetoxy-N-2-acetylaminofluorene (N-Aco-AAF) and its conformation examined by circular dichroism (CD) and susceptibility to S1 nuclease digestion. A sample with a modification level of 10% shows a CD spectrum characteristic of the Z form and is resistant to digestion by S1 nuclease. The relative reactivity of several polymers with N-Aco-AAF was shown to follow the order of ease of formation of Z DNA: poly(dG-m5dC)·poly(dG-m5dC) > poly(dG-dC)·poly(dG-dC) > poly(dG)·poly(dC). This suggests that AAF reacts more readily with Z DNA than B DNA.  相似文献   

8.
The synthesis of poly(mo5U) requires a high concentration (2.7 mg/ml) of polynucleotide phosphorylase as well as a long reaction time (48 h). The resulting polynucleotide has a chain length of approximately 100 nucleotides. It shows no indication of a stable secondary structure. When poly(mo5U) is mixed with poly(A), a triple-stranded complex poly(A) . 2poly(mo5U) is formed. This complex has a melting temperature of 68.5 +/- 0.5 degrees C at 150 mMNa+ and exhibits a hysteresis loop between melting and reformation of the complex having a delta Tm of 11.5 degrees C. Poly-5-methoxyuridylic acid stimulates the binding of Phe-tRNA to 70-S ribosomes but is inactive in directing poly(Phe) synthesis.  相似文献   

9.
Mixing curve experiments and melting curve analyses have shown that poly(m2A) forms complexes with poly(br5U) with stoichiometries of either 1:1 or 1:2 in high ionic strengths. CD spectra of poly(m2A).poly(br5U) and poly(m2A).2 poly(br5U) both resemble quite well to those of poly(A). poly(br5U) and poly(A).2poly(br5U), respectively. This suggests that the corresponding complexes are closely related in the structural details. Significant similarities of the CD spectra were observed for poly(m2A).2poly(br5U) and complexes between 2,9-dimethyladenine or 2-methyladenosine and poly(br5U) in the presence of spermine, indicating also the 1:2 stoichiometry. Thus, a methyl group at the position 2 of adenine ring is not necessarily hindering a formation of the Watson-Crick type base pairings.  相似文献   

10.
Most duplex DNAs that are in the "B" conformation are not immunogenic. One important exception is poly(dG) X poly(dC), which produces a good immune response even though, by many criteria, it adopts a conventional right-handed helix. In order to investigate what features are being recognized, monoclonal antibodies were prepared against poly(dG) X poly(dC) and the related polymer poly(dG) X poly(dm5C). Jel 72, which is an immunoglobulin G, binds only to poly(dG) X poly(dC), while Jel 68, which is an immunoglobulin M, binds approximately 10-fold more strongly to poly(dG) X poly(dm5C) than to poly(dG) X poly(dC). For both antibodies, no significant interaction could be detected with any other synthetic DNA duplexes including poly[d(Gm5C)] X poly[d(Gm5C)] in both the "B" and "Z" forms, poly[d(Tm5Cm5C)] X poly[d(GGA)], and poly[d(TCC)] X poly[d(GGA)], poly(dI) X poly(dC), or poly(dI) X poly(dm5C). The binding to poly(dG) X poly(dC) was inhibited by ethidium and by disruption of the DNA duplex, confirming that the antibodies were not recognizing single-stranded or multistranded structures. Furthermore, Jel 68 binds significantly to phage XP-12 DNA, which contains only m5C residues and will precipitate this DNA in the absence of a second antibody. The results suggest that (dG)n X (dm5C)n sequences in natural DNA exist in recognizably distinct conformations.  相似文献   

11.
G T Walker  M P Stone  T R Krugh 《Biochemistry》1985,24(25):7471-7479
The interaction of actinomycin D and actinomine with poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) under B- and Z-form conditions has been investigated by optical and phase partition techniques. Circular dichroism data show that the conformation at the binding site is right-handed, even though adjacent regions of the polymer have a left-handed conformation. Actinomycin D binds in a cooperative manner to poly(dG-dC).poly(dG-dC) under both B-form and Z-form conditions. Analysis of the circular dichroism data shows that 5 +/- 1 base pairs of left-handed poly(dG-dC).poly(dG-dC) in 4.4 M NaCl switch to a right-handed conformation for each bound actinomycin D. When the left-handed form of poly(dG-dC).poly(dG-dC) is stabilized by the presence of 40 microM [Co(NH3)6]Cl3, 25 +/- 5 base pairs switch from a left-handed to a right-handed conformation for each bound actinomycin D. Actinomine binds cooperatively to left-handed poly(dG-dC).poly(dG-dC) in 40 microM [Co(NH3)6]Cl3 and to left-handed poly(dG-m5dC).poly(dG-m5dC) in 2 mM MgCl2. Actinomine does not bind to left-handed poly(dG-dC).poly(dG-dC) in 4.4 M NaCl at concentrations as high as 100 microM. Each bound actinomine converts 11 +/- 3 base pairs of left-handed poly(dG-dC).poly(dG-dC) in 40 microM [Co(NH3)6]Cl3 and 7 +/- 2 base pairs of left-handed poly(dG-m5dC).poly(dG-m5dC) in 2 mM MgCl2. The binding isotherm data also indicate that the binding site has a right-handed conformation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Conformational lability of poly(dG-m5dC):poly(dG-m5dC).   总被引:2,自引:2,他引:0       下载免费PDF全文
F M Chen 《Nucleic acids research》1986,14(12):5081-5097
The remarkable conformational lability of poly(dG-m5dC):poly(dG-m5dC) is demonstrated by the observation of an acid-mediated conformational hysteresis. An acid-mediated Z conformation that exists in solutions containing low sodium concentrations that would normally favor the B conformation is described in this report. This Z conformation is reached by an acid-base titration of a B-poly(dG-m5dC):poly(dG-m5dC) solution which is not far from the B-Z transition midpoint. The resulting Z conformation is thermally very stable, with direct melting into single strands at approximately 100 degrees C. In contrast, the B form DNA, initially in solutions of the same ionic strength but without exposure to acidic pH, exhibits a biphasic melting profile, with conversion into the Z form (with high cooperativity) prior to an eventual denaturation into single strands at around 100 degrees C. Cooling experiments reveal that such biphasic transitions are quite reversible. The transition midpoint for the thermally poised B to Z transformation depends strongly on the NaCl concentration and varies with sample batch. The acid-mediated Z form binds ethidium more weakly than its B counterpart, and the ethidium induced Z to B conversion occurs in a step-wise (non-allosteric) fashion without the requirement of a threshold concentration. The acid-mediated as well as the thermally poised Z conformations are reversed by the addition of EDTA, suggesting the involvement of trace amounts of multivalent metal ions.  相似文献   

13.
The denatured alpha1(I) chain and the cyanogen bromide peptide, alpha1(I)-CB5, of chick skin collagen cause the relaese of serotonin and leakage of lactic dehydrogenase from human platelets in a manner similar to the release reaction mediated by adenosine diphosphate and native collagen. These peptides also cause a decrease in the level of adenosine 3':5'-monophosphate (cAMP) in platelets. Adenylate cyclase activity of platelets is partially inhibited by these peptides as well as by native collagen, ADP, and epinephrine, but cAMP phosphodiesterase activity is unaltered by these substances. In contrast, the level of platelet guanosine 3':5'-monophosphate (cGMP) is increased by the collagen peptides as well as the other aggregating agents. The increase is associated with increased guanylate cyclase, but normal cGMP phosphodiesterase activities of platelets. Optical rotatory and viscometric measurements of the alpha1 chains and alpha1-CB5 of chick skin in 0.01 M phosphate/0.15 M sodium chloride, pH 7.4, at various temperatures as a function of time indicate that no detectable renaturation occurs at 37 degrees for at least 30 min of observation. Molecular sieve chromatography of alpha1-CB5 in the phosphate buffer at 37 degrees shows that its elution position is identical to that performed under denaturing conditions (at 45 degrees) with no evidence of higher molecular weight aggregates, and the alpha1-CB5 glycopeptide fraction eluting from the column at the position of its monomer retains the platelet aggregating activity. Additionally, electron microscopic examination of the platelet-rich plasma that had been reacted with these peptides fail to show any ordered collagen structures. These data indicate that the denatured alpha1 chain and alpha1-CB5 glycopeptide of chick skin collagen mediate platelet aggregation through the "physiologic" release reaction in a manner similar to that induced by other aggregating agents such as ADP, epinephrine, or native collagen, and support the conclusion that the aggregating activity of the alpha1 chain and alpha1-CB5 is not likely to be due to the formation of polymerized products.  相似文献   

14.
The rates of synthesis of poly(A)-containing RNA species in the nuclei of erythrocytes from 4- to 9-day-old chick embryos were determined by poly(T)-cellulose chromatography and were found to vary according to the developmental stages of the chick embryos. The rate appeared to increase 1 day prior to the onset of hemoglobin differentiation. The enzymatic activities of ATP polymerization in the nucleus of these erythrocytes were also examined. The enzymatic activity was resolved into two fractions on O-(diethylaminoethyl) cellulose. The ratio of the two enzymatic activities remained relatively constant in erythrocytes from 4- to 19-day-old embryos. However, a threefold increase in the total poly(A) polymerase activities was observed 1 day prior to the onset of hemoglobin differentiation. These results indicate that hemoglobin differentiation in these erythrocytes is associated with an increase in the rate of synthesis of poly(A)-containing RNA and in the activities of poly(A) polymerases.  相似文献   

15.
H Y Wu  M J Behe 《Nucleic acids research》1985,13(11):3931-3940
Salt induced transitions between four conformations of the methylated ribo-deoxyribo co-polymer poly (rG-m5dC).poly (rG-m5dC) have been studied using phosphorous-NMR, Raman spectroscopy, and circular dichroism. A high salt A-Z transition is observed for the polymer. However, the methylated polymer does not enter the high salt Z form more readily than the analogous unmethylated polymer, unlike the effect of methylation on the fully deoxy polymer poly (dG-dC).poly (dG-dC). The methylated polymer fails to undergo a low salt A-Z transition in 5 mM Tris buffer, unlike the unmethylated poly (rG-dC).poly (rG-dC). However, if the counterion is changed to triethanolamine buffer, an A-Z transition does take place. In 5 mM Tris buffer the phosphorous-NMR spectrum of poly (rG-m5dC).poly (rG-m5dC) shows one resonance in the absence of NaCl that splits into two closely spaced resonances as the NaCl level is increased to 30 mM. The Raman spectrum of poly (rG-m5dC).poly (rG-m5dC) shows that it is in the A conformation at intermediate salt concentrations. From this we conclude that poly (rG-m5dC).poly (rG-m5dC) is in a regular A conformation in Tris buffer at low Na+ levels, shifting to an alternating A conformation with a dinucleotide repeat at intermediate salt concentrations.  相似文献   

16.
Chemically synthesized 2-azaadenosine 5'-diphosphate (n2ADP) and 2-azainosine 5'-diphosphate (n2IDP) were polymerized to yield poly(2-azaadenylic acid), poly(n2A), and poly(2-azainosinic acid), poly(n2I), using Escherichia coli polynucleotide phosphorylase. In neutral solution, poly(n2A) and poly(n2I) had hypochromicities of 32 and 5.5%, respectively. Poly(n2A) formed an ordered structure, which had a melting temperature (Rm) of 20 degrees C at 0.15 M salt concentration. Upon mixing with poly(U), poly(n2A) formed a 1 : 2 complex with Tm of 41 degrees C at 0.15 M salt concentration. Poly(n2A) and poly(n2I) formed three-stranded complexes with poly(I), and poly(A), respectively. Poly(n2A) . 2poly(I), poly(A) . 2poly(n2I), and poly(n2A) . 2poly(n2I) complexes had Tm values of 23, 48, and 31 degrees C at 0.15 M salt concentration, respectively. Poly(n2I) formed a double-stranded complex with poly(C), but its Tm was very low.  相似文献   

17.
T J Thomas  R P Messner 《Biochimie》1988,70(2):221-226
The effects of Ru(NH3)(3+)6 on the conformation of poly(dG-m5dC).poly(dG-m5dC) and poly(dG-dC).poly(dG-dC) were studied by circular dichroism (CD) spectroscopy. Ru(NH3)(3+)6 at very low concentrations provokes the Z-DNA conformation in both polynucleotides. In the presence of 50 mM NaCl, the concentration of Ru(NH3)(3+)6 at the midpoint of B to Z transition of poly(dG-m5dC).poly(dG-m5dC) is 4 microM compared to 5 microM for Co(NH3)(3+)6. The half-lives of B to Z transition of poly(dG-m5dC).poly(dG-m5dC) in the presence of 10 microM Ru(NH3)(3+)6 and Co(NHG3)(3+)6 are at 23 and 30 min, respectively. The concentration of Ru(NH3)(3+)6 at the midpoint of B to Z transition of poly(dG-dC).poly(dG-dC) is 50 microM. These results demonstrate that Ru(NH3)(3+)6 is a highly efficient trivalent cation for the induction of B to Z transition in poly(dG-m5dC).poly(dG-m5dC) and poly(dG-dC).poly(dG-dC). In contrast, Ru(NH3)(3+)6 has no significant effect on the conformation of calf thymus DNA, poly(dA-dT).poly(dA-dT) and poly(dA-dC).poly(dG-dT).  相似文献   

18.
19.
M J Behe 《Biopolymers》1986,25(3):519-523
The vacuum CD spectra of poly(rG-dC)·poly(rG-dC) and poly(dG-m5dC)·poly(dG-m5dC) have been obtained for the low-salt Z-conformations of both polymers. The spectra are very similar to those for the high-salt Z-forms. This behavior is consistent with the suggestion that the low- and high-salt Z-forms are comprised of different proportions of ZI- and ZII-conformations.  相似文献   

20.
Many orthopoxvirus messenger RNAs have an unusual nontemplated poly(A) tract of 5 to 40 residues at the 5' end. The precise function of this feature is unknown. Here we show that 5' poly(A) tracts are able to repress RNA decay by inhibiting 3'-to-5' exonucleases as well as decapping of RNA substrates. UV cross-linking analysis demonstrated that the Lsm complex associates with the 5' poly(A) tract. Furthermore, recombinant Lsm1-7 complex specifically binds 5' poly(A) tracts 10 to 21 nucleotides in length, consistent with the length of 5' poly(A) required for stabilization. Knockdown of Lsm1 abrogates RNA stabilization by the 5' poly(A) tract. We propose that the Lsm complex simultaneously binds the 3' and 5' ends of these unusual messenger RNAs and thereby prevents 3'-to-5' decay. The implications of this phenomenon for cellular mRNA decay are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号