首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the use of artificial neural networks to model cardiovascular autonomic control in a study of the hemodynamic changes associated with space flight. Cardiovascular system models were created including four parameters: heart rate, contractility, peripheral resistance, and venous tone. Artificial neural networks were then designed and trained. A technique known as backpropagation networking was used and the results of the application of this technique to heart rate control are presented and discussed.  相似文献   

2.
Since the advent of mouse targeted mutations, gene traps, an escalating use of a variety of complex transgenic manipulations, and large-scale chemical mutagenesis projects yielding many mutants with cardiovascular defects, it has become increasingly evident that defects within the heart and vascular system are largely responsible for the observed in utero lethality of the embryo and early fetus. If a transgenically altered embryo survives implantation but fails to be born, it usually indicates that there is some form of lethal cardiovascular defect present. A number of embryonic organ and body systems, including the central nervous system, gut, lungs, urogenital system, and musculoskeletal system appear to have little or no survival value in utero (Copp, 1995). Cardiovascular abnormalities include the failure to establish an adequate yolk-sac vascular circulation, which results in early lethality (E8.5-10.5); poor cardiac function (E9.0-birth); failure to undergo correct looping and chamber formation of the primitive heart tube (E9.0-11.0); improper septation, including division of the common ventricle and atria and the establishment of a divided outflow tract (E11.0-13.0); inadequate establishment of the cardiac conduction system (E12.0-birth); and the failure of the in utero cardiovascular system to adapt to adult life (birth) and close the interatrial and aorta-pulmonary trunk shunts that are required for normal fetal life. Importantly, the developmental timing of lethality is usually a good indicator of both the type of the cardiovascular defect present and may also suggest the possible underlying cause/s. The purpose of this review is both to review the literature and to provide a beginner's guide for analysing cardiovascular defects in mouse mutants.  相似文献   

3.
Cardiovascular calcification, a kind of ectopic mineralization in cardiovascular system, including atherosclerotic calcification, arterial medial calcification, valve calcification and the gradually recognized heart muscle calcification, is a complex pathophysiological process correlated with poor prognosis. Although several cell types such as smooth muscle cells have been proven critical in vascular calcification, the aetiology of cardiovascular calcification remains to be clarified due to the diversity of cellular origin. Fibroblasts, which possess remarkable phenotypic plasticity that allows rapid adaption to fluctuating environment cues, have been demonstrated to play important roles in calcification of vasculature, valve and heart though our knowledge of the mechanisms controlling fibroblast phenotypic switching in the calcified process is far from complete. Indeed, the lack of definitive fibroblast lineage-tracing studies and typical expression markers of fibroblasts raise major concerns regarding the contributions of fibroblasts during all the stages of cardiovascular calcification. The goal of this review was to rigorously summarize the current knowledge regarding possible phenotypes exhibited by fibroblasts within calcified cardiovascular system and evaluate the potential therapeutic targets that may control the phenotypic transition of fibroblasts in cardiovascular calcification.  相似文献   

4.
A survey of the effects of dietary polyunsaturates on the function of the cardiovascular system is given. In isolated hearts of rats dietary linoleate supply increases both coronary flow and heart muscle function. Hearts of rats fed high amounts of linoleic acid are protected against catecholamine (over)-stimulation. Polyunsaturate rich vegetable oils are effective in lowering blood pressure in several murine hypertension models. This effect seems to be closely related to antihypertensive changes in kidney function and in the function of the arterial vessel wall. Dietary polyunsaturates augment the hypotensive effect of antihypertensive drugs. Cardiovascular effects of dietary polyunsaturates are at least partly mediated via changes in the prostanoid metabolism as well as a reduction of the sympathetic activity.Evidence has been accumulated that cardiovascular effects of dietary polyunsaturates in animal and man are comparable. The observed effects are discussed against the background of a reduced risk of cardiovascular disease after a polyunsaturate rich diet in man.  相似文献   

5.
Obesity is associated with an elevated risk of hypertension and cardiovascular disease. The adipocyte hormone leptin, which stimulates energy expenditure in animals by activating the sympathetic nervous system (SNS), is believed to play a role in this association. However, evidence in humans remains sparse. We investigated the relationship between circulating leptin and cardiovascular and inflammatory responses to acute psychological stress in humans. Participants were 32 men and 62 women aged 18-25 years. Cardiovascular activity was assessed using impedance cardiography at baseline, during acute laboratory stress, and during a 45-min recovery period. Plasma cytokines were measured in blood drawn at baseline and 45-min poststress. In women only, baseline plasma leptin was significantly associated with stress-induced changes in heart rate (beta = 0.53, P = 0.006), heart rate variability (HRV) (beta = -0.44, P = 0.015), and cardiac preejection period (PEP) (beta = -0.51, P = 0.004), independent of age, adiposity, and smoking. Women's plasma leptin levels also correlated with stress-induced elevations in the proinflammatory cytokine interleukin-6 (IL-6) (beta = 0.35, P = 0.042). Circulating leptin is an independent predictor of sympathetic cardiovascular activity, parasympathetic withdrawal, and inflammatory responses to stress in women. Because cardiovascular and inflammatory stress responses are predictive of future cardiovascular disease, leptin may be a mechanism mediating the adverse effects of stress and obesity on women's cardiovascular health.  相似文献   

6.
The purine nucleoside adenosine is an important regulator within the cardiovascular system, and throughout the body. Released in response to perturbations in energy state, among other stimuli, local adenosine interacts with 4 adenosine receptor sub-types on constituent cardiac and vascular cells: A(1), A(2A), A(2B), and A(3)ARs. These G-protein coupled receptors mediate varied responses, from modulation of coronary flow, heart rate and contraction, to cardioprotection, inflammatory regulation, and control of cell growth and tissue remodeling. Research also unveils an increasingly complex interplay between members of the adenosine receptor family, and with other receptor groups. Given generally favorable effects of adenosine receptor activity (e.g. improving the balance between myocardial energy utilization and supply, limiting injury and adverse remodeling, suppressing inflammation), the adenosine receptor system is an attractive target for therapeutic manipulation. Cardiovascular adenosine receptor-based therapies are already in place, and trials of new treatments underway. Although the complex interplay between adenosine receptors and other receptors, and their wide distribution and functions, pose challenges to implementation of site/target specific cardiovascular therapy, the potential of adenosinergic pharmacotherapy can be more fully realized with greater understanding of the roles of adenosine receptors under physiological and pathological conditions. This review addresses some of the major known and proposed actions of adenosine and adenosine receptors in the heart and vessels, focusing on the ability of the adenosine receptor system to regulate cell function, retaliate against injurious stressors, and mediate longer-term adaptive responses.  相似文献   

7.
Since there are several popular beliefs about putative health benefits of amusement which are empirically substantiated poorly about putative health benefits of amusement, the immediate cardiovascular effects of amusement were studied in detail. Cardiovascular activity was studied while participants were viewing humorous films, relative to a control condition involving no amusement. High-resolution measures of heart rate, heart rate variability, continuous blood pressure, and respiration were recorded, and the phase synchronization among the variables was analyzed, which provides information on the coordinated behavior of response systems. Viewing humorous films had cardiovascular effects indicating heightened sympathetic arousal, if they elicited intense amusement. No effects were observed for variables indicating parasympathetic input to the heart. The observed effects associated with amusement were not driven by changes in the respiration. The suppression of positive affect expressions did not produce any additional activation. The transient cardiovascular effects of amusement do not correspond to beneficial correlates of a habitual positive affect disposition reported in the literature, demonstrating that it would be erroneous to argue from the long-term effects of a positive affect disposition to the effects of a single amusing event.  相似文献   

8.
老年人心血管系统的老化是很明显的,动脉硬化改变了后负荷以及左心室的形状.尽管左心室的心脏收缩功能仍然能够维持,但是左心室的舒张功能则大大改变.运动时老年人的心血管功能产生明显的改变,老年人可以通过运动训练改善心血管功能.老化引起心血管结构和功能改变,从而降低心脏疾病出现的阈值.对老年人在运动或休息时心血管结构和功能的改变进行了综述.  相似文献   

9.
Kathiresan S  Srivastava D 《Cell》2012,148(6):1242-1257
Cardiovascular disease encompasses a range of conditions extending from myocardial infarction to congenital heart disease, most of which are heritable. Enormous effort has been invested in understanding the genes and specific DNA sequence variants that are responsible for this heritability. Here, we review the lessons learned for monogenic and common, complex forms of cardiovascular disease. We also discuss key challenges that remain for gene discovery and for moving from genomic localization to mechanistic insights, with an emphasis on the impact of next-generation sequencing and the use of pluripotent human cells to understand the mechanism by which genetic variation contributes to disease.  相似文献   

10.
The effects of nimodipine on the cocaine-induced alterations in blood pressure, heart rate, and plasma catecholamines were studied in the squirrel monkey. Cocaine in intravenously administered doses of 0.5, 1, and 2 mg/kg produced significant increases in blood pressure and significant decreases in heart rate. These cardiovascular changes were associated with transient episodes of arrhythmias and with significant increases in plasma concentrations of dopamine, epinephrine, and norepinephrine. Nimodipine, 1 micrograms/kg/min for 5 min administered intravenously 5 min after cocaine, corrects the cardiovascular and plasma catecholamine concentration changes induced by this alkaloid. The same dose of nimodipine administered 5 min before cocaine prevents elevations of blood pressure. Plasma catecholamine increments are also prevented except for the highest dose of cocaine. Cardiovascular changes induced by cocaine administration in the squirrel monkey are temporally associated with significant increments in plasma catecholamines. Administration of nimodipine prevents or minimizes these endocrine and physiologic changes.  相似文献   

11.
12.
Cardiovascular diseases are the leading cause of death in the industrialized countries. The cardiovascular system includes the systemic blood circulation, the heart and the pulmonary circulation providing sufficient blood flow and oxygen to peripheral tissues and organs according to their metabolic demand. This review focuses on three major cell types of the cardiovascular system: myocytes of the heart as well as smooth muscle cells and endothelial cells from the systemic and pulmonary circulation. Ion channels initiate and regulate contraction in all three cell types, and the identification of their genes has significantly improved our knowledge of signal transduction pathways in these cells. Among the ion channels expressed in smooth muscle cells, cation channels of the TRPC family allow for the entry of Na(+) and Ca(2+). Physiological functions of TRPC1, TRPC3, TRPC4, TRPC5, TRPC6 and TRPC7 in the cardiovascular system, dissected by down-regulating channel activity in isolated tissues or by the analysis of gene-deficient mouse models, are reviewed. Possible functional roles and physiological regulation of TRPCs as homomeric or heteromeric channels in these cell types are discussed. Moreover, TRP channels may also be responsible for pathophysiological processes of the cardiovascular system like hypertension as well as cardiac hypertrophy and increased endothelial permeability.  相似文献   

13.
Diabetes mellitus and cardiac function   总被引:18,自引:0,他引:18  
Cardiovascular complications are the most common causes of morbidity and mortality in diabetic patients. Coronary atherosclerosis is enhanced in diabetics, whereas myocardial infarction represents 20% of deaths of diabetic subjects. Furthermore, re-infarction and heart failure are more common in the diabetics. Diabetic cardiomyopathy is characterized by an early diastolic dysfunction and a later systolic one, with intracellular retention of calcium and sodium and loss of potassium. In addition, diabetes mellitus accelerates the development of left ventricular hypertrophy in hypertensive patients and increases cardiovascular mortality and morbidity. Treating the cardiovascular problems in diabetics must be undertaken with caution. Special consideration must be given with respect to the ionic and metabolic changes associated with diabetes. For example, although ACE inhibitors and calcium channel blockers are suitable agents, potassium channel openers cause myocardial preconditioning and decrease the infarct size in animal models, but they inhibit the insulin release after glucose administration in healthy subjects. Furthermore, potassium channel blockers abolish myocardial preconditioning and increase infarct size in animal models, but they protect the heart from the fatal arrhytmias induced by ischemia and reperfusion which may be important in diabetes. For example, diabetic peripheral neuropathy usually presents with silent ischemia and infarction. Mechanistically, parasympathetic cardiac nerve dysfunction, expressed as increased resting heart rate and decreased respiratory variation in heart rate, is more frequent than the sympathetic cardiac nerve dysfunction expressed as a decrease in the heart rate rise during standing.  相似文献   

14.
Cardiovascular diseases remain the leading cause of mortality worldwide. Recent studies of AMP-activated protein kinase (AMPK), a highly conserved sensor of cellular energy status, suggest that there might be therapeutic value in targeting the AMPK signaling pathway. AMPK is found in most mammalian tissues, including those of the cardiovascular system. As cardiovascular diseases are typically associated with blood flow occlusion and blood occlusion may induce rapid energy deficit, AMPK activation may occur during the early phase upon nutrient deprivation in cardiovascular organs. Therefore, investigation of AMPK in cardiovascular organs may help us to understand the pathophysiology of defence mechanisms in these organs. Recent studies have provided proof of concept for the idea that AMPK is protective in heart as well as in vascular endothelial and smooth muscle cells. Moreover, dysfunction of the AMPK signalling pathway is involved in the genesis and development of various cardiovascular diseases, including atherosclerosis, hypertension and stroke. The roles of AMPK in the cardiovascular system, as they are currently understood, will be presented in this review. The interaction between AMPK and other cardiovascular signalling pathways such as nitric oxide signalling is also discussed.  相似文献   

15.
16.
Intermittent fasting (IF; reduced meal frequency) and caloric restriction (CR) extend lifespan and increase resistance to age-related diseases in rodents and monkeys and improve the health of overweight humans. Both IF and CR enhance cardiovascular and brain functions and improve several risk factors for coronary artery disease and stroke including a reduction in blood pressure and increased insulin sensitivity. Cardiovascular stress adaptation is improved and heart rate variability is increased in rodents maintained on an IF or a CR diet. Moreover, rodents maintained on an IF regimen exhibit increased resistance of heart and brain cells to ischemic injury in experimental models of myocardial infarction and stroke. The beneficial effects of IF and CR result from at least two mechanisms--reduced oxidative damage and increased cellular stress resistance. Recent findings suggest that some of the beneficial effects of IF on both the cardiovascular system and the brain are mediated by brain-derived neurotrophic factor signaling in the brain. Interestingly, cellular and molecular effects of IF and CR on the cardiovascular system and the brain are similar to those of regular physical exercise, suggesting shared mechanisms. A better understanding of the cellular and molecular mechanisms by which IF and CR affect the blood vessels and heart and brain cells will likely lead to novel preventative and therapeutic strategies for extending health span.  相似文献   

17.
Decreased vagal activity has been described in acute schizophrenia and might be associated with altered cardiovascular regulation and increased cardiac mortality. The aim of this study was to assess baroreflex sensitivity in the context of psychopathology. Twenty-one acute, psychotic, unmedicated patients with a diagnosis of paranoid schizophrenia were investigated after admission to the hospital. Results were compared with 21 healthy volunteers matched with respect to age and sex. Cardiovascular parameters obtained included measures for heart rate variability, baroreflex sensitivity, as well as cardiac output, left ventricular work index, and total peripheral resistance. All parameters investigated were analyzed using linear and novel nonlinear techniques. Positive and negative symptoms were assessed to estimate the impact of psychopathology on autonomic parameters. Subjects with acute schizophrenia showed reduction of baroreflex sensitivity accompanied by tachycardia and greatly increased left ventricular work index. Nonlinear parameters of baroreflex sensitivity correlated with positive symptoms. For heart rate variability, mainly parameters indicating parasympathetic modulation were decreased. Vascular pathology could be excluded as a confounding factor. These results reflect a dysfunctional cardiovascular regulation in acute schizophrenic patients at rest. The changes are similar to adaptational regulatory processes following stressful mental or physical tasks in healthy subjects. This study suggests that hyperarousal in acute schizophrenia is accompanied by decreased efferent vagal activity, thus increasing the risk for cardiovascular mortality. Future studies are warranted to examine the role of the sympathetic system and possible autonomic differences in hyperarousal induced by anxiety and/or external stressful events.  相似文献   

18.
In this review we analyse the experimental and clinical findings demonstrating important regulatory significance of met-enkephalin, leu-enkephalin and their derivatives in the control of cardiovascular system activity. Enkephalin-positive immunoreactivity is revealed in the heart of different species of animals, and their cardiovascular effects are established in numerous investigations. It is determined that cardiac effects of enkephalins are essentially associated with modulatory influence at the presynaptic and postsynaptic levels on the activity of extracardiac neural regulation. Cardiovascular effects of endogenous opioid system are extremely important in developing of myocardial ischemia, cardiac arrhythmias and congestive heart failure. The cellular mechanisms of opioid effects are associated with stimulation of mu- and delta-subtypes of opiate receptors which stimulation of mu- and delta-subtypes of opiate receptors which are coupled with conductivity of ion channels, adenylate cyclase activity, phosphoinositide turnover and calcium-calmodulin-dependent protein kynases.  相似文献   

19.
20.
去甲痛上腺素在大鼠缰核引起的心血管效应及其机制   总被引:4,自引:0,他引:4  
杨绍年 《生理学报》1992,44(2):115-120
Cardiovascular effect of norepinephrine (NE) in the habenular nucleus (Hb) and the underlying mechanism were investigated in urethane-anesthetized rats. NE microinjection into Hb produced a dose-dependent increase in mean arterial blood pressure and heart rate, an effect that could be attenuated by the pretreatment in Hb with alpha-receptor blocker phentolamine, but not by the pretreatment with beta-receptor blocker propranolol or physiological saline. Microinjection of kainic acid into Hb gave rise to a marked increase in mean arterial blood pressure and heart rate, but microinjection of lidocaine did not elicit significant cardiovascular effect. The above results suggest that NE in Hb plays an important role in cardiovascular control as a result of Hb excitation through activation of alpha-receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号