首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Skeletal muscles exhibit great plasticity and an ability to reconstruct in response to injury. However, the repair process is often inefficient and hindered by the development of fibrosis. We explored the possibility that during muscle repair, the different regeneration ability of the fast (extensor digitorum longus; EDL) and slow twitch (Soleus) muscles depends on the differential expression of metalloproteinases (MMP-9 and MMP-2) involved in the remodeling of the extracellular matrix. Our results show that MMP-9 and MMP-2 are present in the intact muscle and are up-regulated after crush-induced muscle injury. The expression and the activity of these two enzymes depend on the type of muscle and the phase of muscle regeneration. In the regenerating Soleus muscle, elevated levels of MMP-9 occurred during the myolysis and reconstruction phase. In contrast, regenerating EDL muscles exhibited decreased MMP-9 levels during myolysis and increased MMP-2 activity at the reconstruction phase. Moreover, satellite cells (mononuclear myoblasts) derived from Soleus and EDL muscles showed no differences in localization or activity of MMP-9 and MMP-2 during proliferation and differentiation in vitro. MMP-9 activity was present during all stages of myoblast differentiation, whereas MMP-2 activity reached its highest level during myoblast fusion. We conclude that MMPs are involved in muscle repair, and that fast and slow twitch muscles exhibit different patterns of MMP-9 and MMP-2 activity.  相似文献   

2.
Postnatal myoblasts, the satellite cells, originating from slow and fast skeletal muscle fibres differentiate and fuse into myotubes expressing different phenotype of myosin heavy chain (MyHC) isoforms. Little is known, however, of factors which establish and maintain this phenotypic diversity. We used immunofluorescent labelling and Western blotting to examine the expression of slow and fast MyHC isoforms in myotubes formed in vitro from satellite cells isolated from mouse fast twitch extensor digitorum longus (EDL) and slow twitch soleus muscles. Satellite cells were cultured in serum-rich growth medium promoting myoblast proliferation until cross-striated and self-contracting myotubes were formed. We report that in both cultures myotubes expressed slow as well as fast MyHC isoforms, but the level of slow MyHC was higher in soleus culture than in EDL culture. Hence, the pattern of expression of slow and fast MyHC was characteristic of the muscle fibre type from which these cells derive. These results support the concept of phenotypic diversity among satellite cells in mature skeletal muscles and suggest that this diversity is generated in vitro irrespectively of serum mitogens.  相似文献   

3.
4.
Following muscle damage, fast- and slow-contracting fibers regenerate, owing to the activation of their satellite cells. In rats, crush-induced regeneration of extensor digitorum longus (EDL, a fast muscle) and soleus (a slow muscle) present different characteristics, suggesting that intrinsic differences exist among their satellite cells. An in vitro comparative study of the proliferation and differentiation capacities of satellite cells isolated from these muscles is presented there. We observed several differences between soleus and EDL satellite cell cultures plated at high density on gelatin-coated dishes. Soleus satellite cells proliferated more actively and fused into myotubes less efficiently than EDL cells. The rate of muscular creatine kinase enzyme appeared slightly lower in soleus than in EDL cultures at day 11 after plating, when many myotubes were formed, although the levels of muscular creatine kinase mRNA were similar in both cultures. In addition, soleus cultures expressed higher levels of MyoD and myogenin mRNA and of MyoD protein than EDL satellite cell cultures at day 12. A clonal analysis was also carried out on both cell populations in order to determine if distinct lineage features could be detected among satellite cells derived from EDL and soleus muscles. When plated on gelatin at clonal density, cells from both muscles yielded clones within 2 weeks, which stemmed from 3–15 mitotic cycles and were classified into three classes according to their sizes. Myotubes resulting from spontaneous fusion of cells from the progeny of one single cell were seen regardless of the clone size in the standard culture medium we used. The proportion of clones showing myotubes in each class depended on the muscle origin of the cells and was greater in EDL- than in soleus-cell cultures. In addition, soleus cells were shown to improve their differentiation capacity upon changes in the culture condition. Indeed, the proportions of clones showing myotubes, or of cells fusing into myotubes in clones, were increased by treatments with a myotube-conditioned medium, with phorbol ester, and by growth on extra-cellular matrix components (Matrigel). These results, showing differences among satellite cells from fast and slow muscles, might be of importance to muscle repair after trauma and in pathological situations.  相似文献   

5.
In this report, we focused on Pax3 and Pax7 expression in vitro during myoblast differentiation and in vivo during skeletal muscle regeneration. We showed that Pax3 and Pax7 were present in EDL (extensor digitorum longus) and Soleus muscle derived cells. These cells express in vitro a similar level of Pax3 mRNA, however, differ in the levels of mRNA encoding Pax7. Analysis of Pax3 and Pax7 proteins showed that Soleus and EDL satellite cells differ in the level of Pax3/7 proteins and also in the number of Pax3/7 positive cells. Moreover, Pax3/7 expression was restricted to undifferentiated cells, and both proteins were absent at further stages of myoblast differentiation, indicating that Pax3 and Pax7 are down-regulated during myoblast differentiation. However, we noted that the population of undifferentiated Pax3/7 positive cells was constantly present in both in vitro cultured satellite cells of EDL and Soleus. In contrast, there was no significant difference in Pax3 and Pax7 during in vivo differentiation accompanying regeneration of EDL and Soleus muscle. We demonstrated that Pax3 and Pax7, both in vitro and in vivo, participated in the differentiation and regeneration events of muscle and detected differences in the Pax7 expression pattern during in vitro differentiation of myoblasts isolated from fast and slow muscles.  相似文献   

6.
Members of the myogenic regulatory gene family, including MyoD, Myf5, Myogenin and MRF4, are specifically expressed in myoblast and skeletal muscle cells and play important roles in regulating skeletal muscle development and growth. They are capable of converting a variety of non-muscle cells into myoblasts and myotubes. To better understand their roles in the development of fish muscles, we have isolated the MyoD genomic genes from gilthead seabream (Sparus aurata), analyzed the genomic structures, patterns of expression and the regulation of muscle-specific expression. We have demonstrated that seabream contain two distinct non-allelic MyoDgenes, MyoD1 and MyoD2. Sequence analysis revealed that these two MyoD genes shared a similar gene structure. Expression studies demonstrated that they exhibited overlapping but distinct patterns of expression in seabream embryos and adult slow and fast muscles. MyoD1 was expressed in adaxial cells that give rise to slow muscles, and lateral somitic cells that give rise to fast muscles. Similarly, MyoD2 was initially expressed in both slow and fast muscle precursors. However, MyoD2 expression gradually disappeared in the adaxial cells of 10- to 15-somite-stage embryos, whereas its expression in fast muscle precursor cells was maintained. In adult skeletal muscles, MyoD1 was expressed in both slow and fast muscles, whereas MyoD2 was specifically expressed in fast muscles. Treating seabream embryos with forskolin, a protein kinase A activator, inhibited MyoD1 expression in adaxial cells, while expression in fast muscle precursors was not affected. Promoter analysis demonstrated that both MyoD1 and MyoD2 promoters could drive green fluorescence protein expression in muscle cells of zebrafish embryos. Together, these data suggest that the two non-allelic MyoD genes are functional in seabream and their expression is regulated differently in fast and slow muscles. Hedgehog signaling is required for induction of MyoDexpression in adaxial cells.  相似文献   

7.
Heart failure (HF) is characterized by limited exercise tolerance, skeletal muscle atrophy, a shift toward fast muscle fiber, and myogenic regulatory factor (MRF) changes. Reactive oxygen species (ROS) also contribute to target organ damage in this syndrome. In this study, we investigated and compared morphofunctional characteristics and gene expression in Soleus (SOL--oxidative and slow twitching muscle) and in Extensor Digitorum Longus (EDL--glycolytic and fast twitching muscle) during HF. Two groups of rats were used: control (CT) and heart failure (HF), induced by a single injection of monocrotaline. MyoD and myogenin gene expression were determined by RT-qPCR, and MHC isoforms by SDS-PAGE; muscle fiber type frequency and cross sectional area (CSA) were analyzed by mATPase. A biochemical study was performed to determine lipid hydroperoxide (LH), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD); myography was used to determine amplitude, rise time, fall time, and fatigue resistance in both muscles. HF showed SOL and EDL muscle atrophy in all muscle fiber types; fiber frequency decreased in type IIC and muscle contraction fall time increased only in SOL muscle. Myogenin mRNA expression was lower in SOL and myoD decreased in HF EDL muscle. LH increased, and SOD and GSH-Px activity decreased only in HF SOL muscle. HF EDL muscle did not present changes in MHC distribution, contractile properties, HL concentration, and antioxidant enzyme activity. In conclusion, our results indicate that monocrotaline induced HF promoted more prominent biochemical, morphological and functional changes in SOL (oxidative and slow twitching muscle). Although further experiments are required to better determine the mechanisms involved in HF pathophysiology, our results contribute to understanding the muscle-specific changes that occur in this syndrome.  相似文献   

8.
Characterization of myogenesis from adult satellite cells cultured in vitro   总被引:1,自引:0,他引:1  
We describe several characteristics of in vitro myogenesis from adult skeletal muscle satellite cells from the rat and several amphibian species. The timing of cell proliferation and fusion into myotubes was determined, and in urodeles, myogenesis from satellite cells was clearly demonstrated for the first time. Growth factors are known to stimulate satellite cell proliferation. Acidic FGF mRNA was present in rat satellite cells during proliferation but it was not detected in myotubes. Fibronectin was synthesized in satellite cells during proliferation and expelled into the extracellular medium when the myotubes differentiated. We suggest that fibronectin plays a part in the formation of myotubes, as this process was inhibited by anti-fibronectin IgG. Adult satellite cells might differ from fetal myoblasts since they were observed to exhibit the opposite response to a phorbol ester (TPA) to that of the myoblasts. We therefore examined the possibility that the different levels of protein kinase C activity and different phorbol ester binding characteristics in the two cell types account for these opposite responses. Our results suggest that the difference is not connected with the phorbol ester receptor but might be caused by events subsequent to protein kinase C activation. Localized extracellular proteolytic activity might have a role in cell mobilization and/or fusion when satellite cells are activated. We showed that the content of plasminogen activators, chiefly urokinase, was larger in tissues from slow twitch muscles which regenerate more rapidly than fast muscles. The urokinase level rose sharply in cultures when cells fused into myotubes, and was twice as high in slow muscle cells as in fast ones. We also found that, in vitro, slow muscle satellite cells displayed greater myogenicity, but that phorbol ester inhibited their mitosis and myogenicity. We conclude that satellite cells acquire characteristics which differentiate them from myoblasts and correspond to the fast and slow muscles from which they originate.  相似文献   

9.
10.
Abstract. Satellite cells were isolated at high yields from slow-twitch soleus and fast-twitch tibialis anterior (TA) muscles of adult male Wistar rats. The number of satellite cells isolated from soleus muscle exceeded that from TA muscles by a factor of three. A comparison of satellite cells grown on gelatin- or Matrigel-coated dishes revealed that Matrigel greatly enhances the maturation of the satellite-cell-derived myotubes. As judged from immunohistochemistry, myosin heavy chain electrophoresis and immunoblot analyses, only cells grown on Matrigel, but not on gelatin, expressed adult myosin isoforms. Slow myosin expression was only detected in Matrigel cultures. Soleus cultures contained, in addition to the majority of myotubes expressing fast myosin, a small fraction (maximally 10%) of myotubes coexpressing fast and slow myosins. The number of fast/slow myosin-containing myotubes was negligible in TA cultures. The expression of slow myosin increased with age. Slow myosin was nonuniformly distributed along the length of specific myotubes and accumulated around some myonuclei. These results point to the existence of myotubes with a heterogeneous population of myonuclei, probably resulting from fusion of differently preprogrammed satellite cells. We suggest that the patch-like expression of slow myosin results from local accumulation of myonuclei of slow-type satellite cells.  相似文献   

11.
Skeletal muscles of body and limb are derived from somites, but most head muscles originate from cranial mesoderm. The resident stem cells of muscle are satellite cells, which have the same embryonic origin as the muscle in which they reside. Here, we analysed satellite cells with a different ontology, comparing those of the extensor digitorum longus (EDL) of the limb with satellite cells from the masseter of the head. Satellite cell-derived myoblasts from MAS and EDL muscles had distinct gene expression profiles and masseter cells usually proliferated more and differentiated later than those from EDL. When transplanted, however, masseter-derived satellite cells regenerated limb muscles as efficiently as those from EDL. Clonal analysis showed that functional properties differed markedly between satellite cells: ranging from clones that proliferated extensively and gave rise to both differentiated and self-renewed progeny, to others that divided minimally before differentiating completely. Generally, masseter-derived clones were larger and took longer to differentiate than those from EDL. This distribution in cell properties was preserved in both EDL-derived and masseter-derived satellite cells from old mice, although clones were generally less proliferative. Satellite cells, therefore, are a functionally heterogeneous population, with many occupants of the niche exhibiting stem cell characteristics in both somite-derived and branchiomeric muscles.  相似文献   

12.
13.
14.
The emergence of avian satellite cells during development has been studied using markers that distinguish adult from fetal cells. Previous studies by us have shown that myogenic cultures from fetal (Embryonic Day 10) and adult 12-16 weeks) chicken pectoralis muscle (PM) each regulate expression of the embryonic isoform of fast myosin heavy chain (MHC) differently. In fetal cultures, embryonic MHC is coexpressed with a ventricular MHC in both myocytes (differentiated myoblasts) and myotubes. In contrast, myocytes and newly formed myotubes in adult cultures express ventricular but not embryonic MHC. In the current study, the appearance of myocytes and myotubes which express ventricular but not embryonic MHC was used to determine when adult myoblasts first emerge during avian development. By examining patterns of MHC expression in mass and clonal cultures prepared from embryonic and posthatch chicken skeletal muscle using double-label immunofluorescence with isoform-specific monoclonal antibodies, we show that a significant number of myocytes and myotubes which stain for ventricular but not embryonic MHC are first seen in cultures derived from PM during fetal development (Embryonic Day 18) and comprise the majority, if not all, of the myoblasts present at hatching and beyond. These results suggest that adult type myoblasts become dominant in late embryogenesis. We also show that satellite cell cultures derived from adult slow muscle give results similar to those of cultures derived from adult fast muscle. Cultures derived from Embryonic Day 10 hindlimb form myocytes and myotubes that coexpress ventricular and embryonic MHCs in a manner similar to cells of the Embryonic Day 10 PM. Thus, adult and fetal expression patterns of ventricular and embryonic MHCs are correlated with developmental age but not muscle fiber type.  相似文献   

15.
 The hypothesis that the limited adaptive range observed in fast rat muscles in regard to expression of the slow myosin is due to intrinsic properties of their myogenic stem cells was tested by examining myosin heavy chain (MHC) expression in regenerated rat extensor digitorum longus (EDL) and soleus (SOL) muscles. The muscles were injured by bupivacaine, transplanted to the SOL muscle bed and innervated by the SOL nerve. Three months later, muscle fibre types were determined. MHC expression in muscle fibres was demonstrated immunohistochemically and analysed by SDS-glycerol gel electrophoresis. Regenerated EDL transplants became very similar to the control SOL muscles and indistinguishable from the SOL transplants. Slow type 1 fibres predominated and the slow MHC-1 isoform was present in more than 90% of all muscle fibres. It contributed more than 80% of total MHC content in the EDL transplants. About 7% of fibres exhibited MHC-2a and about 7% of fibres coexpressed MHC-1 and MHC-2a. MHC-2x/d contributed about 5–10% of the whole MHCs in regenerated EDL and SOL transplants. The restricted adaptive range of adult rat EDL muscle in regard to the synthesis of MHC-1 is not rooted in muscle progenitor cells; it is probably due to an irreversible maturation-related change switching off the gene for the slow MHC isoform. Accepted: 11 June 1996  相似文献   

16.
17.
We postulated that Fibroblast Growth Factor (FGF) involved in fetal or regenerative morphogenesis of skeletal muscle originated from this tissue. Using a bovine retina cDNA probe encoding acidic FGF, we showed that growing muscles from bovine fetuses express this mRNA, but that this expression is reduced in neonate muscles. Cultures of proliferating satellite cells isolated from adult rat muscles expressed aFGF mRNA strongly but bFGF mRNA weakly; these mRNAs disappeared in cells differentiated into myotubes. 10(-7)M 12-O-tetradecanoyl phorbol -13-acetate (TPA) increased aFGF mRNA expression in both proliferating and differentiated satellite cells. Contrastingly, proliferating L6 myogenic cells only expressed aFGF mRNA significantly under TPA treatment. Therefore, the satellite cells did seem to be a possible source for FGF, especially aFGF, which might regulate the myogenic process.  相似文献   

18.
用酶处理的方法分离出成年鸡前背阔肌(慢肌)和后背阔肌(快肌)中的卫星细胞,在无神经因素影响下分别进行体外培养,每天用相差显微镜观察并比较二者的发育特征。在本实验中不仅观察到一些学者已描述过的卫星细胞的体外发育过程和特征,还发现了快、慢肌的卫星细胞之间在发育上存在的时程差异,即前背阔肌的卫星细胞发育为成肌细胞所需的时间以及成肌细胞融合为肌管所需的时间均比后背阔肌的卫星细胞约少24h。支持了鸟类肌肉的卫星细胞本身带有某种发育倾向的猜想,并把快、慢肌在离体的发育过程中可鉴别出差别的时间从肌管提前到卫星细胞时期。  相似文献   

19.
The developmental programs that contribute to myogenic stem cell proliferation and muscle fiber differentiation control fiber numbers and twitch type. In this study, we describe the use of an experimental model system-androgen-regulated laryngeal muscle of juvenile clawed frogs, Xenopus laevis-to examine the contribution of proliferation by specific populations of myogenic stem cells to expression of the larynx-specific myosin heavy chain isoform, LM. Androgen treatment of juveniles (Stage PM0) resulted in upregulation of an early (Myf-5) and a late (myogenin) myogenic regulatory factor; the time course of LM upregulation tracked that of myogenin. Myogenic stem cells stimulated to proliferate by androgen include a population that expresses Pax-7, a marker for the satellite cell myogenic stem cell population. Since androgen can switch muscle fiber types from fast to slow even in denervated larynges, we developed an ex vivo culture system to explore the relation between proliferation and LM expression. Cultured whole larynges maintain sensitivity to androgen, increasing in size and LM expression. Blockade of cell proliferation with cis-platin prevents the switch from slow to fast twitch muscle fibers as assayed by ATPase activity. Blockade of cell proliferation in vivo also resulted in inhibition of LM expression. Thus, both in vivo and ex vivo, inhibition of myogenic stem cell proliferation blocks androgen-induced LM expression and fiber type switching in juveniles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号