首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fatty acids in deep hydrothermal vent bivalves have been analyzed. Their composition is completely different from that of a littoral mussel collected in the Mediterranean sea. The distribution of fatty acids in the littoral mussel is characterized by a predominance of polyunsaturated fatty acids (20:5n-3, 22:6n-3) reflecting the planktonic origin of the food. Vent bivalve fatty acid distribution is dominated by an abundance of the monounsaturated acids (double bond in the n-7 position) 16:1n-7, 18:1n-7, and 20:1n-7 which are clearly of bacterial origin and give an indication of the symbiotic bacterial activity in the bivalves. Differences between the fatty acid composition of the bivalves from two hydrothermal sites (13 degrees N and Galapagos) and differences between the mantle and the gill were observed and are discussed with respect to vent activities at the two sites and species metabolic capacities as a function of ecological conditions.  相似文献   

2.
We examined the influence of the reproductive cycle and environmental factors on variations of the condition index (CI), tissue dry mass, shell size, total lipid content, and relative percent of fatty acids in the mussel, Perna perna. Spat or juveniles were reared to commercial size (70 mm) in suspension culture in the Golfo de Cariaco, Venezuela between May and October 2004. The dry mass of soft tissues and shell, a visual assessment of gonadal status and the organism lipid profile were established every fortnight. In parallel, we measured the environmental conditions, following chlorophyll a, salinity, temperature and seston levels. After an initial decrease, the CI rose and remained high until August after which it decreased continuously until October. Total lipid values also decreased initially, after which they showed two periods of rapid recuperation and depletion, the first between May and August and the second between August and October. Similar tendencies were noted in the fatty acids, C18:3n-3, C18:4n-3 and C22:6n-3. Correlation analysis found no significant relationships between environmental parameters and the variations in total lipids. However, significant correlations were noted between fatty acids and specific environmental parameters. In particular, temperature was inversely correlated with C14:0, C16:1n-7, C18:0, C18:1n-9 and 20:5n-3. Chlorophyll a was positively correlated with C14:0, C16:1n-7, C18:1n-7, C18:4n-3 and 20:4n-6. On the other hand, gametogenesis had an effect on C14:0, C16:1n-7, C18:1n-9 and C18:1n-7, while spawned and gonadal regression states had an effect on fatty acid 20:4n-6. Temperature and chlorophyll a levels strongly influenced the proportion of mussels spawning, suggesting that their influence upon lipid composition may be secondary to their impact upon reproduction. Despite the thermal stability of this tropical system, the lipid composition of mussels changed markedly during the study, reflecting the central role of diet and reproductive investment upon lipid composition.  相似文献   

3.
Astrocytes convert n-6 fatty acids primarily to arachidonic acid (20:4n-6), whereas n-3 fatty acids are converted to docosapentaenoic (22:5n-3) and docosahexaenoic (22:6n-3) acids. The utilization of 20-, 22- and 24-carbon n-3 and n-6 fatty acids was compared in differentiated rat astrocytes to determine the metabolic basis for this difference. The astrocytes retained 81% of the arachidonic acid ([(3)H]20:4n-6) uptake and retroconverted 57% of the docosatetraenoic acid ([3-(14)C]22:4n-6) uptake to 20:4n-6. By contrast, 68% of the eicosapentaenoic acid ([(3)H]20:5n-3) uptake was elongated, and only 9% of the [3-(14)C]22:5n-3 uptake was retroconverted to 20:5n-3. Both tetracosapentaenoic acid ([3-(14)C]24:5n-3) and tetracosatetraenoic acid ([3-(14)C]24:4n-6) were converted to docosahexaenoic acid (22:6n-3) and 22:5n-6, respectively. Therefore, the difference in the n-3 and n-6 fatty acid products formed is due primarily to differences in the utilization of their 20- and 22-carbon intermediates. This metabolic difference probably contributes to the preferential accumulation of docosahexaenoic acid in the brain.  相似文献   

4.
Dietary fatty acid incorporation and changes in various lipid and phospholipid classes in the mussel Mytilus galloprovincialis subjected to three different dietary regimens were analysed and compared. Group A was unfed; group B received a diet consisting of 100% Thalassiosira weissflogii, exhibiting the typical fatty acid composition of diatoms, and group C received a diet consisting of 100% wheat germ conferring a 18:2:n-6 abundance. Biochemical analyses of diets and mussels were carried out at the beginning and at the end of the 30-day experimental period. Starvation and T. weissflogii based diet poorly affected mussel growth and fatty acid composition which remained unchanged. On the contrary, the wheat germ-based diet increased the condition index and deeply affected the fatty acid profile of all lipid and phospholipid classes. The high dietary 18:2n-6 level drastically reduced tissue content of 20:4n-6, 20:5n-3 and 22:6n-3. The biosynthesis of Non Methylene Interrupted (NMI) dienoic fatty acid appeared to be insensitive to the high input of 16:1n-7 and 18:1n-9 respectively from diet B and C, and to the PUFA shortage of diet C. Nevertheless the two NMI trienoic derivatives, 20:3Δ5,11,14 and 22:3Δ7,13 16, were found higher in C with respect to other groups, presumably due to the high 18:2n-6 content of this diet.  相似文献   

5.
Primary culture is a suitable system to study lipid metabolism and polyunsaturated fatty acid biosynthesis. Sertoli cell-enriched preparations were used to determine the fatty acid composition after 5 and 7 days in culture (serum free) as well as the uptake and metabolism of [1-14C]eicosa-8,11,14-trienoic acid. The addition of unlabeled linoleic acid (0.2 and 2.0 microg/ml) was also evaluated. Fatty acid methyl esters derived from cellular lipids were analyzed by gas liquid chromatography and radiochromatography. After 5 days in culture, cells had significantly less 18:2, 20:4, 22:5 and 24:5 and more 18:3, 20:3, 22:4 and 24:4 n-6 fatty acids than non-cultured cells. On day 7, an additional increment in 22:4 n-6 and a decrease in linoleic, gamma-linoleic and 24:4 n-6 fatty acids were observed. The presence of linoleic acid (low dose) produced a significant decrease in saturated and monounsaturated acids and an increase in 18:2, 20:4 and 22:5 n-6 fatty acids. At a high concentration almost all fatty acids belonging to 18:2 n-6 increased significantly. The drop in 20:4 n-6/20:3 n-6 ratio was considered as an indirect evidence of a Delta 5 desaturase activity depression. This assumption was corroborated by studying the transformation of [1-14C]eicosa-8,11,14-trienoic acid into 20:4, 22:4, 22:5, 24:4 and 24:5 n-6 fatty acids. We conclude that Sertoli cells after 7 days in culture evidenced changes in the fatty acid profile similar to those described under fat deprivation. The addition of linoleic acid reverted this pattern and indicated that the Delta 5 desaturase activity is a limiting step in the polyunsaturated fatty acid biosynthesis.  相似文献   

6.
We studied fatty acid changes that are likely to occur during phorbolmyristate acetate (PMA)-induced differentiation of HL-60 cells. It was observed that PMA-induced differentiation is associated with increased uptake, but not synthesis, of fatty acids. Fatty acid analysis revealed that arachidonic acid (AA), 20:5 n-3 and 22:6 n-3 levels are reduced with a concomitant increase in 22:5 n-6 in the phospholipid fraction. In the FFA fraction there are increases in free AA, free 20:5 n-3, 22:5 n-3 and 22:6 n-3, and a fall in free 22:5 n-6 in PMA-treated cells. PMA-induced differentiation and nitroblue tetrazolium reduction by PMA-treated cells was only partially inhibited (about 20-30%) by indomethacin and nordihydroguiaretic acid (cyclooxygenase and lipoxygenase inhibitors respectively), but not by superoxide dismutase, catalase or mannitol. These results indicate that PMA-induced differentiation of HL-60 cells is accompanied by specific changes in the fatty acid composition of the cells.  相似文献   

7.
The activity of the tricarboxylate (citrate) carrier has been assayed in intact liver mitochondria from yellow eel (Anguilla anguilla) and compared to that from rat. The eel-citrate carrier specific activity was approximately 1.7-fold higher than that assayed in rat-liver mitochondria. The content of the main mitochondrial phospholipids, phosphatidylethanolamine and phosphatidylcholine, did not show a significant difference between the two species, while in eel a higher cardiolipin level was observed. Fatty acid composition of eel-liver mitochondrial phospholipids was characterised by a large amount of unsaturated fatty acids, dominated by octadecaenoic acid (C(18:1) (n-9)) and docosahexaenoic acid (C(22:6) (n-3)). The cardiolipin fatty acid pattern of eel-liver mitochondria showed, with respect to the rat, a higher C(20:5) (n-3) and C(22:6) (n-3) content and a lower amount of C(18:2) (n-6) and C(20:4) (n-6). A noticeable activity of lipogenic enzymes was also detected in eel liver cytosol. The results of this study suggest that the remarkable activity of the citrate carrier in eel-liver mitochondria can most likely be ascribed to a considerable cardiolipin level. A covariance of citrate carrier and lipogenic enzyme activities was observed.  相似文献   

8.
Twenty days after hatching, a single stock of Atlantic herring ( Clupea harengus L.) larvae, cultured in the presence of rotifers and Artemia nauplii but showing little or no active feeding behaviour, displayed clear signs of starvation. Three groups of fish were distinguished: group I was generally pinhead-shaped, tended to swim with a spinning motion and floated vertically; group 2 lay moribund on the bottom of the tank; group 3 showed normal, active swimming behaviour. Fatty acids of total lipid extracted from groups 1 and 2 differed from group 3 in having markedly reduced percentages of 20:5n-3, 22:6n-3, 20:1 and 22:1. We conclude that individuals within a single stock of cultured herring larvae respond differently to starvation and that this generates well defined behavioural differences which correlate with levels of n-3 polyunsaturated fatty acids (PUFA) in body lipid. The implications of these observations are discussed.  相似文献   

9.
Fatty acids are essential for immune cell function. Maternal dietary fatty acid supply influences body fat composition of their offspring. As a first step to study immunonutritional interactions at an early age of pigs, four sows were fed a diet containing sunflower oil or oil from seal blubber during pregnancy and lactation. Corresponding piglets were sacrificed at three consecutive time points in the suckling period and their mesenteric lymph nodes and spleen were analysed by gas chromatography for levels of fatty acid. At the same time mononuclear cells of these organs and of the intestinal lymphoid tissue from the jejunum were isolated and subpopulations characterised by flow cytometry. Levels of fatty acids from the lymphatic organs of the piglets were significantly influenced by the maternal diet. The concentration of the fatty acids 20:5n-3, 22:5n-3 and 22:6n-3 were higher in the spleen and mesenteric lymph node of piglets suckled to sows of the test diet. Additionally, suckling time affected the levels of some long chain polyunsaturated fatty acids. Dietary effects were seen on some subpopulations including CD4-CD8alpha+ lymphocytes of the mesenteric lymph nodes and CD4+CD8alpha+ lymphocytes of the lamina propria, which were higher in the group fed seal blubber oil. The levels of CD21+ B-cells were higher in the group fed sunflower oil. The results indicate that the maternal diet and suckling time affect the fatty acid status of the investigated lymphatic tissues of piglets, but may have minor effects on the investigated lymphocyte subpopulations.  相似文献   

10.
The incorporation and metabolism of [1-14C]18:3(n-3), [1-14C]20:5(n-3), [1-14C]18:2(n-6), and [1-14C]20:4(n-6) were studied in primary cultures of trout brain astrocytes. There were no significant differences between the amounts of individual fatty acids incorporated into total lipid at 22 degrees C, with greater than 90% of all the fatty acids being incorporated into polar lipid classes. The distributions of 18:2(n-6), 18:3(n-3), and 20:5(n-3) in individual phospholipid classes at 22 degrees C were very similar, with 57-63 and 18-24% being incorporated into phosphatidylcholine and phosphatidylethanolamine, respectively. Approximately equal amounts of 20:4(n-6), approximately 30% of the total, were incorporated into each of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. The metabolism of the (n-3) fatty acids to longer-chain and more unsaturated species was significantly greater than that of (n-6) acids, but delta 4-desaturase activity was very low. A culture temperature of 10 degrees C increased the incorporation of all the fatty acids into total lipid and that of C20 fatty acids into polar lipid. At 10 degrees C, the incorporation of C20 fatty acids into phosphatidylethanolamine and phosphatidylinositol was increased, and the incorporation into phosphatidylcholine and phosphatidylserine was decreased. The distribution of C18 fatty acids was unchanged at the lower temperature, as was the desaturation and elongation of all the polyunsaturated fatty acids incorporated.  相似文献   

11.
Rilov G  Schiel DR 《PloS one》2011,6(8):e23958
Predicting the strength and context-dependency of species interactions across multiple scales is a core area in ecology. This is especially challenging in the marine environment, where populations of most predators and prey are generally open, because of their pelagic larval phase, and recruitment of both is highly variable. In this study we use a comparative-experimental approach on small and large spatial scales to test the relationship between predation intensity and prey recruitment and their relative importance in shaping populations of a dominant rocky intertidal space occupier, mussels, in the context of seascape (availability of nearby subtidal reef habitat). Predation intensity on transplanted mussels was tested inside and outside cages and recruitment was measured with standard larval settlement collectors. We found that on intertidal rocky benches with contiguous subtidal reefs in New Zealand, mussel larval recruitment is usually low but predation on recruits by subtidal consumers (fish, crabs) is intense during high tide. On nearby intertidal rocky benches with adjacent sandy subtidal habitats, larval recruitment is usually greater but subtidal predators are typically rare and predation is weaker. Multiple regression analysis showed that predation intensity accounts for most of the variability in the abundance of adult mussels compared to recruitment. This seascape-dependent, predation-recruitment relationship could scale up to explain regional community variability. We argue that community ecology models should include seascape context-dependency and its effects on recruitment and species interactions for better predictions of coastal community dynamics and structure.  相似文献   

12.
Abstract manganese lipoxygenase (Mn-LO) oxygenates 18:3n-3 and 18:2n-6 to bis-allylic 11S-hydroperoxy fatty acids, which are converted to 13R-hydroperoxy fatty acids. Other unsaturated C(16)-C(22) fatty acids, except 17:3n-3, are poor substrates, possibly because of ineffective enzyme activation (Mn(II)-->Mn(III)) by the produced hydroperoxides. Our aim was to determine whether unsaturated C(16)-C(22) fatty acids were oxidized by Mn(III)-LO. Mn(III)-LO oxidized C(16), C(19), C(20), and C(22) n-3 and n-6 fatty acids. The carbon chain length influenced the position of hydrogen abstraction (n-8, n-5) and oxygen insertion at the terminal or the penultimate 1Z,4Z-pentadienes. Dilinoleoyl-glycerophosphatidylcholine was oxidized by Mn-LO, in agreement with a "tail-first" model. 16:3n-3 was oxidized at the bis-allylic n-5 carbon and at positions n-3, n-7, and n-6. Long fatty acids, 19:3n-3, 20:3n-3, 20:4n-6, 22:5n-3, and 22:5n-6, were oxidized mainly at the n-6 and the bis-allylic n-8 positions (in ratios of approximately 3:2). The bis-allylic hydroperoxides accumulated with one exception, 13-hydroperoxyeicosatetraenoic acid (13-HPETE). Mn(III)-LO oxidized 20:4n-6 to 15R-HPETE ( approximately 60%) and 13-HPETE ( approximately 37%) and converted 13-HPETE to 15R-HPETE. Mn(III)-LO G316A oxygenated mainly 16:3n-3 at positions n-7 and n-6, 19:3n-3 at n-10, n-8, and n-6, and 20:3n-3 at n-10 and n-8. We conclude that Mn-LO likely binds fatty acids tail-first and oxygenates many C(16), C(18), C(20), and C(22) fatty acids to significant amounts of bis-allylic hydroperoxides.  相似文献   

13.
Several polyunsaturated fatty acids (C18-C22 acids) have been compared in their uptake by human platelets and their acylation into glycerophospholipid subclasses. This was also studied in the presence of linoleic and/or arachidonic acids, the main fatty acids of plasma free fatty acid pool. Amongst C20 fatty acids, dihomogamma linolenic acid (20:3(n-6)), 5,8,11-icosatrienoic acid (20:3(n-9)) and arachidonic acid (20:4(n-6)) were better incorporated. The uptake of 5,8,11,14,17-icosapentaenoic acid (20:5(n-3)) was significantly lower and comparable to that of C22 fatty acids (7,10,13,16-docosatetraenoic acid (22:4(n-6)) and 4,7,10,13,16,19-docosahexaenoic acid (22:6(n-3)) and linoleic acid (18:2(n-6)). In this respect, linolenic acid (18:3(n-3)) appeared the poorest substrate. The bulk of each acid was acylated into glycerophospholipids although the presence of linoleic and/or arachidonic acids diverted a part towards neutral lipids. This was prominent for 18:3(n-3) and C22 fatty acids. The glycerophospholipid distribution of each acid differed substantially and was not affected by the presence of linoleic and or arachidonic acids, except for 18:3(n-3) and 22:6(n-3) that were strongly diverted towards phosphatidylethanolamine (PE) at the expense of phosphatidylcholine (PC). The main features were an efficient acylation of 20:3(n-9) into phosphatidylinositol (PI) followed by 20:3(n-6) and 20:4(n-6), then by 20:5(n-3) and 22:4(n-6), and finally 22:6(n-3) and C18 fatty acids. This was reciprocal to the acylation into PE and to a lesser extent into PC which remained the main storage species in all cases. We conclude that human platelets may exhibit a certain specificity for taking up polyunsaturated fatty acids both in terms of total uptake and glycerophospholipid subclass distribution. Also the presence of polyunsaturated fatty acids of normal plasma, like linoleic and arachidonic acids, may interact specifically with such an uptake and distribution.  相似文献   

14.
The fatty acid compositions of neutral lipid, glycolipid and phospholipid fractions from ice algae sampled from the Barents Sea in spring and autumn were examined for seasonal differences. The ice-algal assemblages were dominated by diatoms. In spring, Nitzschia frigida was the most common species whereas resting stages of Thalassiosira bioculata and Actinocyclus cf curvatulus predominated in autumn. With the exception of one spring sample, neutral lipids predominated over glycolipids and phospholipids in all algal samples. The lipid fractions displayed characteristic fatty acid compositions. In the spring samples the major fatty acids of the neutral lipid fraction were 16:0, 16:1(n-7) and 20:5(n-3) whilst the glycolipid fraction was characterised by higher levels of 20:5(n-3) and C16 polyunsaturated fatty acids, particularly 16:4(n-1). Phospholipids contained higher levels of 22:6(n-3) than the other two lipid fractions although 20:5(n-3) was still the major polyunsaturated fatty acid. In the autumn samples, the neutral lipid fraction contained higher proportions of saturated fatty acids and 16:1(n-7) than the two polar lipid fractions and 22:6(n-3) was most abundant in phospholipids. As with the spring samples, 20:5(n-3) was the major polyunsaturated fatty acid in all lipid fractions of the autumn algae. Overall, the fatty acid compositions of the lipid fractions from spring and autumn algal samples were similar and are consistent with diatoms being the predominant group in the ice algae studied. The high level of neutral lipids observed in both spring and autumn samples suggests that the production of neutral lipids is characteristic of ice algae regardless of season. Nevertheless, some species-specific differences in lipid production may exist since the neutral lipid content of autumn samples containing mainly A. curvatulus was substantially higher than those in which T. bioculata predominated. Received: 26 September 1997 / Accepted: 12 January 1998  相似文献   

15.
The fatty acid compositions of gonadal material was examined for the sea urchin Psammechinus miliaris (Gmelin) held in aquaria and fed either salmon feed pellets or the macroalga, Laminaria saccharina for 18 months. Gonadal material was also examined from P. miliaris collected from four field sites, including commercial scallop lines encrusted with the mussel, Mytilus edulis, sea cages stocked with Atlantic salmon Salmo salar and two intertidal sea-loch sites, characterised by either a fine mud or a macroalgal substratum. The fatty acid compositions of known and potential dietary material was examined. The proportions of certain fatty acids in the gonads of P. miliaris were significantly affected by diet type and location. Docosahexaenoic acid (DHA) 22:6 n-3 was significantly higher in the gonads of the sea urchins fed salmon feed in aquaria and collected from the salmon cages and scallop lines than in the gonads of the sea urchins fed L. saccharina in aquaria and collected from the intertidal sea loch sites. The salmon feed and the mussel tissue also contained a high proportion of this fatty acid. Stearidonic acid 18:4 n-3 and arachidonic acid 20:4 n-6, however, were found in significantly higher proportions than DHA in the gonads of the sea urchins fed L. saccharina and collected from the two intertidal sea-loch sites. L. saccharina was also found to contain high proportions of stearidonic and arachidonic acid. The gonads of the sea urchins collected from the intertidal site, characterised by a mud substratum, and from the scallop lines were found to contain a lower 18:1 n-9/18:1 n-7 ratio and a higher proportion of branched and odd-chained fatty acids, signifying a high dietary bacterial input, than the sea urchins held in the aquaria and collected from the salmon cage. 20:2 and 22:2 non-methylene-interrupted dienoic fatty acids (NMIDs) were found in P. miliaris fed diets lacking these fatty acids suggesting de novo biosynthesis. These results, therefore, suggest that the proportions/ratios of certain fatty acids in the gonads of P. miliaris could be used to give an indication of the predominant diet type of this species in the wild.  相似文献   

16.
The concentration-dependent metabolism of 1-(14)C-labelled precursors of 22:5n-6 and 22:6n-3 was compared in rat testis cells. The amounts of [(14)C]22- and 24-carbon metabolites were measured by HPLC. The conversion of [1-(14)C]20:5n-3 to [3-(14)C]22:6n-3 was more efficient than that of [1-(14)C]20:4n-6 to [3-(14)C]22:5n-6. At low substrate concentration (4 microM) it was 3.4 times more efficient, reduced to 2.3 times at high substrate concentration (40 microM). The conversion of [1-(14)C]22:5n-3 to [1-(14)C]22:6n-3 was 1.7 times more efficient than that of [1-(14)C]22:4n-6 to [1-(14)C]22:5n-6 using a low, but almost equally efficient using a high substrate concentration. When unlabelled 20:5n-3 was added to a cell suspension incubated with [1-(14)C]20:4n-6 or unlabelled 22:5n-3 to a cell suspension incubated with [1-(14)C]22:4n-6, the unlabelled n-3 fatty acids strongly inhibited the conversion of [1-(14)C]20:4n-6 or [1-(14)C]22:4n-6 to [(14)C]22:5n-6. In the reciprocal experiment, unlabelled 20:4n-6 and 22:4n-6 only weakly inhibited the conversion of [1-(14)C]20:5n-3 and [1-(14)C]22:5n-3 to [(14)C]22:6n-3. The results indicate that if both n-6 and n-3 fatty acids are present, the n-3 fatty acids are preferred over the n-6 fatty acids in the elongation from 20- to 22- and from 22- to 24-carbon atom fatty acids. In vivo the demand for 22-carbon fatty acids for spermatogenesis in the rat may exceed the supply of n-3 precursors and thus facilitate the formation of 22:5n-6 from the more abundant n-6 precursors.  相似文献   

17.
Barthet VJ 《Phytochemistry》2008,69(2):411-417
cis-Vaccenic acid or cis-11-octadecenoic acid, a C18:1 (n-7) isomer of oleic acid (C18:1 (n-9)) has been found in several oilseeds. It is synthesized from palmitic acid (C16:0) via production of C16:1 (n-7) by a Delta9 desaturase and elongation by an elongase giving C18:1 (n-7). In this study, the fatty acid composition of 12 Brassica species was analyzed by GC-FID and confirmed by GC-MS. All species contained C18:1 (n-7), C20:1 (n-7) and C22:1 (n-7) fatty acid isomers, suggesting that C18:1 (n-7) was elongated. The levels of these fatty acids varied according to the species. C18:1(n-7)) represented from 0.4% to 3.3% of the total relative fatty acid contents of the seeds. The contents of C20:1(n-7) and C22:1(n-7) levels were lower than C18:1(n-7) contents; the relative fatty acid composition varied from 0.02% to 1.3% and from below the limit of detection to 1.3% for C20:1 (n-7) and C22:1 (n-7), respectively. The ratios of (n-7)/(n-9) ranged from 2.8% to 16.7%, 0.6% to 29.5% and 0% to 2.6% for C18:1, C20:1 and C22:2, respectively. Using statistical similarities or differences of the C18:1 (n-7)/(n-9) ratios for chemotaxonomy, the surveyed species could be arranged into three groups. The first group would include Brassica napus, B. rapa, and B. tournefortii with Eruca sativa branching only related to B. napus. The second group would include B. tournefortii, Raphanus sativus and Sinapis alba. The last group would include B. juncea, B. carinata and B. nigra with no similarity/relationship between them and between the other species. Results suggested that the level of C20:1 (n-7) influenced the levels of all monounsaturated fatty acids with chain length higher than 20 carbons. On the other hand, palmitoleic acid (C16:1) levels, C16:1 being the parent of all (n-7) fatty acids, had no statistically significant correlation with the content of any of the fatty acids of the (n-7) or (n-9) family.  相似文献   

18.
The ability of juvenile turbot, Scophthalmus maximus (L.), to elongate and desaturate various polyunsaturated fatty acids (PUFA) was examined in relation to their lipid composition. Triacylglycerols were the most abundant lipid class present in the fish and phosphatidylcholine was the predominant phospholipid. In all lipid classes examined the levels of (n-3) PUFA exceeded that of (n-6) PUFA. 18C PUFA were minor components in comparison with 20:5(n-3) and 22:6(n-3). 20:4(n-6) was present in highest concentration in phosphatidylinositol in which it accounted for 16.9% of the fatty acids. When the fish were injected with either 14C-labelled 18:2(n-6), 18:3(n-3), 20:4(n-6), 20:5(n-3) or 22:6(n-3) the highest percentage recovery of radioactivity (69%) in body lipid was observed with 22:6(n-3). With all labelled substrates free fatty acids contained only a small proportion of the total recovered radioactivity whereas triacylglycerols were highly labelled. Phosphatidylcholine/sphingomyelin was the most highly labelled polar lipid fraction. With 14C-20:4(n-6) as injected substrate, 23.2% of the radioactivity recovered in total lipid was present in phosphatidylinositol in comparison with less than 6% with the other substrates. Only small proportions of radioactivity from 14C-18:2(n-6) and 14C-18:3(n-3) were recovered in the 20 and 22C fatty acids of triacylglycerols and total polar lipid. With 14C-20:5(n-3) as substrate, 27 and 33% of the total radioactivity recovered in the fatty acids of triacylglycerols and polar lipids respectively was present in 22C fatty acids. The corresponding values for l4C-20:4(n-6) as substrate were 19 and 18%. The results confirm the limited capacity of turbot to convert 18C PUFA to longer chain PUFA but demonstrate their ability to synthesize 22C PUFA from 20C PUFA. They also suggest a small but specific requirement for 20:4(n-6).  相似文献   

19.
The phospholipids, particularly phosphatidylethanolamine, of brain gray matter are enriched with docosahexaenoic acid (22:6n-3). The importance of uptake of preformed 22:6n-3 from plasma compared with synthesis from the alpha-linolenic acid (18:3n-3) precursor in brain is not known. Deficiency of 18:3n-3 results in a compensatory increase in the n-6 docosapentaenoic acid (22:5n-6) in brain, which could be formed from the precursor linoleic acid (18:2n-6) in liver or brain. We studied n-3 and n-6 fatty acid incorporation in brain astrocytes cultured in chemically defined medium using delipidated serum supplemented with specific fatty acids. High performance liquid chromatography with evaporative light scattering detection and gas liquid chromatography were used to separate and quantify cell and media lipids and fatty acids. Although astrocytes are able to form 22:6n-3, incubation with 18:3n-3 or eicosapentaenoic acid (20:5n-3) resulted in a time and concentration dependent accumulation of 22:5n-3 and decrease in 22:6n-3 g/g cell fatty acids. Astrocytes cultured with 18:2n-6 failed to accumulate 22:5n-6. Astrocytes secreted cholesterol esters (CE) and phosphatidylethanolamine containing saturated and monounsaturated fatty acids, and arachidonic acid (20:4n-6) and 22:6n-3. These studies suggest conversion of 22:5n-3 limits 22:6n-3 synthesis, and show astrocytes release fatty acids in CE.  相似文献   

20.
A combined fatty acid metabolism assay was employed to determine fatty acid uptake and relative utilisation in enterocytes isolated from the pyloric caeca of rainbow trout. In addition, the effect of a diet high in long-chain monoenoic fatty alcohols present as wax esters in oil derived from Calanus finmarchicus, compared to a standard fish oil diet, on caecal enterocyte fatty acid metabolism was investigated. The diets were fed for 8 weeks before caecal enterocytes from each dietary group were isolated and incubated with [1-14C]fatty acids: 16:0, 18:1n-9, 18:2n-6, 18:3n-3, 20:1n-9, 20:4n-6, 20:5n-3, and 22:6n-3. Uptake was measured over 2 h with relative utilisation of different [1-14C]fatty acids calculated as a percentage of uptake. Differences in uptake were observed, with 18:1n-9 and 18:2n-6 showing the highest rates. Esterification into cellular lipids was highest with 16:0 and C18 fatty acids, accounting for over one-third of total uptake, through predominant incorporation in triacylglycerol (TAG). The overall utilisation of fatty acids in phospholipid synthesis was low, but highest with 16:0, the most prevalent fatty acid recovered in intracellular phosphatidylcholine (PC) and phosphatidylinositol (PI), although exported PC exhibited higher proportions of C20/C22 polyunsaturated fatty acids (PUFA). Other than 16:0, incorporation into PC and PI was highest with C20/C22 PUFA and 20:4n-6 respectively. Recovery of labelled 18:1n-9 in exported TAG was 3-fold greater than any other fatty acid which could be due to multiple esterification on the glycerol 'backbone' and/or increased export. Approximately 20-40% of fatty acids taken up were beta-oxidised, and was highest with 20:4n-6. Oxidation of 20:5n-3 and 22:6n-3 was also surprisingly high, although 22:6n-3 oxidation was mainly attributed to retroconversion to 20:5n-3. Metabolic modification of fatty acids by elongation-desaturation was generally low at <10% of [1-14C]fatty acid uptake. Dietary copepod oil had generally little effect on fatty acid metabolism in enterocytes, although it stimulated the elongation and desaturation of 16:0 and elongation of 18:1n-9, with radioactivity recovered in longer n-9 monoenes. The monoenoic fatty acid, 20:1n-9, abundant in copepod oil as the homologous alcohol, was poorly utilised with 80% of uptake remaining unesterified in the enterocyte. However, the fatty acid composition of pyloric caeca was not influenced by dietary copepod oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号