共查询到20条相似文献,搜索用时 15 毫秒
1.
Burial and removal techniques with seeds bags were used to examine the Eucalyptus victrix seed longevity. Seeds kept in room temperature (control) had 94% germination within 25 d, however, with increasing duration of burial the E. victrix seed viability decreased to zero before 142 d. Similarly, seed buried in shade and open had no significance difference in germination. 相似文献
2.
The influence of temperature during seed development on the germination characteristics of millet seeds 总被引:1,自引:0,他引:1
Abstract. The cardinal temperatures, rate of germination and final percentage germination of pearl millet seeds were measured for seeds raised in greenhouses maintained at mean air temperatures of 19, 22, 25, 28 and 31°C. The results showed that cardinal temperatures for germination are unaffected by the temperature during seed development and growth. However, the conditions during seed growth did affect seed size and, subsequently, germination rate and seed viability. 相似文献
3.
T. G. S. Oliveira I. P. Diamantino Q. S. Garcia 《Plant biology (Stuttgart, Germany)》2017,19(5):818-823
- Dormancy cycles are an important mechanism for avoiding seed germination under unfavourable periods for seedling establishment. This mechanism has been scarcely studied in tropical species. Here, we studied three tropical and perennial species of Xyris, X. asperula, X. subsetigera and X. trachyphylla, to investigate in situ longevity and the existence of seasonal seed dormancy cycles.
- Seeds of three species of Xyris were buried in their natural habitat, with samples exhumed bimonthly for 18 months. Germination of exhumed seeds was assessed under a 12‐h photoperiod over a broad range of temperatures. Seeds of X. trachyphylla were also subjected to treatments to overcome secondary dormancy.
- Seeds of all species are able to form a persistent seed bank and exhibit seasonal changes in germinability. Secondary dormancy was acquired during the rainy summer and was overcome during the subsequent dry season (autumn/winter). Desiccation partially overcomes secondary dormancy in X. trachyphylla seeds.
- Soil seed bank persistence and synchronisation of seed germination under favourable conditions for seedling establishment contribute to the persistence and regeneration of X. asperula, X. subsetigera and X. trachyphylla in their natural environment.
4.
为明确黄土丘陵沟壑区植物种子库如何调控种子萌发来提高个体适合度,选择研究区7种具有种子库的主要物种为研究对象,以刚成熟和室内储存种子为对照,比较植冠宿存(5个宿存期)和土壤埋藏(5a埋藏期)对植物种子萌发特性的影响,探讨植冠种子库与土壤种子库储存下的种子萌发策略。结果表明:7种植物种子经过不同种子库储存后萌发特性表现出明显的种间差异,黄刺玫(Rosa xanthina)和水栒子(Cotoneaster multiflorus)种子萌发力表现为植冠宿存不变型、土壤储存增强型,土壤储存明显提高水栒子种子萌发速率;达乌里胡枝子(Lespedeza davurica)和狼牙刺(Sophora davidii)种子萌发力表现为植冠宿存增强型、土壤储存减弱型,种子萌发历时表现为植冠宿存延长型,土壤种子库储存还可加快达乌里胡枝子萌发速率、缩短萌发历时;茭蒿(Artemisia giralaii)和铁杆蒿(Artemisia gmelinii),种子萌发率随植冠宿存时间先升高后降低,随土壤储存时间先降低后升高,土壤储存可推迟其萌发,铁杆蒿种子萌发速率在植冠与土壤储存后均加快;紫丁香(Syringa oblata)种子萌发率随植冠宿存先升高后降低,土壤储存明显加快其种子启动萌发与速率。在黄土丘陵沟壑区,植物种子经过植冠或土壤种子库储存,或增加、加快、提早萌发充分利用有利条件提高占据性,或减少、减缓、推迟萌发分摊不利条件的风险;而且该区植物植冠与土壤储存后种子萌发特性间的关系,体现各自适应环境与应对干扰的分工与协作策略,主要表现为:单一主导型和相辅相成型。 相似文献
5.
土壤种子库与矿业废弃地植被恢复研究I.Leonard瓶-罐装置在土壤种子库检测中的应用 总被引:2,自引:0,他引:2
1前言土壤种子库的组成和动态的检测主要有两种方法,其一是把土壤样品铺在垫有沙子(经消毒除去沙子内可能有的种子)的花盆或其它发芽框上,给予合适条件使土样中的种子萌发,记录幼苗数及种类[1~5];另一种是用物理方法分离土样直接得到种子,检测种子活力和统计... 相似文献
6.
Margaret B. Fleming Lauren Stanley Robyn Zallen Matthew T. Chansler Lars A. Brudvig David B. Lowry Marjorie Weber Frank W. Telewski 《American journal of botany》2023,110(11):e16250
Premise
In 1879, Dr. William Beal buried 20 glass bottles filled with seeds and sand at a single site at Michigan State University. The goal of the experiment was to understand seed longevity in the soil, a topic of general importance in ecology, restoration, conservation, and agriculture, by periodically assaying germinability of these seeds over 100 years. The interval between germination assays has been extended and the experiment will now end after 221 years, in 2100.Methods
We dug up the 16th bottle in April 2021 and attempted to germinate the 141-year-old seeds it contained. We grew germinants to maturity and identified these to species by vegetative and reproductive phenotypes. For the first time in the history of this experiment, genomic DNA was sequenced to confirm species identities.Results
Twenty seeds germinated over the 244-day assay. Eight germinated in the first 11 days. All 20 belonged to the Verbascum genus: Nineteen were V. blattaria according to phenotype and ITS2 genotype; and one had a hybrid V. blattaria × V. thapsus phenotype and ITS2 genotype. In total, 20/50 (40%) of the original Verbascum seeds in the bottle germinated in year 141.Conclusions
While most species in the Beal experiment lost all seed viability in the first 60 years, a high percentage of Verbascum seeds can still germinate after 141 years in the soil. Long-term experiments such as this one are rare and invaluable for studying seed viability in natural soil conditions. 相似文献7.
对城市绿地土壤种子库的组成、种群数量、空间分布和物种多样性进行了初步研究,结果表明:城市绿地土壤种子库存中共出现植物42种,其中在第一层中共出现植物1 477株,多样性指数为2.05,均匀度是0.58,最大的物种多样性指数是3.56,第二层的物种多样性指数,均匀度和最大物种多样性指数均比第一层要低,分别为1.94、0.56和3.47,植物种类也要少一些。城市绿地土壤种子库中种的丰富度、种子苗量、多样性指数均不如远郊区山地天然次生林。城市绿地土壤种子库中蕴藏着一些潜在种群,有些植物种可以用于城市绿化建设。 相似文献
8.
香果树为我国Ⅱ级野生保护植物,由于原生境中香果树种群的数量迅速减少,目前已濒临灭绝,种群亟待恢复。研究了武夷山不同海拔的香果树种群种子雨、种子库及其幼苗存活现状,目的是阐明不同海拔地区的香果树种群自然更新的动态过程,寻找其更新脆弱的环节及其影响因素,为香果树自然种群的恢复提供理论依据。以分布于不同海拔高度(819、980、1 140及1 301 m)的香果树母树为中心,在其周围(东、南、西、北四个方位)布设种子雨收集框和土壤种子库样方,连续观测种子雨和种子库的动态,并对不同地表覆盖物中种子萌发及幼苗数量进行观测和记录。结果表明,武夷山香果树种群种子雨持续时间近2个月,尤其是11月底至12月中旬为种子雨高峰期;随着海拔的上升,香果树种子总密度以及虫蛀种子密度均显著降低,但千粒重以及饱满种子密度则有所增加;香果树土壤种子库为瞬时种子库,其水平分布以母树南侧和西侧种子密度较大,母树北侧种子密度最小。香果树种子的垂直分布主要集中于枯落物和苔藓层;3月时香果树土壤种子库中存留的饱满种子仅占种子散布后1.80%,而1年实生苗存活率为6.18%,土壤种子库的损耗是其种群自然更新困难的主要原因;不同地表覆盖物对香果树幼苗的存活产生显著影响,枯落物及苔藓层的幼苗死亡率显著高于土壤表面。建议清理林内枯落物及苔藓,增加林内裸露土壤的面积,减小地上草本的盖度,以减少种子霉烂、虫蛀的几率,增加香果树实生苗胚根与土壤接触的几率以及改善光照条件,促进香果树自然更新。 相似文献
9.
研究了腾格里沙漠东南缘在不同自然条件(风、温度、水分)下,人工固沙植被区(24龄、41龄、50龄)和相邻天然植被区的两种生物土壤结皮对荒漠土壤种子库和种子萌发的影响。结果表明,荒漠土壤种子库在苔藓结皮上的储量显著高于藻类结皮。随着生物土壤结皮的发育,种子萌发量在苔藓结皮上增加,在藻类结皮上减少。生物土壤结皮层的含水量对种子萌发有显著的影响(p〈0.05),植物种子在湿润处理的生物土壤结皮上的萌发量高于干燥处理的生物土壤结皮上的种子萌发量。生物土壤结皮表层温度和亚表层温度对荒漠植物种子萌发无显著影响(p〉0.05),但总体而言,对于苔藓结皮,植物种子在较高温度下的萌发量略高于在较低温度下的萌发量,而对于藻类结皮,植物种子在较低温度下的萌发量略高。 相似文献
10.
Abstract Analysis was performed of the richness and abundance of woody species, forbs, and annual grasses in the easily germinating soil seed bank (henceforth seed bank) in a mediterranean shrubland of central Chile. The effects of successional development after fire and by microsite type (underneath or outside shrubs) on the density of seeds in the soil, and the relationship of species abundance in the seed bank with its abundance in the above‐ground vegetation was examined. A total of 64 plant species were recorded in the seed bank, of which 44 were annual or biannual. Eight species were woody and another eight were perennial herbs. Four could not be identified to species level. The highest richness of established herbaceous species was recorded in late spring, with 31 species. The regeneration of the herbaceous vegetation was driven by the annual production of seeds and by a reserve of short‐lived propagules in the soil. Density of all germinating seeds was significantly higher during late spring and late summer. Density of grass seeds was greater during late spring, while that of all other species was greater during late summer. Annual grass seeds accumulated in higher proportion at exposed microsites rather than under woody canopy, and in young (< 5 years old) and intermediate‐age patches (10–20 years old) rather than in mature vegetation (30–50 years old). The abundance of established woody and herb species was uncorrelated with that of the seed bank. 相似文献
11.
Abstract Seed germination, seedling emergence and seed persistence in the soil were investigated for Dianthus morisianus (Caryophyllaceae), a psammophilous endemic species of Sardinia. Stored and freshly collected seeds were incubated in a range of constant temperatures (5–25°C) and an alternating temperature regime (25/10°C). The effect of seed burial depth on seedling emergence was investigated under controlled environmental conditions. Seed persistence in the soil was verified by in situ experimental seed burials. Seeds of this species were non-dormant, and all seed lots germinated both in the light and darkness, mainly at low temperatures (≤20°C), with a maximum at 15°C (≥95%). Optimal seedling emergence was obtained when seeds were buried at a depth of 1–2 cm, and a declining emergence with increasing depth was observed. D. morisianus was also unable to form a persistent soil seed bank. The fate of the seeds that, after dispersal, do not emerge from the soil in the spring is, therefore, presumably to die before the next favourable growing season. 相似文献
12.
JEFFREY L. WALCK SITI N. HIDAYATI KINGSLEY W. DIXON KEN THOMPSON PETER POSCHLOD 《Global Change Biology》2011,17(6):2145-2161
At the core of plant regeneration, temperature and water supply are critical drivers for seed dormancy (initiation, break) and germination. Hence, global climate change is altering these environmental cues and will preclude, delay, or enhance regeneration from seeds, as already documented in some cases. Along with compromised seedling emergence and vigour, shifts in germination phenology will influence population dynamics, and thus, species composition and diversity of communities. Altered seed maturation (including consequences for dispersal) and seed mass will have ramifications on life history traits of plants. Predicted changes in temperature and precipitation, and thus in soil moisture, will affect many components of seed persistence in soil, e.g. seed longevity, dormancy release and germination, and soil pathogen activity. More/less equitable climate will alter geographic distribution for species, but restricted migratory capacity in some will greatly limit their response. Seed traits for weedy species could evolve relatively quickly to keep pace with climate change enhancing their negative environmental and economic impact. Thus, increased research in understudied ecosystems, on key issues related to seed ecology, and on evolution of seed traits in nonweedy species is needed to more fully comprehend and plan for plant responses to global warming. 相似文献
13.
植冠种子库是植物适应环境并应对外界干扰的种子生态策略之一,研究了黄土丘陵沟壑区12种主要植物植冠种子库动态,结果表明:杠柳不具有植冠种子库,其他11种植物均具有植冠种子库;除了黄刺玫种子在翌年5月达到脱落高峰,其他植物大部分种子在冬季脱落,其中杠柳、达乌里胡枝子、茭蒿、黄柏刺和水栒子的大部分种子脱落集中偏早,铁杆蒿和土庄绣线菊的大部分种子脱落集中偏晚;植冠宿存对大部分植物种子的萌发特性表现为促进作用;但不同植物种子的萌发时滞对植冠宿存响应差异较大;9种植物种子在植冠上宿存至翌年2月底,其种子活力仍能维持达60%以上;该区植物表现出不同的植冠种子库策略,通过不同的方式来减少干扰的威胁,提高成功萌发与更新的几率,它们或具有较大规模的宿存量、或调控种子萌发特性、或提高种子维持活力的百分比。此外,全面了解该区植物形成植冠种子库的机理及对应的生态策略还有待于全面、深入的研究。 相似文献
14.
Germination ecology of Parthenium hysterophorus, recently introduced to Ethiopia, was studied in a series of experiments. Viability of the seeds was greater than 50% after 26 months of burial in the soil indicating the potential build‐up of a substantial persistent soil seed bank. A short period of dry storage was sufficient to overcome a light requirement for germination in a minor fraction of the seeds. Likewise, seeds exhumed from burial showed an increase in germination ability in darkness over time, with a weak tendency for seasonal cyclicity in dormancy level at one of two sites. Germination occurred at the mean minimum (10°C) and maximum (25°C) temperatures of the collection sites, as well as over a wide range of fluctuating (12/2°C‐35/25°C) temperatures in light. No germination of P. hysterophorus seeds occurred at osmotic potentials < ‐0.52 MPa (at 27°C), the species being less tolerant to moisture stress than sorghum grains. Most seedlings emerged from shallowly buried (< 0.5 cm) seeds and none from more than 5 cm depth. Naturally dispersed seeds required about 60 days, at a hot lowland site, to start emergence despite the presence of adequate rainfall, and higher number of seedlings emerged in undisturbed plots than in hand hoed plots. These experiments and field observations suggest that there are no obvious climatic conditions that may limit the germination of Parthenium hysterophorus in Ethiopia, but a high moisture requirement of the seeds for germination could be the major factor limiting germination during the dry season. 相似文献
15.
光照、温度和盐分对梭梭种子萌发的影响 总被引:11,自引:0,他引:11
梭梭是我国西北荒漠中分布的多年生植物,属中亚荒漠植被成分。其种子萌发的最适温度为10℃,亚适宜温度为15~20℃。从20℃起,温度越高,萌发比率越低。种子无论在光下和暗中都能萌发,萌发率无显著性差异。浓度低于0.2mol/L的NaCl溶液对萌发的影响不大;但从0.8mol/L起,萌发率随着浓度增高而降低,直至为零。将在盐溶液中处理9d的种子转移至蒸馏水后,原来较高浓度下的种子具有较高的萌发恢复率。不同浓度下的种子的萌发率和萌发恢复率要比蒸馏水中的低,表明NaCl处理后的部分种子永久地失去萌发力。 相似文献
16.
Andrew R. Dyer 《Restoration Ecology》2002,10(1):107-111
Prescribed fire is an important management tool for reducing the dominance of non‐native species in annual grasslands; both annual and perennial native species show strong vegetative responses in the subsequent growing season. However, although the post‐fire contribution of native species to the seed bank is assumed to be larger than in pretreatment years, the effects on seed quality, particularly viability and longevity, are not well understood. In this study, I germinated Nassella pulchra (purple needlegrass) seed that had been stored for 10 years after collection from target plants receiving treatment combinations of summer burning and grazing by sheep. Seeds from burned plants were larger and had higher germinability than seed from unburned plants. Seeds from plants that were both burned and grazed had the highest germination. The strong relationship between long‐term viability and seed size suggests greater maternal provisioning and increased seed quality subsequent to burning and grazing. I conclude that managing for seed quality may be a useful approach for conservation of native species in California's critically endangered grassland habitats. 相似文献
17.
The conservation of rare plant species is an important aspect of global biodiversity protection, but in many cases these species and the reasons why they are rare are poorly understood. The perennial umbellifer Apium repens is generally regarded to be a rare species all over its European range. We hypothesized that its rarity might be caused by a restricted regeneration niche, that is, highly specific requirements for sexual regeneration, low seed dispersal potential and low endurance capacity of seeds in the ground. We conducted several experimental investigations on its germination ecology, hydrochorous dispersal potential and soil seed bank properties. Apium repens showed high germination success under a variety of abiotic conditions. Either light or cold-wet stratification was necessary to stimulate germination. Seeds were able to float for more than 50 days when protected from precipitation, and soil seed bank sampling revealed that at least some seeds of A. repens were contained in soil depths of up to 10 cm. Overall, our findings do not support the hypothesis that the rarity of A. repens is caused by highly specific requirements for its sexual regeneration. Nonetheless, its germination ecology should be considered when designing conservation measures for this endangered species. 相似文献
18.
以青藏高原野豌豆属窄叶野豌豆(Vicia angustifolia)、山野豌豆(V. amoena)、歪头菜(V. unijuga) 3种野生植物与一种当地栽培植物救荒野豌豆(箭筈豌豆) (V. sativa) ‘兰箭3号’种子为材料, 在5、10、15、20、25及30 ℃下进行萌发实验, 应用种子萌发的积温模型对上述4种植物萌发对温度的响应特征进行了比较分析。结果表明: 1)基于萌发速率(1/Tg)对种子萌发温度最低温Tb值的估计受萌发率(g)的影响较小; 与此不同, 除‘兰箭3号’种子外, 对萌发最高温Tc值的估计, 受到g的显著影响。 这表明种群内所有种子个体萌发的Tb值相对恒定, 但Tc值在有些物种中变异较大; 2)基于重复概率单位回归分析估计的种子萌发Tb值与基于萌发速率估计的值较为接近; 而由此方法估计的Tc值则与萌发率为50%时的估计值较为接近; 3)相比多年生豆科植物歪头菜和山野豌豆, 一年生豆科植物箭筈豌豆‘兰箭3号’与窄叶野豌豆具有相对较低的Tb与Tc值; 4)积温模型可准确地预测休眠破除后豆科植物种子在不同温度条件下的萌发进程。 相似文献
19.
Abstract There is limited understanding of how fire‐related cues such as heat shock and smoke can combine to affect the germination response of seeds from fire‐prone vegetation because combinations of multiple levels of both cues have rarely been investigated. Germination response surfaces were determined for the combination of heat shock and smoke by applying factorial combinations of temperature (up to 100°C) and aerosol smoke (0–20 min) to 16 species that form soil seed banks in the Sydney region of south‐eastern Australia. Duplicate populations of three species were also examined to assess the constancy of a species response surface. Of the 19 populations examined, 16 showed a germination response to both the fire cues, which combined interactively in 14 populations, and independently in two. No population responded only to a single cue; however, seeds of 11 populations responded to heat in the absence of smoke, and nine responded to smoke in the absence of heat. Heat applied in the absence of smoke negatively affected germination in seven populations, either progressively as temperature increased, or above a set temperature. Negative germination responses over part of the temperature range were fully reversed at higher temperatures for unsmoked seeds of four populations (curvilinear heat response). Smoke effects were most frequently positive over all or part of the range of durations used, and when combined with heat frequently fully or partially reversed negative heat effects. Three populations required the obligatory combination of smoke and heat. A novel response to the cues was observed for three species, with smoke reversing negative heat effects at 75°C, being supplanted by a positive heat response of unsmoked seed at 100°C. The response surface for duplicate populations of two of the three species examined was variable. Heat shock and smoke frequently combined to affect germination, in both positive and negative ways. Consequently, to gain an accurate assessment of the response of seeds to fires, an experimental design that samples within the potential response zones of germination cues is essential. 相似文献
20.
Abstract The germination response of seeds from fire‐prone vegetation to fire‐related cues such as heat shock and smoke has usually been studied by applying the cues singly. The few studies that have applied the cues in combination have shown that interactions between the cues are possible. Here, the response of seeds from a number of species to combined heat shock and smoke is reported. Heat shock (25, 50, 75 and 100°C) and aerosol smoke (0, 5, 10 and 20 min) were applied factorially to nine species that form soil seed banks in the Sydney region of south‐eastern Australia. These species were from Epacridaceae (four species), Myrtaceae (four species) and Cyperaceae (one species) and ranged from fire‐sensitive obligate seeders to fire‐tolerant facultative resprouters. Germination of Dracophyllum secundum R. Br and Sprengelia monticola (A. Cunn. ex DC.) Druce was low and did not respond to the germination cues. The positive response of Gahnia sieberiana Kunth and Kunzea ambigua (Sm.) Druce to heat shock and smoke was independent and additive. The positive response of Kunzea capitata Rchb. to the interaction between heat shock and smoke was synergistic, and the response of Baeckea diosmifolia Rudge and Baeckea imbricata (Gaertn.) Druce was unitive, with germination increase only occurring following combined heat and smoke application. Epacris coriacea A. Cunn. ex DC. and Epacris obtusifolia Sm. had low levels of dormancy and hence it was not possible to find a fire response. Gahnia sieberiana and K. capitata responded differently to the combination of heat shock and smoke than has previously been reported. Germination of species from habitats that are infrequently burnt was not affected by heat shock or smoke. Low‐intensity fire or patches within fire may be important for seedling recruitment as the 50°C heat shock stimulated germination in four of the five species that responded to the heat cue, and germination of Baeckea imbricata declined within the 100°C heat shock treatment. Germination of one species, Baeckea imbricata, was only stimulated by a specific combination of cues, indicating that regeneration niches may be narrow for some species and that the application of a range of heat and smoke doses is required to find such responses. Of the species positively responding to heat shock and smoke, a requirement for both cues was prevalent, therefore the response to these cues in isolation cannot be relied upon to give a true indication of the fire response of a species. 相似文献