首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Conjugated linoleic acids (CLA) are octadecadienoic fatty acids that have profound effects on lipid metabolism. Our previous work showed that CLA (mixture of isomers) markedly reduced milk fat synthesis. In this study, our objective was to evaluate the effects of specific CLA isomers. Multiparous Holstein cows were used in a 3x3 Latin square design, and treatments were 4-day abomasal infusions of 1) skim milk (control), 2) 9,11 CLA supplement, and 3) 10,12 CLA supplement. CLA supplements provided 10 g/day of the specific CLA isomer (cis-9,trans-11 or trans-10,cis-12). Treatments had no effect on intake, milk yield, or milk protein yield. Only the 10,12 CLA supplement affected milk fat, causing a 42 and 44% reduction in milk fat percentage and yield, respectively. Milk fat composition revealed that de novo synthesized fatty acids were extensively reduced. Increases in ratios of C(14:0) to C(14:1) and C(18:0) to C(18:1) indicated the 10,12 CLA supplement also altered Delta(9)-desaturase. Treatments had minimal effects on plasma concentrations of glucose, nonesterified fatty acids, insulin, or insulin-like growth factor-I. Overall, results demonstrate that trans-10,cis-12 CLA is the isomer responsible for inhibition of milk fat synthesis.  相似文献   

2.
3.
Thirty lactating dairy cows were used in a 3 × 3 Latin-square design to investigate the effects of a raw or extruded blend of linseed and wheat bran (70:30) on plasma and milk fatty-acids (FA). Linseed diets, containing 16.6% linseed blend on a dry-matter basis, decreased milk yield and protein percentage. They decreased the proportions of FA with less than 18 carbons in plasma and milk and resulted in cis-9, cis-12, cis-15 18:3 proportions that were more than three and four times higher in plasma and milk, respectively, whereas cis-9, cis-12 18:2 proportions were decreased by 10-15%. The cis-9, trans-11, cis-15 18:3 isomer of conjugated linolenic acid was not detected in the milk of control cows, but was over 0.15% of total FA in the milk fat of linseed-supplemented cows. Similarly, linseed increased plasma and milk proportions of all biohydrogenation (BH) intermediates in plasma and milk, including the main isomer of conjugated linoleic acid cis-9, trans-11 18:2, except trans-4 18:1 and cis-11, trans-15 18:2 in plasma lipids. In milk fat, compared with raw linseed, extruded linseed further reduced 6:0-16:0 even-chain FA, did not significantly affect the proportions of 18:0, cis-9 18:1 and cis-9, cis-12 18:2, tended to increase cis-9, cis-12, cis-15 18:3, and resulted in an additional increase in the proportions of most BH intermediates. It was concluded that linseed addition can improve the proportion of conjugated linoleic and linolenic acids, and that extrusion further increases the proportions of intermediates of ruminal BH in milk fat.  相似文献   

4.
The supplementation of conjugated linoleic acids (CLA) to the rations of dairy cows represents an opportunity to reduce the content of milk fat. Therefore, CLA have the potential beneficial effect of reducing energy requirements of the early lactating cow. The present study aimed at the examination of long-term and posttreatment effects of dietary CLA intake on performance, variables of energy metabolism-like plasma levels of non esterified fatty acids (NEFA) and beta-hydroxybutyrate (BHB), and fatty acid profile in milk fat. Forty-six pregnant German Holstein cows were assigned to one of three dietary treatments: (1) 100 g/ d of control fat supplement (CON), (2) 50 g/d of control fat supplement and 50 g/ d of CLA supplement (CLA-1) and (3) 100 g/d of CLA supplement (CLA-2). The lipid-encapsulated CLA supplement consisted of approximately 10% of trans-10, cis-12 CLA and cis-9, trans-11 CLA each. The experiment started 1 d after calving and continued for about 38 weeks, divided into a supplementation (26 weeks) and a depletion period (12 weeks). Over the first 7 weeks of treatment, 11 and 16% reductions in dry matter intake compared to control were observed for the cows fed CLA-1 and CLA-2 supplements respectively. Consequently, the calculated energy balance for these two CLA groups was lower compared to the control. Plasma levels of NEFA and BHB remained unaffected. Later in lactation the highest CLA supplementation resulted in a reduction of milk fat content of 0.7%. However, no reduction in milk fat yield, and accordingly no milk fat depression (MFD), could be shown. The trans-10, cis-12 CLA in milk fat increased with increasing dietary CLA supplementation in a dose-dependent manner. The proportion of C16 in milk fat was decreased by the highest CLA supplementation. With the exception of an increase in plasma glucose level in the CLA-2 group, no post-treatment effects were observed. Overall, under the conditions of the present study no improvement in the calculated energy balance by CLA supplementation could be shown for the entire evaluation period.  相似文献   

5.
The objective of the study was to investigate the influence of two roughage-to-concentrate ratios, with or without linseed oil supplementation, on the flow of fatty acids in the intestinal chyme and the secretion in milk fat in late lactating cows. Seven late lactating cows fitted with cannulae in the dorsal rumen and simple T-shaped cannulae in the proximal duodenum were randomly assigned to four experimental periods applying an incomplete replicated 2 x 2 Latin square design. The rations consisted of meadow hay and a concentrate mixture given in a ratio of 70:30 or 30:70 on dry matter basis. The basal rations were fed without or with 200 g linseed oil daily. After three weeks of adaptation, samples from the duodenal chyme were taken to study the flow of fatty acids. Additionally, milk samples were analysed for their milk fat composition. Decreasing roughage/concentrate ratio and linseed oil supplementation significantly increased the flow of monounsaturated fatty acids (MUFA), trans-fatty acids (tFA) and conjugated linoleic acids (CLA) in the duodenum. Furthermore, linseed oil increased the flow of saturated fatty acids (SFA) in the duodenum. Higher concentrate portion (H 30) and linseed oil supplementation significantly decreased the milk fat content. SFA were lower (p < 0.05) and MUFA were higher (p < 0.05) in milk fat after linseed oil supplementation; H 30 resulted in more polyunsaturated fatty acids (PUFA, p < 0.05) in the milk. Linseed oil supplementation significantly increased tFA and CLA in milk fat. The higher CLA content in milk fat as compared to that in the digesta suggests that a substantial endogenous synthesis of CLA in the mammary gland tissue through A9-desaturase took place. Between 21% and 48% of duodenal t11-C(18:1) were converted into c9, t11-CLA in milk fat.  相似文献   

6.
High concentrate diets are fed to early and mid-lactation stages dairy ruminants to meet the energy demands for high milk production in modern milk industry. The present study evaluated the effects of a high concentrate diet on milk fat and milk composition, especially, cis-9, trans-11 CLA content in milk and gene expression of lactating goats. Eight mid-lactating goats with rumen fistula were randomly assigned into a high concentrate diet (HCD) group and low concentrate diet (LCD) group. High concentrate diet feeding significantly increased lipopolysaccharides (LPS) in plasma and decreased milk fat content, vaccenic acid (VA) and cis-9, trans-11 CLA in milk of the lactating goats. The mRNA expression levels of sterol regulatory element binding protein B 1c (SREBP1c), lipoprotein lipase (LPL), fatty acid synthetase (FASN) and acetyl-CoA carboxylase α (ACACA, ACCα) involving in lipid metabolism were analyzed, and ACACA and LPL all decreased in their expression level in the mammary glands of goats fed a high concentrate diet. DNA methylation rate of stearoyl-CoA desaturase (SCD) was elevated and decreased, and SCD mRNA and protein expression was reduced significantly in the mammary glands of goats fed a high concentrate diet. In conclusion, feeding a high concentrate diet to lactating goats decreases milk fat and reduced expression of SCD in the mammary gland, which finally induced cis-9, trans-11 CLA content in milk.  相似文献   

7.
Abstract

The objective of the study was to investigate the influence of two roughage-to-concentrate ratios, with or without linseed oil supplementation, on the flow of fatty acids in the intestinal chyme and the secretion in milk fat in late lactating cows. Seven late lactating cows fitted with cannulae in the dorsal rumen and simple T-shaped cannulae in the proximal duodenum were randomly assigned to four experimental periods applying an incomplete replicated 2×2 Latin square design. The rations consisted of meadow hay and a concentrate mixture given in a ratio of 70 : 30 or 30 : 70 on dry matter basis. The basal rations were fed without or with 200 g linseed oil daily. After three weeks of adaptation, samples from the duodenal chyme were taken to study the flow of fatty acids. Additionally, milk samples were analysed for their milk fat composition. Decreasing roughage/concentrate ratio and linseed oil supplementation significantly increased the flow of monounsaturated fatty acids (MUFA), trans-fatty acids (tFA) and conjugated linoleic acids (CLA) in the duodenum. Furthermore, linseed oil increased the flow of saturated fatty acids (SFA) in the duodenum. Higher concentrate portion (H 30) and linseed oil supplementation significantly decreased the milk fat content. SFA were lower (p < 0.05) and MUFA were higher (p < 0.05) in milk fat after linseed oil supplementation; H 30 resulted in more polyunsaturated fatty acids (PUFA, p < 0.05) in the milk. Linseed oil supplementation significantly increased tFA and CLA in milk fat. The higher CLA content in milk fat as compared to that in the digesta suggests that a substantial endogenous synthesis of CLA in the mammary gland tissue through Δ9-desaturase took place. Between 21% and 48% of duodenal t11-C18:1 were converted into c9, t11-CLA in milk fat.  相似文献   

8.
Twelve multiparous Holstein cows at 72 ± 20 days in milk were used in a switch-back design with 14-d periods to determine the effect of replacing barley grain into a dairy total mixed ration with micronized or raw flaxseed on nutrient digestibility, milk yield, milk composition. Total mixed diets were (DM basis) 50% barley silage, 50% concentrate mix mainly rolled barley grain and canola meal. Diets were supplemented with 1 kg raw (RF) or micronized (MF) flaxseed to substitute 1 kg of rolled barley grain (C). Neutral detergent fibre, ADF and CP digestibility of the diets were not significantly affected by supplementation; however, calcium digestibility was reduced by 62% and 46% when raw and micronized flax were fed, respectively. Milk yield (38.3, 39.6, and 38.4 kg/d for diets C, RF and MF, respectively) was similar for all diets. Milk fat (3.50, 3.48, and 3.52%) and protein (3.31, 3.34, and 3.31%) for diets C, RF and MF, respectively, were not affected by treatment diets. Concentrations of c9, t11 conjugated linoleic acid (CLA; 0.51, 0.72 and 0.76 g/100 g fatty acids) in milk fat increased (P < 0.05) similarly among the two flaxseed supplemented diets. The RF and MF diets significantly increased the C18:1, C18:1 trans-11, C18:2 cis-9, cis-12 and C18:3 in milk fat however, C12:0, C14:0 and C16:0 were significantly reduced compared with control. Replacing barley grain with flaxseed in the diet of lactating cows increased the beneficial fatty acids in milk without depressing nutrient digestibility. Micronization of flaxseed did not reveal any advantage over raw flaxseed.  相似文献   

9.
Although endogenous synthesis of conjugated linoleic acid (CLA) in the mammary gland of lactating cows has been already well documented, no study has determined so far as to which tissue and/or organ is involved in CLA synthesis in the growing ruminant except one study showing that CLA synthesis does not occur in ruminant liver. In this context, adipose tissue appears to be a good candidate for endogenous synthesis of CLA in the growing ruminant. The aim of this study was to compare the respective metabolisms of 11trans 18:1 (vaccenic acid, VA) and 9cis,11trans 18:2 (rumenic acid) to that of stearic acid (the preferential substrate of Δ9 desaturase) in adipose tissues (subcutaneous, SC and intermuscular, IM) of six Charolais steers by using the in vitromethod of incubated tissue slices. Samples of SC and IM adipose tissues were incubated at 37°C for 16 h under an atmosphere of 95% O2/5% CO2 in a medium supplemented with 0.75 mM of fatty acid (FA) mixture (representative of circulating non-esterified FA) and 186 μM [1-14C]-18:0 or 58.6 μM [1-14C]-VA or 56 μM [1-14C]-9cis,11trans CLA. Viability of explants was verified by measuring metabolic functions (glucose uptake and glucose-6-phosphate dehydrogenase activity). After 16 h of incubation, FA uptake was similar for all FA (18:0, VA and 9cis,11trans 18:2) in both SC and IM adipose tissues (around 40%). Once in adipose tissue, all FA were preferentially esterified (>80% of cell FA) favouring neutral lipid synthesis (around 90% of esterified FA). Stearic acid was highly (27%) desaturated into oleic acid in SC adipose tissue whereas this desaturation was much lower (6.8%) in IM adipose tissue (P < 0.0001). VA was desaturated into 9cis,11trans CLA at a low extent of about 2.5% to 4.4% in both adipose tissues probably because of a limited affinity of Δ9 desaturase for VA. 9cis,11trans CLA was itself converted by desaturation into 6cis, 9cis,11trans 18:3 at the intensity of 10.8% and 14.5% of cell 9cis,11trans CLA in SC and IM adipose tissues, respectively. In conclusion, bovine adipose tissues of the growing ruminant were especially involved in the endogenous synthesis of CLA from VA and in its desaturation into conjugated derivative, mainly 6cis, 9cis,11trans 18:3, of which biological properties need to be elucidated.  相似文献   

10.
Conjugated linoleic acid (CLA) reduces body fat in part by inhibiting the activity of heparin-releasable lipoprotein lipase (HR-LPL) activity in adipocytes, an effect that is induced by the trans-10,cis-12 CLA isomer. In this study we used a series of compounds that are structurally related to CLA (i.e., CLA cognates) to investigate the structural basis for this phenomenon. None of the 18:1 CLA cognates that were tested, nor trans-9,cis-12 18:2, cis-12-octadecen-10-ynoic acid (10y,cis-12) or 11-(2'-(n-pentyl)phenyl)-10-undecylenic acid (designated P-t10), exhibited any significant effect on HR-LPL activity. Among the CLA derivatives (alcohol, amide, and chloride) that were tested, only the alcohol form inhibited HR-LPL activity, although to a lesser extent than CLA itself. In addition, intracellular TG was reduced only by trans-10,cis-12 CLA and the alcohol form of CLA. Hence it appears that the trans-10,cis-12 conjugated double bond in conjunction with a carboxyl group at C-1 is required for inhibition of HR-LPL activity, and that an alcohol group can partially substitute for the carboxyl group. We also studied glycerol release from the cells, observing that this was enhanced by trans-10 18:1, trans-13 18:1, cis-12 18:1, cis-13 18:1, P-t10 but was reduced by cis-9 18:1, the alcohol and amide forms of CLA or 10y,cis-12. Accordingly the structural feature or features involved in regulating lipolysis appear to be more complex. Despite enhancing lipolysis in cultured 3T3-L1 adipocytes, trans-10 18:1 did not reduce body fat gain when fed to mice.  相似文献   

11.
Conjugated linoleic acids (CLA) have recently been recognized to reduce body fat and plasma lipids in some animals. This study demonstrated that the steatosis accompanying the fat loss induced by trans-10,cis-12-C(18:2) (CLA2) and not cis-9,trans-11-C(18:2) (CLA1) isomer in C57BL/6j mice was not due to an alteration of the liver lipoprotein production that was even increased. The 3-fold decrease in plasma triacylglycerol contents and the induction of mRNA expression of low-density lipoprotein receptors concomitantly observed in CLA2-fed mice suggested an increase in the lipoprotein clearance at the level of the liver itself. CLA1 feeding produced similar but attenuated effects on triglyceridaemia only.  相似文献   

12.
Conjugated linoleic acid (CLA) is a group of positional and geometric isomers of linoleic acid (LA, C18:2 cis-9, cis-12) that are reported to have important biological activities, including protection against atherosclerosis. In this study, the potential role of the individual cis-9, trans-11 and trans-10, cis-12 isomers of CLA in atherogenesis were compared with LA in the Syrian Golden hamster. Supplementation of a high-fat, high-cholesterol diet (HFHC) with 1% (w/w) cis-9, trans-11 CLA or trans-10, cis-12 CLA did not significantly affect plasma cholesterol levels compared to supplementation with 1% (w/w) LA. Very low density lipoprotein cholesterol (VLDL-C) was lower and plasma triglycerides (TG) were higher in diets where C18:2 fatty acid was added to the HFHC diet, but neither the cis-9, trans-11 CLA group nor trans-10, cis-12 CLA group was significantly different from the LA control group. CLA supplementation did not significantly affect low density lipoprotein cholesterol (LDL-C). Trans-10, cis-12 CLA increased high density lipoprotein cholesterol (HDL-C) levels compared to LA or cis-9, trans-11 CLA (P<0.02), and although the ratio of non-HDL-C:HDL-C in the cis-9, trans-11 CLA group (1.11+/-0.54) and the trans-10, cis-12 CLA group (1.11+/-0.21) was lower than the LA group (1.29+/-0.45), the reduction did not reach statistical significance. Atherosclerosis was assessed in the ascending aorta by measuring the number of aortic cross-sections containing Oil Red O-stained intimal lesions. Compared to the LA group (60+/-11%), both the cis-9, trans-11 CLA group (38+/-8%) and the trans-10, cis-12 CLA group (28+/-7%) had fewer sections displaying a fatty streak lesion, although the differences did not reach statistical significance. These results suggest that individual CLA isomers may reduce atherosclerotic lesion development in the hamster, but when compared to LA, the apparent atheroprotective effects do not correlate with beneficial changes in lipoprotein profile.  相似文献   

13.
The biologically active isomers of conjugated linoleic acid.   总被引:70,自引:0,他引:70  
Numerous physiological effects are attributed to conjugated linoleic acid (CLA). The purpose of this presentation is to consider these effects with respect to the cis-9,trans-11 and trans-10,cis-12 CLA isomers. We review previously published data and present new findings that relate to underlying biochemical mechanisms of action. Both isomers are natural products. The cis-9,trans-11 isomer is the principal dietary form of CLA, but the concentrations of this isomer and the trans-10,cis-12 isomer in dairy products or beef vary depending on the diet fed to cows or steers, respectively. The trans-10,cis-12 CLA isomer exerts specific effects on adipocytes, in particular reducing the uptake of lipid by inhibiting the activities of lipoprotein lipase and stearoyl-CoA desaturase. The trans-10,cis-12 CLA isomer also affects lipid metabolism in cultured Hep-G2 human liver cells, whereas both the cis-9,trans-11 and trans-10,cis-12 CLA isomers appear to be active in inhibiting carcinogenesis in animal models. We present new findings indicating that the cis-9,trans-11 CLA isomer enhances growth and probably feed efficiency in young rodents. Accordingly, the effects of CLA on body composition (induced by trans-10,cis-12 CLA) and growth/feed efficiency (induced by cis-9,trans-11 CLA) appear to be due to separate biochemical mechanisms. We also show that a 19-carbon CLA cognate (conjugated nonadecadienoic acid, CNA) inhibits lipoprotein lipase activity as effectively as CLA in cultured 3T3-L1 adipocytes. Presumably, CNA is metabolized differently than the 18-carbon CLA isomers, so this finding indicates direct activity of the administered compound as opposed to acting via a metabolite.  相似文献   

14.
《Small Ruminant Research》2009,85(1-3):47-53
Two experiments were carried out to study the effects of supplementing the ration of lactating ewes with vegetable fats (sunflower oil, SO or hydrogenated palm oil, HPO; HIDROPALM®) on diet digestibility, milk yield and milk composition, and on the concentration of the conjugated linoleic acid (CLA) C18:2 cis-9 trans-11 and C18:1 trans-11 (vaccenic acid, VA) and other main fatty acids in milk fat. Treatments involved a control diet, without added oil, and 2 diets supplemented with either 12 g/kg SO or 12 g/kg HPO on a dry matter (DM) basis. In the first experiment, 6 non-pregnant, non-lactating Lacaune ewes were used following a 3 × 3 replicated Latin Square design. Addition of vegetable fat supplement to the diet increased digestibility of DM, organic matter (OM) and crude protein (CP), but did not affect that of the ether extract (EE), neutral detergent fibre (NDF) or acid detergent fibre (ADF). In the second experiment, 60 Lacaune dairy ewes mid-way through lactation (120 ± 12 days in milk, 0.98 ± 0.03 kg/day average milk yield) were divided into three equal-sized groups each of which was assigned to one of the three experimental diets for 4 weeks. Compared with the control treatment, supplementation with HPO increased milk yield and energy-corrected milk. But neither vegetable fat supplement modified percentages of fat and protein in milk. Supplementation with HPO increased C14:1, C16:1 and C16:0 content and reduced C18:0 and C18:1 cis-9 content in milk fat. Supplementation with SO increased the VA content in milk fat by 36% and that of cis-9 trans-11 CLA by 29% in comparison with the control diet. Supplementation with HPO led to milk fat with 15% more cis-9 trans-11 CLA than control milk. In conclusion, adding a moderate dose of HPO or SO to the diets increased CLA concentration in milk fat. Nevertheless, supplementation with SO was more effective than HPO in increasing CLA concentration in milk fat and reducing the atherogenicity index, improving milk quality from the human health standpoint.  相似文献   

15.
Conjugated linoleic acid (CLA) is reported to have health benefits, including reduction of body fat. Previous studies have shown that brown adipose tissue (BAT) is particularly sensitive to CLA-supplemented diet feeding. Most of them use mixtures containing several CLA isomers, mainly cis-9, trans-11 and trans-10, cis-12 in equal concentration. Our aim was to characterize the separate effects of both CLA isomers on thermogenic capacity in cultured brown adipocytes. The CLA isomers showed opposite effects. Hence, on the one hand, trans-10, cis-12 inhibited uncoupling protein (UCP) 1 induction by norepinephrine (NE) and produced a decrease in leptin mRNA levels. These effects were associated with a blockage of CCAAT-enhancer-binding protein-alpha and peroxisome proliferator-activated receptor-gamma(2) mRNA expression. On the other hand, cis-9, trans-11 enhanced the UCP1 elicited by NE, an effect reported earlier for polyunsaturated fatty acids and also observed here for linoleic acid. These findings could explain, at least in part, the effects observed in vivo when feeding a CLA mixture supplemented diet as a result of the combined action of CLA isomers (reduction of adipogenesis and defective BAT thermogenesis that could be through trans-10, cis-12 and enhanced UCP1 thermogenic capacity through cis-9, trans-11).  相似文献   

16.
Smith MA  Moon H  Chowrira G  Kunst L 《Planta》2003,217(3):507-516
Expression of a cDNA encoding the castor bean ( Ricinus communis L.) oleate Delta12-hydroxylase in the developing seeds of Arabidopsis thaliana (L.) Heynh. results in the synthesis of four novel hydroxy fatty acids. These have been previously identified as ricinoleic acid (12-hydroxy-octadec- cis-9-enoic acid: 18:1-OH), densipolic acid (12-hydroxy-octadec- cis-9,15-enoic acid: 18:2-OH), lesquerolic acid (14-hydroxy-eicos- cis-11-enoic acid: 20:1-OH) and auricolic acid (14-hydroxy-eicos- cis-11,17-enoic acid: 20:2-OH). Using mutant lines of Arabidopsis that lack the activity of the FAE1 condensing enzyme or FAD3 ER Delta-15-desaturase, we have shown that these enzymes are required for the synthesis of C20 hydroxy fatty acids and polyunsaturated hydroxy fatty acids, respectively. Analysis of the seed fatty acid composition of transformed plants demonstrated a dramatic increase in oleic acid (18:1) levels and a decrease in linoleic acid (18:2) content correlating to the levels of hydroxy fatty acid present in the seed. Plants in which FAD2 (ER Delta12-desaturase) activity was absent showed a decrease in 18:1 content and a slight increase in 18:2 levels corresponding to hydroxy fatty acid content. Expression of the castor hydroxylase protein in yeast indicates that this enzyme has a low level of fatty acid Delta12-desaturase activity. Lipase catalysed 1,3-specific lipolysis of triacylglycerol from transformed plants demonstrated that ricinoleic acid is not excluded from the sn-2 position of triacylglycerol, but is the only hydroxy fatty acid present at this position.  相似文献   

17.
A quantitative GC method for conjugated linoleic acid (CLA) isomers of physiological significance (cis-9, trans-11 CLA and trans-10, cis-12 CLA) as non-esterified fatty acids (NEFA) or triacylglycerols (TAG) was developed. Furthermore, the effect of the internal standard addition point (sample or fat extract) was studied. Response linearity, recovery and precision assays, detection and quantification limits were determined. Linearity was demonstrated over a range from 0.1 to 10 microg/mL. When CLA isomers were present as NEFA, the recovery significantly decreased (P< or =0.05) from 76% to 27.1% (cis-9, trans-11 CLA) and 28.5% (trans-10, cis-12 CLA) when the standards were added to the fat extract or to the initial tissue, respectively. As an application, liver samples from hamsters fed a diet supplemented with both CLA isomers were analyzed. The CLA isomers in liver samples were detected with reasonable reproducibility.  相似文献   

18.
Several processes have been suggested to protect lipids from bioactivity of the rumen microorganisms. The majority of experiments with conjugated linoleic acid (CLA) were conducted using calcium salts of CLA. The objectives of this study were to determine the effects of encapsulated CLA (E-CLA) that was supplemented during days 21 to 100 post partum (PP), on milk fat depression, recovery rate and performance parameters. Forty-two multiparous Israeli-Holstein cows were divided at day 21 PP into two treatment groups: (i) control - supplemented with 43 g/day per cow of calcium salts of fatty acids (FAs). (ii) E-CLA - supplemented with 50 g/day per cow of encapsulated lipid supplement providing 4.7 g/day per cow of trans-10, cis-12 CLA. Post-treatment cows were followed for recovery rate until 140 days PP. Dry matter intake (DMI) during the treatment period was reduced by 2.5%, and milk yield was enhanced by 4.5% in the E-CLA cows. Milk fat percentage and yield were reduced by 13% and 9%, respectively, in the E-CLA treatment as compared with the control. The energy-corrected milk output was 3.6% higher in the control group than in the E-CLA group. Yields of trans-10, cis-12 CLA isomer in milk was 2.13-fold higher in the E-CLA cows than in the controls. Full recovery to milk fat percentage of the control group occurred 4 to 5 weeks after cessation of the E-CLA supplementation. No differences between groups were observed in any fertility parameter that was tested. In conclusion, the E-CLA supplement decreased DMI, enhanced milk yield, and decreased energy output in milk, and was effective in depressing milk fat. Full recovery to the milk fat content, but not yield, of the control group in the E-CLA group was relatively slow and occurred 4 to 5 weeks after termination of the supplementation.  相似文献   

19.
Conjugated linoleic acids (CLAs) are conjugated dienoic isomers of linoleic acid. Some isomers have been shown to reduce fat mass in animal and cell culture models. However, controversial results were obtained in studies of supplementation of CLAs in human subjects. In order to get more insights into the direct effects of CLAs on human fat cells, we have studied the influence of cis-9, trans-11 CLA and trans-10, cis-12 CLA on the biology of human SGBS preadipocytes and adipocytes. Both CLA isomers equally inhibited the proliferation of preadipocytes in a dose-dependent manner. Continuous treatment with 1-10 microM trans-10, cis-12 CLA, and to a weaker extent cis-9, trans-11 CLA, inhibited accumulation of lipids during adipogenic differentiation. Treatment with higher doses of CLA induced apoptosis in preadipocytes, in differentiating cells, and adipocytes. The trans-10, cis-12 isomer had a higher apoptotic potency in adipocytes than cis-9, trans-11 CLA. Taken together, the treatment of human preadipocytes and adipocytes with physiological relevant concentrations of CLAs resulted in an impairment of proliferation and differentiation and induction of apoptosis. The trans-10, cis-12 isomer was more potent than the cis-9, trans-11 isomer. Further clinical studies are needed to evaluate the effects of CLAs on human fat mass and metabolism in vivo.  相似文献   

20.
Digesta samples from the ovine rumen and pure ruminal bacteria were incubated with linoleic acid (LA) in deuterium oxide-containing buffer to investigate the mechanisms of the formation of conjugated linoleic acids (CLAs). Rumenic acid (RA; cis-9,trans-11-18:2), trans-9,trans-11-18:2, and trans-10,cis-12-18:2 were the major CLA intermediates formed from LA in ruminal digesta, with traces of trans-9,cis-11-18:2, cis-9,cis-11-18:2, and cis-10,cis-12-18:2. Mass spectrometry indicated an increase in the n+1 isotopomers of RA and other 9,11-CLA isomers, as a result of labeling at C-13, whereas 10,12 isomers contained minimal enrichment. In pure culture, Butyrivibrio fibrisolvens and Clostridium proteoclasticum produced mostly RA with minor amounts of other 9,11 isomers, all labeled at C-13. Increasing the deuterium enrichment in water led to an isotope effect, whereby (1)H was incorporated in preference to (2)H. In contrast, the type strain and a ruminal isolate of Propionibacterium acnes produced trans-10,cis-12-18:2 and other 10,12 isomers that were minimally labeled. Incubations with ruminal digesta provided no support for ricinoleic acid (12-OH,cis-9-18:1) as an intermediate of RA synthesis. We conclude that geometric isomers of 10,12-CLA are synthesized by a mechanism that differs from the synthesis of 9,11 isomers, the latter possibly initiated by hydrogen abstraction on C-11 catalyzed by a radical intermediate enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号