首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of a diet either high or low in carbohydrates (CHO)on exogenous 13C-labeled glucoseoxidation (200 g) during exercise (ergocycle: 120 min at 64.0 ± 0.5% maximal oxygen uptake) was studied in six subjects. Between 40 and 80 min, exogenous glucose oxidation was significantly higher afterthe diet low in CHO (0.63 ± 0.05 vs. 0.52 ± 0.04 g/min), butthis difference disappeared between 80 and 120 min (0.71 ± 0.03 vs.0.69 ± 0.04 g/min). The oxidation rate of plasma glucose, computedfrom the volume of13CO2produced the13C-to-12Cratio in plasma glucose at 80 min, and of glucose released from theliver, computed from the difference between plasma glucose andexogenous glucose oxidation, was higher after the diet low in CHO (1.68 ± 0.26 vs. 1.41 ± 0.17 and 1.02 ± 0.20 vs. 0.81 ± 0.14 g/min, respectively). In contrast the oxidation rate ofglucose plus lactate from muscle glycogen (computed from the difference between total CHO oxidation and plasma glucose oxidation) was lower(0.31 ± 0.35 vs. 1.59 ± 0.20 g/min). After a diet low in CHO,the oxidation of exogenous glucose and of glucose released from theliver is increased and partly compensates for the reduction in muscleglycogen availability and oxidation.

  相似文献   

2.
The purpose of this study was to compare the oxidation of[13C]glucose (100 g)ingested at rest or during exercise in six trained (TS) and sixsedentary (SS) male subjects. The oxidation of plasma glucose was alsocomputed from the volume of13CO2and13C/12Cin plasma glucose to compute the oxidation rate of glucose released from the liver and from glycogen stores in periphery (mainly muscle glycogen stores during exercise). At rest, oxidative disposal of bothexogenous (8.3 ± 0.3 vs. 6.6 ± 0.8 g/h) and liver glucose (4.4 ± 0.5 vs. 2.6 ± 0.4 g/h) was higher in TS than in SS.This could contribute to the better glucose tolerance observed at rest in TS. During exercise, for the same absolute workload [140 ± 5 W: TS = 47 ± 2.5; SS = 68 ± 3 %maximal oxygen uptake(O2 max)], [13C]glucose oxidationwas higher in TS than in SS (39.0 ± 2.6 vs. 33.6 ± 1.2 g/h),whereas both liver glucose (16.8 ± 2.4 vs. 24.0 ± 1.8 g/h) and muscle glycogen oxidation (36.0 ± 3.0 vs. 51.0 ± 5.4 g/h) were lower. For the same relative workload (68 ± 3% O2 max:TS = 3.13 ± 0.96; SS = 2.34 ± 0.60 lO2/min), exogenous glucose(44.4 ± 1.8 vs. 33.6 ± 1.2 g/h) and muscle glycogen oxidation (73.8 ± 7.2 vs. 51.0 ± 5.4 g/h) were higher in TS. However,despite a higher energy expenditure in TS, liver glucose oxidation was similar in both groups (22.2 ± 3.0 vs. 24.0 ± 1.8 g/h). Thus exogenous glucose oxidation was selectively favored in TSduring exercise, reducing both liver glucose and muscle glycogen oxidation.

  相似文献   

3.
Jeukendrup, Asker E., Lars B. Borghouts, Wim H. M. Saris,and Anton J. M. Wagenmakers. Reduced oxidation rates of ingested glucose during prolonged exercise with low endogenous CHO availability. J. Appl. Physiol. 81(5):1952-1957, 1996.This study investigated the effect of endogenouscarbohydrate (CHO) availability on oxidation rates of ingested glucoseduring moderate-intensity exercise. Seven well-trained cyclistsperformed two trials of 120 min of cycling exercise in random order at57% maximal O2 consumption. Preexercise glycogen concentrations were manipulated byglycogen-lowering exercise in combination with CHO restriction[low-glycogen (LG) trial] or CHO loading[moderate-to-high-glycogen (HG) trial]. In the LG and HGtrials, subjects ingested 4 ml/kg body wt of an 8% corn-derivedglucose solution of high natural13C abundance at the start,followed by boluses of 2 ml/kg every 15 min. The third trial, in whichpotato-derived glucose was ingested, served as a control test forbackground correction. Exogenous glucose oxidation rates werecalculated from the 13C enrichmentof the ingested glucose and of the breathCO2. Total CHO oxidation was lowerin the LG trial than in the HG trial during 60-120 min of exercise[84 ± 7 (SE) vs. 116 ± 8 g;P < 0.05]. Exogenous CHOoxidation in this period was 28% lower in the LG trial compared withthe HG trial. Maximal exogenous oxidation rates were also lower(P < 0.05) in the LG trial (0.64 ± 0.05 g/min) than in the HG trial (0.88 ± 0.04 g/min). Thisdecreased utilization of exogenous glucose was accompanied by increased plasma free fatty acid levels (2-3 times higher) and lower insulin concentrations. It is concluded that glycogen-lowering exercise, performed the evening before an exercise bout, in combination with CHOrestriction leads to a reduction of the oxidation rate of ingestedglucose during moderate-intensity exercise.

  相似文献   

4.
We studied the effects of the glycemicindex (GI) of preexercise meals on metabolism and performance whencarbohydrate (CHO) was ingested throughout exercise. Six well-trainedcyclists performed three counterbalanced trials of 2-h cycling at~70% of maximal oxygen uptake, followed by a performance ride of 300 kJ. Meals consumed 2 h before exercise consisted of 2 g CHO/kg bodymass of either high-GI potato (HGI trial) or low-GI pasta (LGI trial), or of a low-energy jelly (Con trial). Immediately before and throughout exercise, subjects ingested a 10 g/100 ml[U-14C]glucosesolution for a total of 24 ml/kg body mass. Despite differences inpreexercise glucose, insulin, and free fatty acids concentrations amongtrials, both total CHO oxidation for HGI, LGI, and Con trials,respectively, during steady-state exercise [403 ± 16, 376 ± 29, and 373 ± 24 (SE) g/2 h] andoxidation of the ingested CHO (65 ± 6, 57 ± 6, and 63 ± 5 g/2 h) were similar. There was no difference in time tocomplete the subsequent performance ride (946 ± 23, 954 ± 35, and 970 ± 26 s for HGI, LGI, and Con trials, respectively). WhenCHO is ingested during exercise in amounts presently recommended bysports nutrition guidelines, preexercise CHO intake has little effecton metabolism or on subsequent performance during prolonged cycling(~2.5 h).

  相似文献   

5.
This investigation examined the effects ofNaHCO3 loading on lactateconcentration ([La]), acid-base balance, and performance for a 603.5-m sprint task. Ten greyhounds completed aNaHCO3 (300 mg/kg body weight) andcontrol trial in a crossover design. Results are expressed as means ± SE. Presprint differences (P < 0.05) were found for NaHCO3 vs.control, respectively, for blood pH (7.47 ± 0.01 vs. 7.42 ± 0.01), HCO3 (28.4 ± 0.4 vs. 23.5 ± 0.3 meq/l), and base excess (5.0 ± 0.3 vs. 0.2 ± 0.3 meq/l). Peak blood [La] increased(P < 0.05) inNaHCO3 vs. control (20.4 ± 1.6 vs. 16.9 ± 1.3 mM, respectively). Relative to control,NaHCO3 produced a greater(P < 0.05) reduction in blood baseexcess (18.5 ± 1.4 vs. 14.1 ± 0.8 meq/l) andHCO3 (17.4 ± 1.2 vs.12.8 ± 0.7 meq/l) from presprint to postexercise. Postexercise peak muscle H+concentration ([H+])was higher (P < 0.05) inNaHCO3 vs. control (158.8 ± 8.8 vs. 137.0 ± 5.3 nM, respectively). Muscle[H+] recoveryhalf-time (7.2 ± 1.6 vs. 11.3 ± 1.6 min) and time to predosevalues (22.2 ± 2.4 vs. 32.9 ± 4.0 min) were reduced(P < 0.05) inNaHCO3 vs. control, respectively.No differences were found in blood[H+] or blood[La] recovery curves or performance times.NaHCO3 increased postexerciseblood [La] but did not reduce the muscle or blood acid-basedisturbance associated with a 603.5-m sprint or significantly affectperformance.

  相似文献   

6.
We used anexercise paradigm with repeated bouts of heavy forearm exercise to testthe hypothesis that alterations in local acid-base environment thatremain after the first exercise result in greater blood flow andO2 delivery at the onset of the second bout of exercise.Two bouts of handgrip exercise at 75% peak workload were performed for5 min, separated by 5 min of recovery. We continuously measured bloodflow using Doppler ultrasound and sampled venous blood forO2 content, PCO2, pH, and lactateand potassium concentrations, and we calculated muscle O2uptake (O2). Forearm blood flow waselevated before the second exercise compared with the first andremained higher during the first 30 s of exercise (234 ± 18 vs. 187 ± 4 ml/min, P < 0.05). Flow was notdifferent at 5 min. Arteriovenous O2 content difference waslower before the second bout (4.6 ± 0.9 vs. 7.2 ± 0.7 mlO2/dl) and higher by 30 s of exercise(11.2 ± 0.7 vs. 10.8 ± 0.7 ml O2/dl,P < 0.05). Muscle O2was unchanged before the start of exercise but was elevated during thefirst 30 s of the transition to the second exercise bout(26.0 ± 2.1 vs. 20.0 ± 0.9 ml/min, P < 0.05). Changes in venous blood PCO2, pH, andlactate concentration were consistent with reduced reliance onanaerobic glycolysis at the onset of the second exercise bout. Thesedata show that limitations of muscle blood flow can restrict theadaptation of oxidative metabolism at the onset of heavy muscular exertion.

  相似文献   

7.
We demonstrated previously that thrombin stimulation of endothelial cells activates a membrane-associated, Ca2+-independent phospholipase A2 (iPLA2) that selectively hydrolyzes arachidonylated plasmalogen phospholipids. We report that incubation of human coronary artery endothelial cells (HCAEC) with phorbol 12-myristate 13-acetate (PMA) to activate protein kinase C (PKC) resulted in hydrolysis of cellular phospholipids similar to that observed with thrombin stimulation (0.05 IU/ml; 10 min). Thrombin stimulation resulted in a decrease in arachidonylated plasmenylcholine (2.7 ± 0.1 vs. 5.3 ± 0.4 nmol PO4/mg of protein) and plasmenylethanolamine (7.5 ± 1.0 vs. 12.0 ± 0.9 nmol PO4/mg of protein). Incubation with PMA resulted in decreases in arachidonylated plasmenylcholine (3.2 ± 0.3 nmol PO4/mg of protein) and plasmenylethanolamine (6.0 ± 1.0 nmol PO4/mg of protein). Incubation of HCAEC with the selective iPLA2 inhibitor bromoenol lactone (5 mM; 10 min) inhibited accelerated plasmalogen phospholipid hydrolysis in response to both PMA and thrombin stimulation. Incubation of HCAEC with PMA (100 nM; 5 min) resulted in increased arachidonic acid release (7.1 ± 0.3 vs. 1.1 ± 0.1%) and increased production of lysoplasmenylcholine (1.4 ± 0.2 vs. 0.6 ± 0.1 nmol PO4/mg of protein), similar to the responses observed with thrombin stimulation. Downregulation of PKC by prolonged exposure to PMA (100 nM; 24 h) completely inhibited thrombin-stimulated increases in arachidonic acid release (7.1 ± 0.6 to 0.5 ± 0.1%) and lysoplasmenylcholine production (2.0 ± 0.1 to 0.2 ± 0.1 nmol PO4/mg of protein). These data suggest that PKC activates iPLA2 in HCAEC, leading to accelerated plasmalogen phospholipid hydrolysis and increased phospholipid metabolite production. lysophospholipids; cell signaling; phospholipid metabolism; arachidonic acid  相似文献   

8.
The role ofnitric oxide (NO) in the cholinergic regulation of heart rate(HR) recovery from an aspect of simulated exercise wasinvestigated in atria isolated from guinea pig to test the hypothesisthat NO may be involved in the cholinergic antagonism of the positivechronotropic response to adrenergic stimulation. Inhibition of NOsynthesis withNG-monomethyl-L-arginine(L-NMMA, 100 µM) significantlyslowed the time course of the reduction in HR without affecting themagnitude of the response elicited by bath-applied ACh (100 nM) orvagal nerve stimulation (2 Hz). The half-times(t1/2) of responses were 3.99 ± 0.41 s in control vs. 7.49 ± 0.68 s inL-NMMA(P < 0.05). This was dependent onprior adrenergic stimulation (norepinephrine, 1 µM). The effect ofL-NMMA was reversed byL-arginine (1 mM; t1/2 4.62 ± 0.39 s). The calcium-channelantagonist nifedipine (0.2 µM) also slowed the kinetics of thereduction in HR caused by vagal nerve stimulation. However, thet1/2 for the reduction in HR with antagonists (2 mM Cs+ and 1 µM ZD-7288) of thehyperpolarization-activated current were significantlyfaster compared with control. There was no additional effect ofL-NMMA orL-NMMA+L-arginineon vagal stimulation in groups treated with nifedipine,Cs+, or ZD-7288. Weconclude that NO contributes to the cholinergic antagonism of thepositive cardiac chronotropic effects of adrenergic stimulation byaccelerating the HR response to vagal stimulation. This may involve aninterplay between two pacemaking currents (L-type calcium channelcurrent and hyperpolarization-activated current). Whether NO modulatesthe vagal control of HR recovery from actual exercise remains to bedetermined.

  相似文献   

9.
We employed a glycogen-depleting session of exercise followed by a low-carbohydrate (CHO) diet to investigate modifications that occur in muscle sarcoplasmic reticulum (SR) Ca2+-cycling properties compared with low-CHO diet alone. SR properties were assessed in nine untrained males [peak aerobic power (O2 peak) = 43.6 ± 2.6 (SE) ml·kg–1·min–1] during prolonged cycle exercise to fatigue performed at 58% O2 peak after 4 days of low-CHO diet (Lo CHO) and after glycogen-depleting exercise plus 4 days of low-CHO (Ex+Lo CHO). Compared with Lo CHO, Ex+Lo CHO resulted in 12% lower (P < 0.05) resting maximal Ca2+-ATPase activity (Vmax = 174 ± 12 vs. 153 ± 10 µmol·g protein–1·min–1) and smaller reduction in Vmax induced during exercise. A similar effect was observed for Ca2+ uptake. The Hill coefficient, defined as slope of the relationship between cytosolic free Ca2+ concentration and Ca2+-ATPase activity, was higher (P < 0.05) at rest (2.07 ± 0.15 vs. 1.90 ± 0.10) with Ex+Lo CHO, an effect that persisted throughout the exercise. The coupling ratio, defined as the ratio of Ca2+ uptake to Vmax, was 23–30% elevated (P < 0.05) at rest and during the first 60 min of exercise with Ex+Lo CHO. The 27 and 34% reductions (P < 0.05) in phase 1 and phase 2 Ca2+ release, respectively, observed during exercise with Lo CHO were not altered by Ex+Lo CHO. These results indicate that when prolonged exercise precedes a short-term Lo CHO diet, Ca2+ sequestration properties and efficiency are improved compared with those during Lo CHO alone. calcium cycling; vastus lateralis; contractile activity; glycogen; phosphorylation potential  相似文献   

10.
Ramires, P. R., C. L. M. Forjaz, C. M. C. Strunz, M. E. R. Silva, J. Diament, W. Nicolau, B. Liberman, and C. E. Negrão. Oral glucose ingestion increases endurance capacity in normal anddiabetic (type I) humans. J. Appl.Physiol. 83(2): 608-614, 1997.The effects of anoral glucose administration (1 g/kg) 30 min before exercise onendurance capacity and metabolic responses were studied in 21 type Idiabetic patients [insulin-dependent diabetes mellitus(IDDM)] and 23 normal controls (Con). Cycle ergometer exercise (55-60% of maximalO2 uptake) was performed untilexhaustion. Glucose administration significantly increased endurancecapacity in Con (112 ± 7 vs. 125 ± 6 min,P < 0.05) but only in IDDM patientswhose blood glucose decreased during exercise (70.8 ± 8.2 vs. 82.8 ± 9.4 min, P < 0.05).Hyperglycemia was normalized at 15 min of exercise in Con (7.4 ± 0.2 vs. 4.8 ± 0.2 mM) but not in IDDM patients (12.4 ± 0.7 vs.15.6 ± 0.9 mM). In Con, insulin and C-peptide levels werenormalized during exercise. Glucose administration decreased growthhormone levels in both groups. In conclusion, oral glucose ingestion 30 min before exercise increases endurance capacity in Con and in someIDDM patients. In IDDM patients, in contrast with Con, exercise to exhaustion attenuates hyperglycemia but does not bring blood glucose levels to preglucose levels.

  相似文献   

11.
Training-induced alterations of glucose flux in men   总被引:5,自引:0,他引:5  
Friedlander, Anne L., Gretchen A. Casazza, Michael A. Horning, Melvin J. Huie, and George A. Brooks. Training-induced alterations of glucose flux in men. J. Appl.Physiol. 82(4): 1360-1369, 1997.We examined thehypothesis that glucose flux was directly related to relative exerciseintensity both before and after a 10-wk cycle ergometer trainingprogram in 19 healthy male subjects. Two pretraining trials [45and 65% of peak O2 consumption(O2 peak)] andtwo posttraining trials (same absolute and relative intensities as 65%pretraining) were performed for 90 min of rest and 1 h of cyclingexercise. After training, subjects increasedO2 peak by9.4 ± 1.4%. Pretraining, the intensity effect on glucose kinetics was evident with rates of appearance(Ra; 5.84 ± 0.23 vs. 4.73 ± 0.19 mg · kg1 · min1),disappearance (Rd; 5.78 ± 0.19 vs. 4.73 ± 0.19 mg · kg1 · min1),oxidation (Rox; 5.36 ± 0.15 vs. 3.41 ± 0.23 mg · kg1 · min1),and metabolic clearance (7.03 ± 0.56 vs. 5.20 ± 0.28 ml · kg1 · min1)of glucose being significantly greater(P  0.05) in the 65% than the 45%O2 peak trial. WhenRd was expressed as a percentage of total energy expended per minute(Rd E), there was nodifference between the 45 and 65% intensities. Training did reduceRa (4.63 ± 0.25),Rd (4.65 ± 0.24),Rox (3.77 ± 0.43), andRd E (15.30 ± 0.40 to12.85 ± 0.81) when subjects were tested at the same absolute workload (P  0.05). However, whenthey were tested at the same relative workload,Ra,Rd, andRd E were not different,although Rox was lowerposttraining (5.36 ± 0.15 vs. 4.41 ± 0.42, P  0.05). These results show1) glucose use is directly relatedto exercise intensity; 2) trainingdecreases glucose flux for a given power output;3) when expressed as relativeexercise intensity, training does not affect the magnitude of bloodglucose use during exercise; 4)training alters the pathways of glucose disposal.

  相似文献   

12.
The hypothesisthat vascular protection in females and its absence in males reflectsgender differences in [Ca2+]i andCa2+ mobilization mechanisms of vascular smooth musclecontraction was tested in fura 2-loaded aortic smooth muscle cellsisolated from intact and gonadectomized male and female Wistar-Kyoto(WKY) and spontaneously hypertensive (SHR) rats. In WKY cells incubated in Hanks' solution (1 mM Ca2+), the resting length and[Ca2+]i were significantlydifferent in intact males (64.5 ± 1.2 µm and 83 ± 3 nM) than inintact females (76.5 ± 1.5 µm and 64 ± 7 nM). In intact male WKY,phenylephrine (Phe, 105 M) caused transient increasein [Ca2+]i to 428 ± 13 nMfollowed by maintained increase to 201 ± 8 nM and 32% cellcontraction. In intact female WKY, the Phe-induced [Ca2+]i transient was notsignificantly different, but the maintained [Ca2+]i (159 ± 7 nM) and cellcontraction (26%) were significantly less than in intact male WKY. InCa2+-free (2 mM EGTA) Hanks', Phe and caffeine (10 mM)caused transient increases in[Ca2+]i and contraction that werenot significantly different between males and females. Membranedepolarization by 51 mM KCl caused 31% cell contraction and increased[Ca2+]i to 259 ± 9 nM in intactmale WKY, which were significantly greater than a 24% contraction and214 ± 8 nM [Ca2+]i in intactfemale WKY. Maintained Phe- and KCl-stimulated cell contraction and[Ca2+]i were significantly greaterin SHR than WKY in all groups of rats. Reduction in cell contractionand [Ca2+]i in intact femalescompared with intact males was significantly greater in SHR (~30%)than WKY (~20%). No significant differences in cell contraction or[Ca2+]i were observed betweencastrated males, ovariectomized (OVX) females, and intact males, orbetween OVX females with 17-estradiol implants and intact females.Exogenous application of 17-estradiol (108 M) tocells from OVX females caused greater reduction in Phe- and KCl-inducedcontraction and [Ca2+]i in SHR thanWKY. Thus the basal, maintained Phe- and depolarization-induced [Ca2+]i and contraction of vascularsmooth muscle triggered by Ca2+ entry from theextracellular space exhibit differences depending on gender and thepresence or absence of female gonads. Cell contraction and[Ca2+]i due to Ca2+release from the intracellular stores are not affected by gender or gonadectomy. Gender-specific reduction in contractility and [Ca2+]i in vascular smoothmuscle of female rats is greater in SHR than WKY rats.

  相似文献   

13.
The provision of additional protein (Pro)to a carbohydrate (CHO) supplement resulted in an enhanced rate ofmuscle glycogen resynthesis after endurance exercise (Zawadzki et al.,J. Appl. Physiol. 72: 1854-1859,1992). A comparison of isoenergetic CHO and CHO/Pro formula drinks onmuscle glycogen resynthesis has not been examined after eitherendurance or resistance exercise. We studied the effect of isoenergeticCHO (1 g/kg) and CHO/Pro/fat (66% CHO, 23% Pro, 11% fat) definedformula drinks and placebo (Pl) given immediately(t = 0 h) and 1 h(t = +1 h) after resistance exercisein 10 healthy young men. They performed a whole body workout (9 exercises/3 sets at 80% 1 repetition maximum) with unilateral kneeextension exercise [exercise (Ex) and control (Con) leg].The CHO/Pro/fat and CHO trials resulted in significantly greater(P < 0.05) plasma insulin andglucose concentration compared with Pl. Muscle glycogen wassignificantly lower (P < 0.05) for the Ex vs. Con leg immediately postexercise for all three conditions. The rate of glycogen resynthesis was significantly greater(P < 0.05) for both CHO/Pro/fat andCHO (23.0 ± 4.5 and 19.3 ± 6.1 mmol · kg drymuscle1 · h1,respectively) vs. Pl (Ex = 2.8 ± 2.3 and Con = 1.4 ± 3.6 mmol · kg drymuscle1 · h1).These results demonstrated that a bout of resistance exercise resultedin a significant decrease in muscle glycogen and that consumption of anisoenergetic CHO or CHO/Pro/fat formula drink resulted in similar ratesof muscle glycogen resynthesis after resistance exercise. This suggeststhat total energy content and CHO content are important in theresynthesis of muscle glycogen.

  相似文献   

14.
Shah, Ashish R., Thomas G. Keens, and David Gozal.Effect of supplemental oxygen on supramaximal exercise performance and recovery in cystic fibrosis. J. Appl.Physiol. 83(5): 1641-1647, 1997.The effects ofsupplemental O2 on recovery fromsupramaximal exercise and subsequent performance remain unknown. Ifrecovery from exercise could be enhanced in individuals with chroniclung disease, subsequent supramaximal exercise performance could also be improved. Recovery from supramaximal exercise and subsequent supramaximal exercise performance were assessed after 10 min of breathing 100% O2 or room air(RA) in 17 cystic fibrosis (CF) patients [25 ± 10 (SD) yrold, 53% men, forced expired volume in 1 s = 62 ± 21%predicted] and 17 normal subjects (25 ± 8 yr old, 59% men,forced expired volume in 1 s = 112 ± 15% predicted). Supramaximalperformance was assessed as the work of sustained bicycling at a loadof 130% of the maximum load achieved during a graded maximal exercise.Peak minute ventilation(E) andheart rate (HR) were lower in CF patients at the end of eachsupramaximal bout than in controls. In CF patients, single-exponentialtime decay constants indicated faster recovery of HR(HR = 86 ± 8 and 73 ± 6 s in RA and O2,respectively, P < 0.01). Similarly, fast and slow time constants of two-exponential equations providing thebest fit for ventilatory recovery were improved in CF patients duringO2 breathing ( = 132.1 ± 10.5 vs. 82.5 ± 10.4 s; = 880.3 ± 300.1 vs. 368.6 ± 107.1 s,P < 0.01). However, no such improvements occurred in controls. Supramaximal performance after O2 improved in CF patients (109 ± 6% of the 1st bout after O2 vs. 94 ± 6% in RA, P < 0.01).O2 supplementation had no effect on subsequent performance in controls (97 ± 3% inO2 vs. 93 ± 3% in RA). Weconclude that supplemental O2after a short bout of supramaximal exercise accelerates recovery andpreserves subsequent supramaximal performance in patients with CF.

  相似文献   

15.
Oelberg, David A., Allison B. Evans, Mirko I. Hrovat, PaulP. Pappagianopoulos, Samuel Patz, and David M. Systrom. Skeletal muscle chemoreflex and pHi inexercise ventilatory control. J. Appl.Physiol. 84(2): 676-682, 1998.To determinewhether skeletal muscle hydrogen ion mediates ventilatory drive inhumans during exercise, 12 healthy subjects performed three bouts ofisotonic submaximal quadriceps exercise on each of 2 days in a 1.5-Tmagnet for 31P-magnetic resonancespectroscopy(31P-MRS). Bilaterallower extremity positive pressure cuffs were inflated to 45 Torr duringexercise (BLPPex) or recovery(BLPPrec) in a randomized orderto accentuate a muscle chemoreflex. Simultaneous measurements were madeof breath-by-breath expired gases and minute ventilation, arterializedvenous blood, and by 31P-MRS ofthe vastus medialis, acquired from the average of 12 radio-frequencypulses at a repetition time of 2.5 s. WithBLPPex, end-exercise minuteventilation was higher (53.3 ± 3.8 vs. 37.3 ± 2.2 l/min;P < 0.0001), arterializedPCO2 lower (33 ± 1 vs. 36 ± 1 Torr; P = 0.0009), and quadricepsintracellular pH (pHi) more acid (6.44 ± 0.07 vs. 6.62 ± 0.07; P = 0.004), compared withBLPPrec. Bloodlactate was modestly increased withBLPPex but without a change inarterialized pH. For each subject, pHi was linearly relatedto minute ventilation during exercise but not to arterialized pH. Thesedata suggest that skeletal muscle hydrogen ion contributes to theexercise ventilatory response.

  相似文献   

16.
Effects of diet on muscle triglyceride and endurance performance   总被引:10,自引:0,他引:10  
Starling, Raymond D., Todd A. Trappe, Allen C. Parcell, ChadG. Kerr, William J. Fink, and David L. Costill. Effects of diet onmuscle triglyceride and endurance performance. J. Appl. Physiol. 82(4): 1185-1189, 1997.Thepurpose of this investigation was to examine the effects of diet onmuscle triglyceride and endurance performance. Seven endurance-trainedmen completed a 120-min cycling bout at 65% of maximal oxygen uptake.Each subject then ingested an isocaloric high-carbohydrate (Hi-CHO;83% of energy) or a high-fat (Hi-Fat; 68% of energy) diet for theensuing 12 h. After a 12-h overnight fast, a 1,600-kJ self-pacedcycling bout was completed. Muscle triglyceride measured before (33.0 ± 2.3 vs. 37.0 ± 2.1 mmol/kg dry wt) and after (30.9 ± 2.4 vs. 32.8 ± 1.6 mmol/kg dry wt) the 120-min cycling bout was notdifferent between the Hi-CHO and Hi-Fat trials, respectively. After the 24-h dietary-fasting period, muscle triglyceride was significantly higher for the Hi-Fat (44.7 ± 2.4 mmol/kg dry wt) vs. the Hi-CHO (27.5 ± 2.1 mmol/kg dry wt) trial. Furthermore,self-paced cycling time was significantly greater for the Hi-Fat (139.3 ± 7.1 min) compared with the Hi-CHO (117.1 ± 3.2 min) trial.These data demonstrate that there was not a significant difference inmuscle triglyceride concentration before and after a prolongedmoderate-intensity cycling bout. Nevertheless, a high-fat dietincreased muscle triglyceride concentration and reduced self-pacedcycling performance 24 h after the exercise compared with ahigh-carbohydrate diet.

  相似文献   

17.
Although sepsis isknown to affect vascular function, little is known about changes at thecapillary level. We hypothesized that sepsis attenuates the"upstream" arteriolar response to vasoactive agents appliedlocally to capillaries. Sepsis in rats was induced by cecal ligationand perforation. After 24 h, extensor digitorum longus muscle wasprepared for intravital microscopy. Phenylephrine (PE, 10 mM) andacetylcholine (ACh, 10 mM) were applied iontophoretically on terminalarterioles and on their downstream daughter capillaries (300 µm fromarteriole). There was no significant difference between control andseptic rats in baseline arteriolar diameters [8.0 ± 0.6 vs.9.8 ± 0.8 (SE) µm] or baseline red blood cellvelocity (VRBC)in perfused daughter capillaries (255 ± 10 vs. 264 ± 13 µm/s). Application of PE onto arterioles resulted in comparable constrictions (i.e., 22% diameter change) andVRBC reductions (100%) in control and septic rats. In contrast, arteriolardiameter and VRBCincreases after application of ACh were attenuated in sepsis (diameter:from 41 to 14%;VRBC: from 67 to24%). Application of PE onto the capillary reducedVRBC to the samelevel (100%) in both groups, whereas application of AChincreased VRBCless in septic than in control rats (20 vs. 73%). On the basis ofarteriolar-capillary pair stimulations, sepsis affectedVRBC responses toACh more in the capillary than in the arteriole. When the adenosineanalog 5'-N-ethylcarboxamidoadenosine(0.1 mM) was used instead of ACh, similar effects of sepsis were seen.To test for a possible involvement of inducible NO synthase (iNOS) insepsis-induced attenuated ACh responses, arterioles and capillaries inseptic animals were locally pretreated with the iNOS blockeraminoguanidine (10 mM). In both microvessels, aminoguanidine restoredthe ACh response to the control level. We conclude that impairedcapillary VRBCand arteriolar diameter responses to vasodilators applied tocapillaries in septic rat skeletal muscle were due to dysfunction atarteriolar and capillary levels. The study underscores the significantrole iNOS/NO may play in sepsis-induced alteration of vascularreactivity in vivo.

  相似文献   

18.
Hornum, Mette, Dan M. Cooper, Jo Anne Brasel, Alina Bueno,and Kathy E. Sietsema. Exercise-induced changes in circulating growth factors and cyclic variation in plasma estradiol in women. J. Appl. Physiol. 82(6):1946-1951, 1997.The effect of 10 min of high-intensity cyclingexercise on circulating growth hormone (GH), insulin-like growthfactors I and II (IGF-I and -II), and insulin-like growth factorbinding protein 3 (IGF BP-3) was studied in nine eumenorrheic women(age 19-48 yr) at two different phases of the menstrual cycle.Tests were performed on separate mornings corresponding to thefollicular phase and to the periovulatory phase of the menstrual cycle,during which plasma levels of endogenous estradiol(E2) were relatively low (272 ± 59 pmol/l) and high (1,112 ± 407 pmol/l), respectively. GHincreased significantly in response to exercise under bothE2 conditions. Plasma GH before exercise (2.73 ± 2.48 vs. 1.71 ± 2.09 µg/l) and total GH over 10 min of exercise and 1-h recovery (324 ± 199 vs. 197 ± 163 ng) were both significantly greater for periovulatory phase than for follicular phase studies. IGF-I, but not IGF-II, increased acutely after exercise. IGF BP-3, assayed by radioimmunoassay, was not significantly different at preexercise, end exercise, or at 30-min recovery time points and was not different between the two study days.When assayed by Western blot, however, there was a significant increasein IGF BP-3 30 min after exercise for the periovulatory study. Thesefindings indicate that the modulation of GH secretion associated withmenstrual cycle variations in circulatingE2 affects GH measured afterexercise, at least in part, by an increase in baseline levels. Theacute increase in IGF-I induced by exercise appears to be independentof the GH response and is not affected by menstrual cycle timing.

  相似文献   

19.
Human growth hormone response to repeated bouts of aerobic exercise   总被引:4,自引:0,他引:4  
Kanaley, J. A., J. Y. Weltman, J. D. Veldhuis, A. D. Rogol,M. L. Hartman, and A. Weltman. Human growth hormone response torepeated bouts of aerobic exercise. J. Appl.Physiol. 83(5): 1756-1761, 1997.We examinedwhether repeated bouts of exercise could override growth hormone (GH)auto-negative feedback. Seven moderately trained men were studied onthree occasions: a control day (C), a sequential exercise day (SEB; at1000, 1130, and 1300), and a delayed exercise day (DEB; at 1000, 1400, and 1800). The duration of each exercise bout was 30 min at 70%maximal O2 consumption (O2 max) on a cycleergometer. Standard meals were provided at 0600 and 2200. GH wasmeasured every 5-10 min for 24 h (0800-0800). Daytime(0800-2200) integrated GH concentrations were ~150-160% greater during SEB and DEB than during C: 1,282 ± 345, 3,192 ± 669, and 3,389 ± 991 min · µg · l1for C, SEB, and DEB, respectively [SEB > C(P < 0.06), DEB > C(P < 0.03)]. There were nodifferences in GH release during sleep (2300-0700). Deconvolutionanalysis revealed that the increase in 14-h integrated GH concentrationon DEB was accounted for by an increase in the mass of GH secreted perpulse (per liter of distribution volume,lv): 7.0 ± 2.9 and 15.9 ± 2.6 µg/lv for C and DEB,respectively (P < 0.01). Comparisonof 1.5-h integrated GH concentrations on the SEB and DEB days (30 minexercise + 60 min recovery) revealed that, with each subsequentexercise bout, GH release apparently increased progressively, with aslightly greater increase on the DEB day [SEB vs. DEB: 497 ± 162 vs. 407 ± 166 (bout 1), 566 ± 152 vs. 854 ± 184 (bout2), and 633 ± 149 vs. 1,030 ± 352 min · µg · l1(bout 3),P < 0.05]. We conclude thatthe GH response to acute aerobic exercise is augmented with repeatedbouts of exercise.

  相似文献   

20.
Twenty-eighthealthy women (ages 27.2 ± 6.4 yr) with widely varying fitnesslevels [maximal O2consumption (O2 max),31-70 ml · kg1 · min1]first completed a progressive incremental treadmill test to O2 max (totalduration, 13.3 ± 1.4 min; 97 ± 37 s at maximal workload), rested for 20 min, and then completed a constant-load treadmill test at maximal workload (total duration, 143 ± 31 s). Atthe termination of the progressive test, 6 subjects had maintained arterial PO2(PaO2) near resting levels, whereas 22 subjects showed a >10 Torr decrease inPaO2 [78.0 ± 7.2 Torr, arterial O2 saturation(SaO2), 91.6 ± 2.4%], andalveolar-arterial O2 difference (A-aDO2,39.2 ± 7.4 Torr). During the subsequent constant-load test, allsubjects, regardless of their degree of exercise-induced arterialhypoxemia (EIAH) during the progressive test, showed a nearly identicaleffect of a narrowed A-aDO2(4.8 ± 3.8 Torr) and an increase inPaO2 (+5.9 ± 4.3 Torr) andSaO2 (+1.6 ± 1.7%) compared with atthe end point of the progressive test. Therefore, EIAH during maximalexercise was lessened, not enhanced, by prior exercise, consistent withthe hypothesis that EIAH is not caused by a mechanismwhich persists after the initial exercise period and is aggravated bysubsequent exercise, as might be expected of exercise-inducedstructural alterations at the alveolar-capillary interface. Rather,these findings in habitually active young women point to a functionallybased mechanism for EIAH that is present only during the exerciseperiod.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号