首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Restoration of the highly eutrophic Reeuwijk lakes (ca. 700 ha) started in 1986 by reducing the external phosphorus loading. As an additional measure to improve the quality of the lake water, the structure of the fish population in Lake Klein Vogelenzang (18 ha) was altered in 1989 by the removal of ca. 100 kg ha–1 bream from the lake in April and December. This constituted about 50% of the total bream biomass in the lake.The fish-stock reduction in April, 1989, was initially followed by high phosphorus concentrations, probably the result of considerable phosphorus release from the sediments. The resulting heavy algal blooms that occurred reduced the transparency to very low values. During the summer the zooplankton population increased markedly in numbers coinciding with reductions in total suspended matter including (blue-green) algae. A great improvement in Secchi-disc transparency was observed and by the end of December, 1989, the bottom of the lake (1.5–2.0 m) was visible. After heavy storms in January and February 1990, transparency dropped to < 1 m as a result of resuspension of high concentrations of suspended matter from the bottom sediments. Although transparency over the rest of 1990 was higher than in 1988, i.e. the year preceding the removal of fish (biomanipulation), it was lower than expected, based on the results of 1989. The study shows that technical and biological factors can cause serious management problems for the implementation of biomanipulation in larger water bodies.  相似文献   

2.
SUMMARY

The exchange of phosphorus between the bottom sediment and monimolimnion of Swartvlei, a meromictic, humic lake, was investigated during the last three months of 1980. The concentrations of oxygen, dissolved salts, phosphorus and Fe++ in the water column were monitored, and electrode potentials in the bottom mud were measured, at approximately weekly intervals. At the same time laboratory experiments were performed, using Jenkin core samples, to observe the effect of changing oxygen concentration and salinity on phosphate exchange between sediment and water, and on electrode potentials at the sediment-water interface. Phosphorus was released under unaerobic conditions at a rate of 2,5 mg P m?2 d?1 and was taken up again under aerobic conditions at 1,6 mg P m?2 d?1 These values were in agreement with existing observed data on changes in phosphate concentration.  相似文献   

3.
In the Azores, the advanced trophic state of the lakes requires a fast intervention to achieve the good ecological status prescribed by the Water Framework Directive. Despite the considerable effort made to describe the phytoplankton growing on the water column, the lack of information regarding the microbial processes in sediments is still high. Thus, for the successful implementation of internal management actions, the present work explored the relationships between geochemical profiles and dominant members of the bacterial community in sediments from eutrophic Azorean lakes. Lake Azul geochemical profiles were quite homogeneous for all parameters, while in lake Furnas the total iron profile presented a peak below the aerobic layer. For lake Verde, the concentrations of all studied parameters (20 ± 2% loss-on-ignition; 2.10 ± 0.08 mg g?1 total phosphorus; 1.31 ± 0.50 mg g?1 total nitrogen; 8.06 ± 0.13 mg g?1 total iron) in the uppermost sediment layer were approximately two times higher than the ones in sediments from other lakes, decreasing with sediment depth. The higher amounts of phosphorus and organic matter in lake Verde suggested a higher internal contribution of phosphorus to eutrophication. The dominant members of the sediment bacterial community, investigated by denaturing gradient gel electrophoresis, were mostly affiliated to Proteobacteria phylum (Alpha-, Delta-, and Gamma-subclasses), group Bacteroidetes/Chlorobi and phylum Chloroflexi. The Cyanobacteria phylum was solely detected in sediments from lake Verde and lake Furnas that presented the highest amounts of nitrogen and phosphorus both in the water column and sediments, while the other phyla were detected in sediments from the three studied lakes. In conclusion, management measurers to achieve the good ecological status until 2015 should be distinct for the different lakes taking into account the relative magnitude of the nutrient sources and the bacterial diversity in sediments.  相似文献   

4.
L. Gao  Q. Wei  F. Fu 《Plant biosystems》2013,147(4):1175-1183
Macroalgal blooms have occurred worldwide frequently in coastal areas in recent decades, which dramatically modify phosphorus (P) cycle in water column and the sediments. Rongcheng Swan Lake Wetland, a coastal wetland in China, is suffering from extensive macroalgal blooms. In order to verify the influence of macroalgal growth on sediment P release, the sediments and filamentous Chaetomorpha spp. were incubated in the laboratory to investigate the changes of water quality parameters, P levels in overlying water, and sediments during the growth period. In addition, algal biomass and tissue P concentration were determined. In general, Chaetomorpha biomasses were much higher in high P treatments than in low P treatments. Compared with algae+low P water treatment, the addition of sediments increased the algal growth rate and P accumulation amount. During the algal growth, water pH increased greatly, which showed significant correlation with algal biomass in treatments with high P (P < 0.05). P fractions in the sediments showed that Fe/Al–P and organic P concentrations declined during the algal growth, and great changes were observed in algae+low P water+sediment treatment for both. As a whole, the sediments can supply P for Chaetomorpha growth when water P level was low, and the probable mechanism was the release of Fe/Al–P at high pH condition induced by intensive Chaetomorpha blooms.  相似文献   

5.

The green alga Botryococcus is an important component of the phytoplankton in lake sediments from the Rotliegend of Central Europe. The first microscopic fossils from the Saar‐Nahe Basin that can be assigned to this genus are described and illustrated here. Their distribution at various stratigraphic levels shows that the primary production of the lakes was at least partially controlled by these green algae. The frequency of fossils in the sediments is correlated with grain size, which varied with the depositional environment. Their abundance is greater in sediments deposited in shallow water, especially in small lakes and in the littoral environments of larger lakes. Sediments of deep‐water lake bottoms contain only minor amounts of algal remains. The abundance of kerogen originating from phytoplankton and occurrences of Botryococcus fossils are correlated in these lake deposits.  相似文献   

6.
Phosphine (PH3) was monitored in the Taihu Lake in China by a GC/NPD method, coupled with cryo-trapping enrichment technology. Results showed that PH3 was universally detected in sediments, lake water and atmosphere of the Taihu Lake area. Total phosphorus (TPs) and fractions of different phosphorus species in lake sediments were separately measured as dissolved phosphate (DP), phosphorus bound to aluminum (Al-P), iron (Fe-P) and calcium (Ca-P), occluded phosphorus (OP), and organic phosphorus (Org-P) by sequential chemical extraction. High PH3 levels were correlated with high TPs values in sediments and with eutrophication at different sites. In addition, a positive linear correlation equation was obtained between the concentrations of PH3 in lake sediments and of the phosphorus fractions. The resulting multiple linear regression equation is PH3 = −165 + 63.3 DP + 0.736 Al-P + 2.33 Ca-P + 2.29 Org-P. The flux of PH3 across the sediment–water interface was estimated from sediment core incubation in May and October 2002. The annual average sediment–water flux of PH3 was estimated at ca. 0.0138±0.005 pg dm−2 h−1, the average yearly emission value of PH3 from Taihu Lake sediments to water was calculated to be 28.3±10.2 g year−1, which causes a water PH3 concentration of up to 0.178±0.064 pmol dm−3. The real importance of PH3 could be higher, because PH3 could be consumed in the oxic sediment–water boundary layer and in the water column. Spatial and temporal distributions of total phosphorus (TPw) and chlorophyll a (Chl-a) in the water column of Taihu Lake were measured over the study period. Higher water PH3 has also been found where the TPw content was high. Similarly, high Chl-a was consistent with higher water PH3. Positive relationships between PH3 and TPw (average R2 = 0.47±0.26) and Chl-a (average R2 = 0.23±0.31) were observed in Taihu Lake water.  相似文献   

7.
不同固磷方式对巢湖沉积物磷吸附行为的影响   总被引:3,自引:0,他引:3  
内源磷负荷将严重阻碍富营养化湖泊的恢复,其控制技术的关键在于有效增强沉积物吸附磷的能力,而相关研究相对较少。研究以典型富营养化湖泊(巢湖)严重污染区域的沉积物为实验对象,系统比较了常规固磷方式(施用CaCl2、FeCl3、AlCl3与曝气)对沉积物磷吸附行为和间隙水溶解态可反应磷(SRP)浓度的影响。结果表明:施用不同剂量的CaCl2之后,沉积物磷最大吸附量和吸附能均无显著变化,间隙水SRP浓度和沉积物磷平衡浓度(EPC0)仅有较小幅度的下降;FeCl3和AlCl3的施用可明显增加沉积物磷的最大吸附量和吸附能,同时有效降低间隙水SRP浓度和EPC0值,即沉积物显示更强的从水中吸附磷的能力。当同处低剂量水平时,铁能更有效地降低沉积物EPC0值;反之,曝气对沉积物最大吸附量和吸附能均无显著影响,却明显提高了间隙水SRP浓度和沉积物EPC0值,进而导致更强的磷释放风险。故建议将适量铁的施用作为富营养化湖泊沉积物修复的有效技术,且慎用曝气处理。  相似文献   

8.
Phosphorus content in sediment, water and tissues of three macrophyte species growing in Myall Lake, Australia were studied from January to November, 2004. The sites investigated were North–West (NW), North–East (NE), South–West (SW) bays and Central deep area of the lake (CL). The objective of this study was to investigate how total phosphorus (TP) in plant tissues relate to phosphorus pools and the role played by the aquatic macrophyte species under investigation in phosphorus recycling in the lake. Of the four investigated sites of the lake, TP in plant tissues were significantly higher in North–West and South–West bays compared to the rest. Najas marina had significantly higher TP content (e.g., 1.55 and 1.44 mg/g dw.; P < 0.05) for NW and SW respectively, than the other two species. N. marina is a rooted macrophyte while charophytes (C. fibrosa and Nitella hyalina) are pseudo-rooted macrophytes. Total phosphorus in the sediment and water column were significantly higher in Central deep area of the lake compared to the other three bays (P < 0.05, n 5). Soluble reactive phosphorus (SRP) and total dissolved phosphorus (TDP) in sediment pore water correlated significantly with phosphorus content in the tissue of N. marina ( ; ) as well as TP in sediment (␣ and ). Using the two-compartmental uptake model, it was observed that, sediment was the main compartment through which Ni. hyalina obtained phosphorus while for the other two species, water column was the uptake route for the phosphorus. These correlations suggest that, water column and sediments are important pathways for phosphorus uptake in plants.  相似文献   

9.
The growth of Volvox globator L. and Volvox aureus Ehr. was measured at five temperatures and nine phosphorus concentrations. Growth rates were hyperbolically related to phosphorus concentrations for all temperatures using a Monod growth model. Optimal growth rates of 1.17 and 1.00 doublings d?1 were obtained at 20°C for V. globator and V. aureus, respectively. Neither species grew at 5°C. The half-saturation constants for growth, Ks, were lower for V. aureus. Phosphorus uptake by both species was also dependent upon external phosphorus concentrations and temperature. At all temperatures, maximum phosphorus uptake (μmol P colony?1 min?1) was similar for both species; however, the half-saturation constants for uptake showed significant differences between the species. Comparisons of the kinetic constants for growth and phosphorus uptake suggest that V. aureus will outcompete V. globator under phosphorus limited, conditions.  相似文献   

10.
1. An in situ experiment was performed in the littoral zone of a large, subtropical lake to quantify effects of phosphorus (P) and nitrogen (N) on algal biomass, productivity, nutrient content and phosphate uptake kinetics. 2. We hypothesized that resident periphyton rapidly sequester added nutrients from the water column, but once a certain threshold is reached, nutrients remain in the water and permit a shift to a phytoplankton-dominated community. 3. Three duplicate sets of 1.2-m diameter mesocosms were treated with 10, 20 or 50 μg P L??1 in combination with 100, 200 or 500 μg N L??1, respectively. The nutrients were added thrice weekly for 14 days, after which the treatment doses were doubled for an additional 9 days. The cumulative amounts of P and N added over the course of the study were 700 and 7000 μg L??1, respectively. Two untreated mesocosms and two open reference sites were used as controls. 4. The total P concentration in the water column of nutrient-treated mesocosms remained low, even after prolonged high dosing. However, there was a two-fold increase in the P content of surface algal mats and epiphyton. This indicates that some of the added P was sequestered by those components of the community. In contrast, metaphyton and epipelon displayed little or no increase in their P content. Large quantities of added P could not be accounted for in the periphyton community, and may reflect unmeasured losses to the sediments or other pools. 5. Nitrogen also was depleted from the water column, but there were no significant increases in periphyton N content. Much of the added N could not be accounted for in mass balances, and may have been lost from the mesocosms through volatilization or other biochemical processes. 6. Chlorophyll-a in epiphyton increased significantly after 14 days in the highest nutrient treatment, where there also was a proliferation of Spirogyra on day 28. 7. On day 28, water column samples from the highest nutrient treatment also displayed a significantly higher rate of carbon uptake, and a significantly higher concentration of midday dissolved oxygen. 8. The hypothesis that phytoplankton become dominant at high nutrient loading rates was not supported. However, there were dramatic changes in community structure (increased dominance by epiphytic Spirogyra) and function (increased productivity and dissolved oxygen) in response to nutrient additions.  相似文献   

11.
1. Sediments from hypereutrophic Lake Vallentunasjön were enriched with Microcystis colonies from the lake water, thereby simulating the conditions after the autumn sedimentation. Release of phosphorus to the overlying lake water was followed during 2–3 weeks in the laboratory. X-ray microanalysis of individual Microcystis and bacterial cells, and chemical phosphorus fractionation, were used to assess the phosphorus pool size in different fractions of the sediment. 2. Benthic Microcystis colonies, most of these having survived within the sediment for 1 year or more, were less susceptible to decomposition, and the specific growth rate of bacteria in their mucilage was lower than for other sediment bacteria. 3. Pelagic Microcystis colonies from late August were resistant to decomposition, when placed on the sediments. When Microcystis colonies from a declining pelagic population in October were added to the sediments, however, a substantial fraction of these colonies was decomposed. The specific growth rate of mucilage bacteria was five times higher than for other sediment bacteria. 4. Release of molybdate-reactive phosphorus to the overlying lake water was larger from sediment cores enriched with Microcystis colonies than from control cores. Chemical phosphorus fractionation showed a decrease in organic-bound phosphorus (residual P). 5. X-ray microanalysis showed that the phosphorus bound in Microcystis cells decreased by -0.300 mg g?1 DW in the October experiment, due both to a decrease in biomass (i.e. mineralization) and to a decrease in phosphorus content in the remaining cells. Heterotrophic bacteria increased their cellular concentration of phosphorus. The net release of phosphorus from the Microcystis and bacterial pools corresponded to 74% of the decrease of organic-bound phosphorus in the chemical phosphorus fractionation, and to 65% of the decrease of total phosphorus in the upper 0–1 cm of the sediment. 6. Benthic bacteria and cyanobacteria may thus contribute significantly to changes in phosphorus content and turnover of the sediment by changes in their biomass, turnover rate and cellular phosphorus content.  相似文献   

12.
1. Wind‐induced sediment resuspension can affect planktonic primary productivity by influencing light penetration and nutrient availability, and by contributing meroplankton (algae resuspended from the lake bed) to the water column. We established relationships between sediment resuspension, light and nutrient availability to phytoplankton in a shallow lake on four occasions. 2. The effects of additions of surficial sediments and nutrients on the productivity of phytoplankton communities were measured in 300 mL gas‐tight bottles attached to rotating plankton wheels and exposed to a light gradient, in 24 h incubations at in situ temperatures. 3. While sediment resuspension always increased primary productivity, resuspension released phytoplankton from nutrient limitation in only two of the four experiments because the amount of available nitrogen and phosphorus entrained from the sediments was small compared with typical baseline levels in the water column. In contrast, chlorophyll a entrainment was substantial compared with baseline water column concentrations and the contribution of meroplankton to primary production was important at times, especially when seasonal irradiance in the lake was high. 4. Comparison of the in situ light climate with the threshold of light‐limitation of the phytoplankton indicated that phytoplankton in the lake were only likely to be light‐limited at times of extreme turbidity (e.g. >200 nephelometric turbidity units), particularly when these occur in winter. Therefore, resuspension influenced phytoplankton production mainly via effects on available nutrients and by entraining algae. The importance of each of these varied in time. 5. The partitioning of primary productivity between the water column and sediments in shallow lakes greatly influences the outcome of resuspension events for water column primary productivity.  相似文献   

13.
M. Dickman  X. Hang 《Hydrobiologia》1995,306(2):131-146
Crawford Lake, a meromictic lake located near Toronto, Canada, was cored to determine if algal pigments preserved in its sediments would make it possible to infer past changes in lake productivity over the last five hundred years. From 1500 to 1910 A.D. the sediments display extremely high levels of oscillaxanthin and myxoxanthophyll while chlorophyll derivatives and total carotenoids were relatively low. As the lake became increasingly more eutrophic in the latter part of the twentieth century, this relationship reversed itself. Competition for light between the deep dwelling cyanobacteria in the algal mat on the lake's bottom (8–14 m) and phytoplankton in the overlying surface layers of the water column (5–7 m) was attributed to the observed reduction in oscillaxanthin and myxoxanthophyll as Crawford Lake eutrophied. Because the major cyanobacteria in Crawford Lake are benthic mat forming Lyngbya and Oscillatoria, and not phytoplankton, competition for light with the overlying phytoplankton is critical in determining the total quantity of oscillaxanthin and myxoxanthophyll preserved in the lake's profundal sediments. These findings have major implications for the use of cyanobacterial pigments as indicators of lake trophic status in lakes where benthic algal mats are present.  相似文献   

14.
Several aspects of the metabolism and composition of a strain of Anabaena have been studied during phosphorus deficiency. The effects of medium composition, substrate concentration, temperature, pH, and illumination on alkaline phosphatase activity and phosphate uptake have been examined. Of particular interest among these results was the dependence of maximum alkaline phosphatase activity on Ca and of phosphate uptake on Mg. Depletion of dissolved phosphate from the culture medium runs accompanied by a marked increase in alkaline phosphatase activity, initial rate of phosphate uptake, and total amount of phosphate taken up to satisfaction of the phosphorus debt. Readdition of phosphate to a phosphorus-deficient culture resulted in a rapid decline in the ability to take up phosphate but no loss of alkaline phosphatase beyond dilution of activity already present. Entry into phophorus deficiency was accompanied by a loss of heterocysts, a decline in chlorophyll a, protein, RNA, and cellular phosphorus, and an increase in carbohydrate per unit dry weight. The possible use of these changes as physiological indicators of phosphorus limitation in natural situations is discussed.  相似文献   

15.
Internal phosphorus loading can lead to eutrophication in lakes when anoxic sediments release bioavailable phosphorus into the water column. In laboratory experiments, iron mine tailings helped to sequester phosphorus in sediment from a eutrophic lake. Phosphorus release from the sediments after extraction with distilled water or 0.02 N H 2 SO 4 was significantly reduced when mine tailings were added (1:1 w/w), even when the system was anaerobic (~ 1 mg O 2 /L). The degree of sequestration was enhanced when glucose (1% w/w) was added to stimulate the growth of microorganisms, suggesting that the process was microbially mediated. We suggest that oxidized iron in the mine tailings served as an electron sink for microbial respiration via dissimilatory Fe3+ reduction. The reduced iron released into solution sequestered phosphorus, either as it re-oxidized and formed hydrous ferric oxide complexes containing phosphorus (HFO-P), or through precipitation. Since mine tailings are inexpensive, they may prove useful for preventing phosphorus from entering surface waters, as well as reducing internal phosphorus loading.  相似文献   

16.
Eutrophication of water by nutrient pollution remains an important environmental issue. The aim of this study was to evaluate the nutrient uptake capacity of an algal biofilm as a means to treat polluted water. In addition, the study investigated the nutrient removal process. The algal biofilm was able to remove 99% of phosphorus within 24 hours of P addition, with the PO4-P concentration in inflowing water ranging from 3 to 10 mg L?1. Different patterns of phosphorus and nitrogen removal were observed. Daily quantity of removed NO3-N ranged from 2 to 25% and was highly dependent on solar irradiance. Precipitation of phosphorus during the removal process was studied using X-ray diffraction analyses and was not confirmed in the biofilm. The biofilm system we constructed has a high efficiency for phosphorus removal and, therefore, has great potential for integration into wastewater treatment processes.  相似文献   

17.
The inorganic phosphorus (Pi) uptake kinetics of Spirogyra fluviatilis Hilse were examined as a function of phosphorus cell quota (QP) and flow velocity in a laboratory stream apparatus. Short-term uptake and the acclimation of the uptake mechanism to flow were measured by the disappearance of Pi pulses in a recirculating flow cell. Short-term Pi uptake was biphasic. When the alga was P-deficient, Phase 1 and 2 half-saturation constants and maximum uptake rates were 11.0 and 47.2 μg P·L?1 and 473 and 803 μg P·g dry wt?1 h?1, respectively. Flowing water altered short-term uptake when the alga was P-deficient, but not when it was P-replete. When QP was less than 0.21%, increases in flow velocity from 3 to 15 cm·s?1 enhanced uptake with maximum uptake for any Pi pulse at 12 and 15 cm·s?1. At 22 and 30 cm·s?1, uptake was reduced by 12% or more relative to the maxima. If, however, the alga was cultivated at 22 and 30 cm·s?1 and short-term Pi uptake was measured at 12 cm·s?1, uptake was on average 33% greater than when the alga was cultivated at the latter velocity. Apparently, the alga could adjust short-term uptake to compensate for the suboptimal conditions of the faster velocities. Long-term Pi uptake and net phosphorus efflux were estimated by a non-steady state application of the Droop equation. Long-term uptake of very low Pi concentrations was not reduced by fast flowing water. Instead, uptake increased proportionately with flow velocity. Maximum phosphorus efflux from S. fluviatilis was 3% of cellular P per hour and occurred when QP was greater than 0.2%. At lower QP, the hourly efflux rate was typically less than 1%. Flowing water did not greatly enhance efflux, although when Pi was undetectable, efflux did tend to increase slightly with velocity. The data show that the effects of flowing water on Pi uptake were varied and not always beneficial. If the effects of flowing water on nutrient acquisition by other lotic algae are similarly varied and complex, flow may be an important determinant of nutrient partitioning among benthic algae in streams.  相似文献   

18.
The potential of periphyton for phosphorus removal from lakes has been investigated using a novel method involving polypropylene (PP) substrate carriers submerged in the pelagial. The study area Lake 'Fühlinger See' in Cologne (Germany) is a complex of mesoeutrophic gravel pit lakes. The whole site is intensively used as a recreation area. Visitors are thought to be the most important single contributors to lake eutrophication. Carriers were exposed at different depths (2, 3.5, 5 m), for different time intervals (1–8 months) and from March to November PP-sheets were readily colonised by periphyton and a biofilm consisting mainly of benthic diatoms developed. Seasonal variability of periphyton on substrates was observed since filamentous green algae colonised the artificial substrates mainly between July and November. Chlorophyll a content of periphyton on the PP-fleece was up to 240-fold higher than chlorophyll a concentrations in the same volume in the epilimnion. Up to around 100 mg of total phosphorus per m2 PP-fleece was bound and can be eliminated from the lake by removal of the substrate carriers together with the periphyton after four months of exposure. Though large-scale validations are needed, this method may be applicable as a technique to harvest phosphorus from the water column in larger-scale settings.  相似文献   

19.
1. Oxygen uptake and denitrification were determined in two bioturbated sediments from a eutrophic lake in southern Sweden. In laboratory mesocosms, an organic profundal sediment was incubated with Chironomus plumosus L. and a sandy littoral sediment with an organic-rich top layer was incubated with Polypedilum sp. Both species of chironomid are sediment tube-dwelling. 2. Oxygen consumption, expressed per gram of larval dry weight, was enhanced to the same extent by the larvae in both sediments. Measurements of the respiration rate of individual larvae revealed that the respiration per gram dry weight of the smaller Polypedilum sp. was more than three times higher than that of C. plumosus. 3. Denitrification was measured using the ‘nitrogen isotope pairing’ technique. In the organic sediment, denitrification of nitrate from the water phase (dw) and denitrification of nitrate from coupled nitrification (dn) were each correlated with the biomass of C. plumosus. In the sandy sediment, dw was correlated with the biomass of Polypedilum sp., while dn did not show any correlation with Polypedilum sp. 4. Oxygen uptake in the organic sediment was increased by a factor of 2.5, dw 5-fold and dn 2.5-fold at a biomass of 10 g m–2 dry weight of C. plumosus. The same biomass of Polypedilum sp. in the sandy sediment resulted in a 2-fold stimulation of oxygen uptake and a 3-fold stimulation of dw, while dn was not affected. These differences in stimulation between oxygen uptake and denitrification by the larvae in the sediments suggest that the stimulation pattern cannot be explained by simple extension of the sediment surface. The burrows evidently reduce the distance between the nitrate source in the water column and the denitrifiers in the anoxic zones. 5. This study indicates that bioturbation by macrofauna elements can have a great impact on denitrification in lake sediments, and that different organisms can influence nitrogen turnover in specific ways.  相似文献   

20.
Zeekoevlei is the largest freshwater lake in South Africa and has been suffering from hyper-eutrophic conditions since last few decades. We have used total P (TP), dissolved phosphate (PO4 3−), organic P (OP), calcium (Ca) and iron (Fe) bound P fractions to investigate the relevant physical, chemical and biological processes responsible for sedimentation and retention of P and to study phosphorus (P) dynamics in this shallow lake. In addition, redox proxies (V/Cr and Th/U ratios) are used to study the prevailing redox conditions in sediments. Adsorption by CaCO3 and planktonic assimilation of P are found to control P sedimentation in Zeekoevlei. Low concentration of the labile OP fraction in surface sediments restricts the release of P by bacterial remineralisation. Low molar Ca/P and Fe/P ratios indicate low P retention capacity of sediments, and P is most likely released by desorption from wind-induced resuspended sediments and mixing of pore water with the overlying water column. Handling editor: J. Saros  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号