首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims:  To find different types of glucosyltransferases (GTFs) produced by Leuconostoc mesenteroides strain Lm 28 and its mutant forms, and to check the effectiveness of gluco-oligosaccharide synthesis using maltose as the acceptor.
Methods and Results:  Constitutive mutants were obtained after chemical mutagenesis by ethyl methane sulfonate. Lm M281 produced more active GTFs than that obtained by the parental strain cultivated on sucrose. GTF from Lm M286 produced a resistant glucan, based on endo-dextranase and amyloglucosidase hydrolysis. The extracellular enzymes from Lm M286 catalyse acceptor reactions and transfer the glucose unit from sucrose to maltose to produce gluco-oligosaccharides (GOS). By increasing the sucrose/maltose ratio, it was possible to catalyse the synthesis of oligosaccharides of increasing degree of polymerization (DP).
Conclusions:  Different types of GTFs (dextransucrase, alternansucrase and levansucrase) were produced from new constitutive mutants of Leuc. mesenteroides . GTFs from Lm M286 can catalyse the acceptor reaction in the presence of maltose, leading to the synthesis of branched oligosaccharides.
Significance and Impact of the Study:  Conditions were optimized to synthesize GOS by using GTFs from Lm M286, with the aim of producing maximum quantities of branched-chain oligosaccharides with DP 3–5. This would allow the use of the latter as prebiotics.  相似文献   

2.
High-mannose-type oligosaccharides have been shown to play important roles in protein quality control. Several intracellular proteins, such as lectins, chaperones and glycan-processing enzymes, are involved in this process. These include calnexin/calreticulin, UDP-glucose:glycoprotein glucosyltransferase (UGGT), cargo receptors (such as VIP36 and ERGIC-53), mannosidase-like proteins (e.g. EDEM and Htm1p) and ubiquitin ligase (Fbs). They are thought to recognize high-mannose-type glycans with subtly different structures, although the precise specificities are yet to be clarified. In order to gain a clear understanding of these protein-carbohydrate interactions, comprehensive synthesis of high-mannose-type glycans was conducted. In addition, two approaches to the synthesis of artificial glycoproteins with homogeneous oligosaccharides were investigated. Furthermore, a novel substrate of UGGT was discovered.  相似文献   

3.
The transglycosylation reaction catalyzed by neopullulanase was analyzed. Radioactive oligosaccharides were produced when the enzyme acted on maltotriose in the presence of [U-14C]glucose. Some of the radioactive oligosaccharides had only alpha-(1----4)-glucosidic linkages, but others were suggested to have alpha-(1----6)-glucosidic linkages. The existence of alpha-(1----6)-glucosidic linkages in the products from maltotriose with neopullulanase was proven by proton NMR spectroscopy and methylation analysis. We previously reported that the one active center of neopullulanase catalyzes the hydrolysis of alpha-(1----4)- and alpha-(1----6)-glucosidic linkages (Kuriki, T., Takata, H., Okada, S., and Imanaka, T. (1991) J. Bacteriol. 173,6147-6152). These facts proved that neopullulanase catalyzed all four types of reactions: hydrolysis of alpha-(1----4)-glucosidic linkage, hydrolysis of alpha-(1----6)-glucosidic linkage, transglycosylation to form alpha-(1----4)-glucosidic linkage, and transglycosylation to form alpha-(1----6)-glucosidic linkage. The four reactions are typically catalyzed by alpha-amylase, pullulanase, cyclomaltodextrin glucanotransferase, and 1,4-alpha-D-glucan branching enzyme, respectively. These four enzymes have some structural similarities to one other, but reactions catalyzed by the enzymes are considered to be distinctive: the four reactions are individually catalyzed by each of the enzymes. The experimental results obtained from the analysis of the reaction of the neopullulanase exhibited that the four reactions can be catalyzed in the same mechanism.  相似文献   

4.
We describe the chemoenzymatic synthesis of a variety of monodisperse hyaluronan (beta 4-glucuronic acid-beta 3-N-acetylglucosamine (HA)) oligosaccharides. Potential medical applications for HA oligosaccharides (approximately 10-20 sugars in length) include killing cancerous tumors and enhancing wound vascularization. Previously, the lack of defined oligosaccharides has limited the exploration of these sugars as components of new therapeutics. The Pasteurella multocida HA synthase, pmHAS, a polymerizing enzyme that normally elongates HA chains rapidly (approximately 1-100 sugars/s), was converted by mutagenesis into two single-action glycosyltransferases (glucuronic acid transferase and N-acetylglucosamine transferase). The two resulting enzymes were purified and immobilized individually onto solid supports. The two types of enzyme reactors were used in an alternating fashion to produce extremely pure sugar polymers of a single length (up to HA20) in a controlled, stepwise fashion without purification of the intermediates. These molecules are the longest, non-block, monodisperse synthetic oligosaccharides hitherto reported. This technology platform is also amenable to the synthesis of medicant-tagged or radioactive oligosaccharides for biomedical testing. Furthermore, these experiments with immobilized mutant enzymes prove both that pmHAS-catalyzed polymerization is non-processive and that a monomer of enzyme is the functional catalytic unit.  相似文献   

5.
Abstract

Glucansucrases (GTFs) catalyzes the synthesis of α-glucans from sucrose and oligosaccharides in the presence of an acceptor sugar by transferring glucosyl units to the acceptor molecule with different linkages. The acceptor reactions can be affected by several parameters and this study aimed to determine the optimal reaction parameters for the production of glucansucrase-based oligosaccharides using sucrose and maltose as the donor and acceptor sugars, respectively via a hybrid technique of Response Surface Method (RSM) and Particle Swarm Optimization (PSO). The experimental design was performed using Central Composite Design and the tested parameters were enzyme concentration, acceptor:donor ratio and the reaction period. The optimization studies showed that enzyme concentration was the most effective parameter for the final oligosaccharides yields. The optimal values of the significant parameters determined for enzyme concentration and acceptor:donor ratio were 3.45?U and 0.62, respectively. Even the response surface plots for input parameters verified the PSO results, an experimental validation study was performed for the reverification. The experimental verification results obtained were also consistent with the PSO results. These findings will help our understanding in the role of different parameters for the production of oligosaccharides in the acceptor reactions of GTFs.  相似文献   

6.
Chemoenzymatic approaches using carbohydrate-active enzymes (CAZymes) offer a promising avenue for the synthesis of glycans like oligosaccharides. Here, we report a novel chemoenzymatic route for cellodextrins synthesis employed by chimeric CAZymes, akin to native glycosyltransferases, involving the unprecedented participation of a “non-catalytic” lectin-like domain or carbohydrate-binding modules (CBMs) in the catalytic step for glycosidic bond synthesis using β-cellobiosyl donor sugars as activated substrates. CBMs are often thought to play a passive substrate targeting role in enzymatic glycosylation reactions mostly via overcoming substrate diffusion limitations for tethered catalytic domains (CDs) but are not known to participate directly in any nucleophilic substitution mechanisms that impact the actual glycosyl transfer step. This study provides evidence for the direct participation of CBMs in the catalytic reaction step for β-glucan glycosidic bonds synthesis enhancing activity for CBM-based CAZyme chimeras by >140-fold over CDs alone. Dynamic intradomain interactions that facilitate this poorly understood reaction mechanism were further revealed by small-angle X-ray scattering structural analysis along with detailed mutagenesis studies to shed light on our current limited understanding of similar transglycosylation-type reaction mechanisms. In summary, our study provides a novel strategy for engineering similar CBM-based CAZyme chimeras for the synthesis of bespoke oligosaccharides using simple activated sugar monomers.  相似文献   

7.
The formation of N-glycosidic linkages of eukaryotic glycoproteins involves the assembly of a specific lipid-linked precursor oligosaccharide in the endoplasmic reticulum. This oligosaccharide is transferred from the lipid carrier to appropriate asparagine residues during protein synthesis. The protein-linked oligosaccharide then undergoes processing reactions that include both removal and addition of carbohydrate residues. In this paper we report recent studies from our laboratory on the synthesis of asparagine-linked oligosaccharides. In the first part we describe the isolation and characterization of temperature-sensitive mutants of yeast blocked at specific stages in the assembly of the lipid-linked oligosaccharide. In addition, we are using these mutants to clone the genes for the enzymes in this pathway by complementation of the temperature-sensitive phenotype. The second part deals with the topography of asparagine-linked oligosaccharide assembly. Our studies on the transmembrane movement of sugar residues during the assembly of secreted glycoproteins from cytoplasmic precursors are presented. Finally, experiments on the control of protein-linked oligosaccharide processing are described. Recent data are presented on the problem of how specific oligosaccharides are assembled from the common precursors at individual sites on glycoproteins.  相似文献   

8.
The dsrE gene from Leuconostoc mesenteroides NRRL B-1299 was shown to encode a very large protein with two potentially active catalytic domains (CD1 and CD2) separated by a glucan binding domain (GBD). From sequence analysis, DSR-E was classified in glucoside hydrolase family 70, where it is the only enzyme to have two catalytic domains. The recombinant protein DSR-E synthesizes both alpha-1,6 and alpha-1,2 glucosidic linkages in transglucosylation reactions using sucrose as the donor and maltose as the acceptor. To investigate the specific roles of CD1 and CD2 in the catalytic mechanism, truncated forms of dsrE were cloned and expressed in Escherichia coli. Gene products were then small-scale purified to isolate the various corresponding enzymes. Dextran and oligosaccharide syntheses were performed. Structural characterization by (13)C nuclear magnetic resonance and/or high-performance liquid chromatography showed that enzymes devoid of CD2 synthesized products containing only alpha-1,6 linkages. On the other hand, enzymes devoid of CD1 modified alpha-1,6 linear oligosaccharides and dextran acceptors through the formation of alpha-1,2 linkages. Therefore, each domain is highly regiospecific, CD1 being specific for the synthesis of alpha-1,6 glucosidic bonds and CD2 only catalyzing the formation of alpha-1,2 linkages. This finding permitted us to elucidate the mechanism of alpha-1,2 branching formation and to engineer a novel transglucosidase specific for the formation of alpha-1,2 linkages. This enzyme will be very useful to control the rate of alpha-1,2 linkage synthesis in dextran or oligosaccharide production.  相似文献   

9.
A general approach to desalting oligosaccharides released from glycoproteins   总被引:19,自引:0,他引:19  
Desalting of sugar samples is essential for the success of many techniques of carbohydrate analysis such as mass spectrometry, capillary electrophoresis, anion exchange chromatography, enzyme degradation and chemical derivatization. All desalting methods which are currently used have limitations: for example, mixed-bed ion-exchange columns risk the loss of charged sugars, precipitation of salt by a non-aqueous solvent can result in co-precipitation of oligosaccharides, and gel chromatography uses highly crosslinked packings in which separation of small oligosaccharides is difficult to achieve. We demonstrate that graphitized carbon as a solid phase extraction cartridge can be used for the purification of oligosaccharides (or their derivatives) from solutions containing one or more of the following contaminants: salts (including salts of hydroxide, acetate, phosphate), monosaccharides, detergents (sodium dodecyl sulfate and Triton X-100), protein (including enzymes) and reagents for the release of oligosaccharides from glycoconjugates (such as hydrazine and sodium borohydride). There is complete recovery of the oligosaccharides from the adsorbent which can also be used to fractionate acidic and neutral glycans. Specific applications such as clean-up of N-linked oligosaccharides after removal by PNGase F and hydrazine, desalting of O-linked glycans after removal by alkali, on-line desalting of HPAEC-separated oligosaccharides and -eliminated alditols prior to electrospray mass spectrometry, and purification of oligosaccharides from urine are described.  相似文献   

10.
Synthesis of amphiphilic oligosaccharides is problematic because traditional methods for separating and purifying oligosaccharides, including sulfated oligosaccharides, are generally not applicable to working with amphiphilic sugars. We report here RPIP-LC and LC–MS methods that enable the synthesis, separation, and characterization of amphiphilic N-arylacyl O-sulfonated aminoglycosides, which are being pursued as small-molecule glycosaminoglycan mimics. The methods described in this work for separating and characterizing these amphiphilic saccharides are further applied to a number of uses: monitoring the progression of sulfonation reactions with analytical RP-HPLC, characterizing sulfate content for individual molecules with ESI-MS, determining the degree of sulfation for products having mixed degrees of sulfation with HPLC and LC–MS, and purifying products with benchtop C18 column chromatography. We believe that the methods described here will be broadly applicable to enabling the synthesis, separation, and characterization of amphiphilic, sulfated, and phosphorylated oligosaccharides and other types of molecules substituted to varying degrees with both anionic and hydrophobic groups.  相似文献   

11.
糖苷合成酶——— 一类新型的寡糖高效合成工具   总被引:5,自引:0,他引:5  
寡糖是哺乳动物细胞表面糖蛋白和糖脂以及微生物来源的生理活性物质的要素之一,其应用于医药的巨大潜能至今还没有得到充分体现,主要原因是合成足够于临床使用的寡糖非常困难.传统的化学法和酶法在大规模合成寡糖方面都有一定局限性.近年来,分子生物学技术大大推动了糖苷酶合成寡糖的研究,将糖苷酶催化中心亲核体氨基酸定点突变为非亲核体氨基酸,导致酶的原有水解活性丧失,只催化糖苷键合成反应,寡糖产量最高可达99%,人工产生了一类新酶——糖苷合成酶(glycosynthases),随后又产生了硫代糖苷酶(thioglycoligases)和硫代糖苷合成酶(thioglycosynthases).糖苷合成酶的高通量筛选可用双质粒系统和酵母三杂交系统进行,其活性的进一步改进可通过亲核体氨基酸位点不同氨基酸取代、其他位点氨基酸突变、反应条件优化等方法进行,其区域选择性的改变或增强可通过改变糖基受体分子达到.糖苷合成酶作为一种新型高效的生物催化剂,对寡糖的工业化合成有着重要意义,它的出现对糖生物学的发展必将起到巨大的推动作用.  相似文献   

12.
Glycosynthases are mutant glycosidases, which in the presence of activated glycosides and suitable reaction conditions, synthesize oligosaccharides without hydrolysing them. This feature makes these catalysts promising tools for the large scale synthesis of carbohydrates. However, despite the popularity of the glycosynthetic approach, the number of enzymes effecting glycosynthetic reactions is still limited. We report here on the design of novel reaction conditions for a thermophilic α-l-fucosidase mutant, which might provide a route for the production of novel glycosynthases.  相似文献   

13.
唾液酸苷酶(EC.3.2.1.18)是一类重要的糖苷水解酶,在动物和微生物中广泛存在.该类酶催化寡糖或糖缀合物上非还原末端唾液酸水解,具有重要的生物学功能,如参与溶酶体降解代谢物、癌症发生、微生物致病等多种生理和病理过程.除了水解活性外,有的唾液酸苷酶还具有转糖基活性,能够以唾液酸单糖或糖苷为糖基供体,催化唾液酸转移到受体分子上,一步合成寡糖和糖苷化合物.这种合成活性对于唾液酸相关糖链的大量获得具有重要意义,有利于推动该类寡糖的基础研究及其在食品和医药中的应用.本文综述了唾液酸苷酶的结构和催化机理、生理功能、转糖基作用及其在寡糖合成中的应用.  相似文献   

14.
《BBA》1986,851(2):181-192
A simplified model of the reductive pentose phosphate pathway of photosynthesis is analysed in order to quantify the degree to which each of the constituent reactions controls the rate of CO2 fixation (given by the control coefficient). The analysis focuses on the four largely irreversible reactions of the cycle together with the first irreversible reaction in the sucrose and starch synthetic pathways. The model assumes that the other reactions are at equilibrium. The photorespiratory and electron transport systems are not included in the model. The analysis demonstrates that: (1) an analytical approach can be used to investigate the distribution of flux control in autocatalytic and moiety-conserved cycles; (2) measurements of enzyme kinetic parameters and certain fluxes and substrate concentrations can be used to solve the equations defining the enzyme control coefficients; (3) the conservation of total stromal phosphate and the intricate regulatory mechanisms of the photosynthetic system result in a relationship between the control coefficients that is complex and may defy any intuitive assessment of ‘rate limitation’; (4) ribulose-1,5-bisphosphate carboxylase / oxygenase may, under certain conditions, be a major controller of the rate of CO2 fixation and, by regulating the concentration of ribulose 1,5-bisphosphate, may be important in governing the ratio of organic to inorganic phosphate in the stroma; (5) the other enzymes may also serve an important role in determining the distribution of phosphate between organic and inorganic species because they catalyze reactions at the branch points between starch and sucrose synthesis and ribulose 1,5-bisphosphate regeneration; (6) these enzymes that catalyze ‘branch-pint’ reactions may have negative control coefficients because of their ability to reduce the total concentration of cycle intermediates; (7) an approach combining the use of the equations presented in this paper and flux and substrate concentration measurements may be adequate for determining the control coefficients of several enzymes of the reductive pentose phosphate pathway.  相似文献   

15.
Heparan sulfate (HS) is a highly sulfated polysaccharide that plays essential physiological and pathophysiological functions. The biosynthesis of HS involves a series of specialised sulfotransferases, an epimerase and glycosyl transferases. The availability of these enzymes offers a promising method to prepare HS polysaccharides and structurally defined oligosaccharides. Given the fact that chemical synthesis of large HS oligosaccharides is extremely difficult, preparation of HS using a chemoenzymatic approach has gained momentum. This review article summarises recent progress on the development of a chemoenzymatic approach to prepare HS and HS oligosaccharides.  相似文献   

16.
Bovine milk UDPgalactose:N-acetylglucosamine beta-4-galactosyltransferase has been used to investigate the effect of a bisecting GlcNAc residue (linked beta 1,4 to the beta-linked mannose of the trimannosyl core of asparagine-linked complex oligosaccharides) on galactosylation of biantennary complex oligosaccharides. Columns of immobilized lectins (concanavalin A, erythroagglutinating phytohemagglutinin, and Ricinus communis agglutinin 120) were used to separate the various products of the reactions. Preferential galactosylation of the GlcNAc beta 1,2Man alpha 1,3 arm occurred both in the absence and in the presence of a bisecting GlcNAc residue; the ratio of the rates of galactosylation of the Man alpha 1,3 arm to the Man alpha 1,6 arm was 6.5 in the absence of a bisecting GlcNAc and 2.8 in its presence. The bisecting GlcNAc residue reduced galactosylation of the Man alpha 1,3 arm by about 78% probably due to steric hindrance of the GlcNAc beta 1,2Man alpha 1,3 beta 1,4 region of the substrate by the bisecting GlcNAc. This steric hindrance prevents the action of four other enzymes involved in assembly of complex asparagine-linked oligosaccharides and indicates the importance of the bisecting GlcNAc residue in the control of glycoprotein biosynthesis. The Man alpha 1,3 arm of biantennary oligosaccharides is believed to be freely accessible to enzyme action whereas the Man alpha 1,6 arm is believed to be folded back toward the core. This may explain the preferential action of Gal-transferase on the Man alpha 1,3 arm of both bisected and nonbisected oligosaccharides.  相似文献   

17.
There is high current interest in developing synthetic routes to oligosaccharides involved in glycoconjugates. Significant attention has been focused on the application of glycosidase-catalyzed transglycosylation for practical synthesis of oligosaccharides. The enzymatic synthesis has become more practical by the use of several glycosidases available in sufficient quantities. This review describes convenient syntheses of di- and trisaccharide units, Which are related to molecular recognition, by using regioselective trans-galactosylation, trans-N-acetylglucosaminylation, transfucosylation, and transmannosylation. The region-selectivity could be controlled to some extent by using the following techniques: (1) varying enzymes, (2) organic co-solvent system, (3) the configuration of the existing glycosidic linkage of the acceptor and (4) inclusion complex of acceptor glycoside with cyclodextrin. Furthermore, glycopolymers carrying a series of disacchariues containing β-D-galactosyl residues were synthesized and used as a model in oligosaccharide-lectin interaction analysis. These water-soluble glycopolymers were shown to be useful as probes of carbohydrate recognition.  相似文献   

18.
应用能阻断糖蛋白N-糖链合成的衣霉素(TM),研究了N-糖链缺失对HT1080细胞分泌纤连蛋白(Fn)以及纤连蛋白受体(FnR)与配体结合的影响。结果发现,1μg/ml的TM可抑制N-糖链的合成(此时,3H-甘露糖掺入下降63%),但细胞分泌Fn的量仅下降33%,这主要是由于蛋白合成受TM抑制(25%)而引起,因而,N-糖链缺失可能并不影响Fn的分泌。而在同样条件下,单个细胞结合125I-Fn的量显著下降,显示N-糖链的缺失可能导致了膜上FnR总量或其与配体结合的亲和力的改变。TM处理组的FnR的内吞率与对照组相比较无明显差异,提示受体分子中的N-糖链缺失不影响其内吞过程.  相似文献   

19.
Our previous work has shown that phenyl phosphate acts as an exogenous substrate for GDP-mannose:dolichyl phosphate mannosyltransferase in rat liver microsomal fractions to give rise to phenyl phosphate beta-D-mannose, a compound which, unlike Dol-P-Man (dolichyl phosphate beta-D-mannose), cannot act as mannose donor for further mannose-adding reactions in microsomal fractions. The study has now been extended to the action of various aryl phosphates and structurally related compounds on several other glycosyltransferase systems in the microsomal fractions. (1) Examination of the ability of these compounds to accept sugars from various sugar nucleotides indicated that the individual compounds have specificity as sugar acceptors. Thus phenyl phosphate acted as an effective acceptor for both mannose and glucose, whereas benzenephosphonic acid was active only in accepting mannose. p-Nitrophenyl phosphate was a more effective glucose acceptor than phenyl phosphate, but had only 8% of the mannose-accepting activity of phenyl phosphate. (2) Phenyl phosphate had an inhibitory effect on the transfer of mannose form GDP-mannose to lipid-linked oligosaccharides and to glycoproteins in rat liver microsomal fractions. The inhibition depended on the concentration of phenyl phosphate and on the extent of inhibition of Dol-P-Man synthesis. It is proposed that phenyl phosphate has a direct effect on the synthesis of Dol-P-Man and that its inhibition of synthesis of lipid-linked oligosaccharides and glycoproteins could be a consequence of this effect.  相似文献   

20.
Roth J  Ziak M  Zuber C 《Biochimie》2003,85(3-4):287-294
This review covers various aspects of glucose trimming reactions occurring on asparagine-linked oligosaccharides. Structural and functional features of two enzymes, glucosidase II and endo-alpha-mannosidase, prominently involved in this process are summarized and their striking differences in terms of substrate specificities are highlighted. Recent results of analyses by immunoelectron microscopy of their distribution pattern are presented which demonstrate that glucose trimming is not restricted to the endoplasmic reticulum (ER) but additionally is a function accommodated by the Golgi apparatus. The mutually exclusive subcellular distribution of glucosidase II and endomannosidase are discussed in terms of their significance for quality control of protein folding and N-glycosylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号