首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: Spatial patterns within forests reflect their formative processes. In Kamchatka, the dominant stone birch (Betula ermanii) forest exists in a primeval state. Betula species can reproduce via clonally produced ramets, leading to a clustered distribution of stems, or from seed on open ground, although subsequent mortality may obscure initial establishment patterns.

Methods: Spatial patterns of all trees and regenerating stems in a fully mapped 0.25 ha plot were analysed using the g(r) function and the pattern of trees modelled using a Matérn cluster process. Mark correlation analysis was used to detect patterns in stem sizes.

Results: Clustering of trees at scales up to 3 m occurred, with model parameters indicating a density of 180 clusters ha?1, each containing on average three stems >1 cm diameter at breast height (DBH) within a 1.6 m radius. Stem size compensation was detected, with nearby trees smaller than expected by chance. Regenerating stems were strongly clustered at scales below 3.5 m and from 5–8 m, and were aggregated around small trees (<10 cm DBH) but not large trees (≥10 cm DBH), or in gaps.

Conclusions: These patterns are consistent with clonal reproduction followed by competition as the processes determining spatial structure in old-growth stone birch forests.  相似文献   

2.
Seasonal drought and heavily impeded soils reduce restoration success in Mediterranean‐type postmine soils, where up to 90% seedling mortality has been observed after 2 years. To alleviate these barriers, amendments were incorporated into the soil profile of a freshly mined sand quarry. Within the quarry, three 223 m2 replicate sites contained two substrate amendments: 12% v/v native‐sourced mulch or gravel incorporated within the top 50 cm of the soil profile. Three remnant sites provided a “natural” reference system. Seeds of two autochthonous trees, Banksia attenuata (R.Br.) and B. menziesii (R.Br.) were sown across all treatments. Soil impedance, moisture, and seedling stomatal conductance were monitored for 2 years, at which point seedlings were excavated, and nutrient concentration, root morphology, and soil chemical properties were measured. Roots in all restoration treatments were restricted to the top 40 cm of the profile due to increases in soil impedance, regardless of amendment, compared to >70 cm in the natural system. Seedling mortality was greatest after the second summer in the control and inorganic amendment treatments, with stomatal conductance indicating severe drought stress. Survival in the organic treatment was 24–42% greater than the control, with higher soil moisture and stomatal conductance rates 2.5 times that of the control. The increased soil water retention by a native‐sourced mulch was shown to improve postmine restoration success for these native trees.  相似文献   

3.
Monterey pine (Pinus radiata D. Don) has only five extant native populations: three disjunct populations along the coast of California, USA and two on Mexican islands. All populations have been influenced by human activity, but the island populations in particular have been affected by introduced biota. On Guadalupe Island, the pine population has suffered drastically from overgrazing by introduced goats. We visited both island populations and described their status, took measurements, and made seed collections. We counted approximately 200 mature pine trees and virtually no seedlings on Guadalupe Island: a reduction of approximately half the population in the last 50 years. The trees are all large (mean diameter of 144 cm) –considerably larger than trees from the other four populations – and arguably near the end of their natural lifespan. The population on Cedros Island is much more robust, with thousands of trees. None sampled were as large as those on Guadalupe Island (mean diameter of 20 cm) and many groves were young and even-aged – presumably the consequence of natural regeneration after a recent fire. Tissue samples from trees on both islands did not show evidence of infection from the pitch canker pathogen, Fusarium circinatum, that has caused significant mortality in the three mainland populations. Caution is recommended in any restoration activity for the Guadalupe Island pines. Inbreeding levels could indicate the need for some planting or seeding intervention but there are also risks associated with this. Natural regeneration – after goat removal – is preferred.  相似文献   

4.
Dry forests are among the most endangered natural communities in the Hawaiian Islands. Most have been reduced to isolated trees and small forest fragments in which native tree species reproduce poorly. The replacement of native birds by introduced generalists may be contributing to dry forest decline through modification of seed dispersal patterns. To document seed dispersal by introduced birds, we conducted foraging observations on fleshy-fruited trees and measured seed rain under trees and in adjacent open areas for 1 year in a dry forest dominated by native trees. Although trees covered only 15.2 percent of the study area, 96.9 percent of the bird-dispersed seeds were deposited beneath them. The Japanese white-eye (Zosterops japonicus) was the principal dispersal agent. Among bird-dispersed seeds, those of the invasive tree Bocconia frutescens accounted for 75 percent of all seeds collected beneath trees (14.8 seeds/m2/yr) and the invasive shrub Lantana camara accounted for 17 percent. Although nearly 60 percent of the reserve's native woody species possess fleshy fruits, introduced birds rarely disperse their seeds. Native trees accounted for <8 percent of all bird-dispersed seeds and are consequently experiencing dispersal failure by falling directly under parent trees. Smaller-seeded non-native plants, in contrast, may be benefiting from dispersal by introduced birds. Current dispersal patterns suggest that these readily disseminated non-native plants may eventually replace the remaining native flora.  相似文献   

5.
Stable isotope analysis was used to determine sources of water used by coexisting trees and grasses in a temperate savanna dominated by Quercus emoryi Torr. We predicted that (1) tree seedlings and bunchgrasses utilize shallow sources of soil water, (2) mature savanna trees use deeper sources of water, and (3) trees switch from shallow to deep water sources within 1 year of germination. We found that Q. emoryi trees, saplings, and seedlings (about 2 months, 1 year, and 2 years old), and the dominant bunchgrass [Trachypogon montufari (H.B.K.) Nees.] utilized seasonally available moisture from different depths within the soil profile depending on size/age relationships. Sapling and mature Q. emoryi acquired water from >50 cm deep, 2-month-old seedlings utilized water from <15 cm, and 1- and 2-year-old seedlings and grasses used water from between 20 cm and 35 cm. This suggests that very young seedlings are decoupled from grasses in this system, which may facilitate germination and early establishment of Q. emoryi within extant stands of native grasses. The potential for subsequent interaction between Q. emoryi and native grasses was evidenced by similar patterns of soil water use by 1- and 2-year-old seedlings and grasses. Q. emoryi seedlings did not switch from shallow to deep sources of soil water within 2 years of germination: water use by these seedlings apparently becomes independent of water use by grasses after 2 years of age. Finally, older trees (saplings, mature trees) use water from deeper soil layers than grasses, which may facilitate the stable coexistence of mature trees and grasses. Potential shifts in the seasonality of precipitation may alter interactions between woody plants and grasses within temperate savannas characterized by bimodal precipitation regimes: reductions in summer precipitation or soil moisture may be particularly detrimental to warm-season grasses and seedlings of Q. emoryi. Received: 21 November 1996 / Accepted: 2 May 1997  相似文献   

6.
Summary Labile pool, selective distribution coefficient and adsorption maxima of zinc were measured. Labile pool decreased while selective distribution coefficient increased with increasing depth in all soil profiles. The values of adsorption maxima of zinc corresponded to selective distribution coefficient. The relative efficiency of four extractantsviz 0.05M CA(NO3)2 0.1M Mg(NO3)2; 0.01M EDTA–NH4OAc and 0.005M DTPA-triethanolamine mixture in predicting the availability of native soil zinc to apple was tested. The correlation study indicated that all extractants are good index of zinc availability to apple trees. DTPA-extractable zinc is as efficient as its labile pool(E-value) in predicting the availability of native soil zinc to apple trees. This study also suggested that soil profile should be sampled upto a depth of 30–60 cm for providing a better prediction of availability of native soil zinc to apple trees.  相似文献   

7.
Bonito  Gregory  Smith  Matthew E.  Brenneman  Timothy  Vilgalys  Rytas 《Plant and Soil》2012,356(1-2):357-366
Background and Aims

Recently, the truffle species Tuber lyonii Butters was found to be dominant in ectomycorrhizal (EcM) fungal communities of cultivated pecan (Carya illinoinensis (Wangenh.) K. Koch). Many truffle fungi exhibit the trait of effectively colonizing plant roots via spores. We hypothesized that T. lyonii would be well represented in the spore bank of pecan orchard soils where it is found.

Methods

We used axenically-grown pecan seedlings as trap-plants to bait for EcM associates in soils collected beneath truffle-producing pecan trees. EcM fungi on seedlings were characterized through rDNA sequencing and were compared to EcM communities of adult trees in these orchards.

Results

Tuber lyonii mycorrhizas were well formed on seedlings inoculated with truffle spores, but were limited to just a few of the trap-plants grown in field soils. We compared EcM communities of adult pecan orchard trees to those on trap-plants and found distinct communities on each, with a high degree of similarity at the ordinal but not species level.

Conclusions

Although species of Pezizales are abundant in pecan EcM communities and as propagules in their soil spore banks, only a low level of T. lyonii was detected in soil spore banks beneath orchard trees naturally colonized by T. lyonii. Other factors including land-use history or orchard management may better explain this truffle species presence and abundance in pecan EcM communities.

  相似文献   

8.
Previous studies of the invasion of two exotic plants – Berberis thunbergii and Microstegium vimineum – in hardwood forests of New Jersey have shown a significant increase of pH in soils under the invasive plants as compared with soils from under native shrubs (Vaccinium spp). We present a further investigation of soil properties under the exotic plants in question. We measured the densities of earthworms in the soil under the two exotics and the native shrubs in three parks in New Jersey. In the same populations we also measured the extractable ammonium and nitrate in the top 5 cm of the soil, as well as the respiration of the soils and the potential rates of mineralization (aerobic lab incubation). In addition, we measured the nitrate reductase activity in leaves of the two exotic plants and several native shrubs and trees. Although there were differences between parks, we observed significantly higher earthworm densities in the soil under the exotic species. The worms were all European species. Soil pH, available nitrate and net potential nitrification were significantly higher in soils under the two exotic species. In contrast, total soil C and N and net ammonification were significantly higher under native vegetation. Nitrate reductase activities were much higher in the leaves of exotic plants than in the leaves of native shrubs and trees. Changes in soil properties, especially the change in nitrogen cycling, associated with the invasion of these two plant species may permit the invasion of other weedy or exotic species. Our results also suggest that even if the two exotic species were removed, the restoration of the native flora might be inhibited by the high nitrate concentrations in the soil.  相似文献   

9.
Invasive plants sometimes alter habitat conditions so as to promote further invasion, either by the same or by other non-native species. Such positive feedbacks often occur because the non-native species increases soil fertility, thereby favouring recruitment of non-native seedlings. This has been demonstrated in nitrogen-poor habitats invaded by nitrogen-fixing species, but it is unclear whether similar processes operate in habitats limited by phosphorus and other nutrients. I compared the growth of seedlings of Cinnamomum verum, an abundant invasive tree on phosphorus-poor soils in the Seychelles, in soils taken from beneath different tree species. I expected that soil phosphorus availability would be higher beneath stands of C. verum than beneath stands of either the native Northea hornei or the non-native nitrogen-fixing species, Falcataria moluccana. I therefore predicted that C. verum seedlings would grow faster in soil taken from beneath C. verum trees than in soil taken from beneath either of the other two species. To test this hypothesis, I performed a bioassay experiment with seedlings of C. verum grown in soils from stands of C. verum, F. moluccana and N. hornei. Different nutrient treatments (control, plus phosphorus (P), plus nitrogen (N), plus N and P, and plus complete fertilizer) were applied to investigate how nutrient availabilities modulate the effects of the trees. In the control treatment without added nutrients, there was a weak tendency for seedlings to perform better in the soils from beneath invasive than native trees. However, seedling growth in soils from beneath invasive species was markedly higher following the addition of phosphorus in the case of the F. moluccana soil, and complete fertilizer in the case of the C. verum soil. These results indicate that on very nutrient-poor soils, a low supply of nutrients other than N may reduce the risk of a soil-feedback by invasive trees on seedling regeneration.  相似文献   

10.
Capsule Nuthatches used holes with strong walls, typically in live trees with entrances reduced by plastering, and ‘oversized’ interiors filled with bark flakes.

Aims To describe patterns of nest-site utilization by Nuthatches in primeval conditions, to examine the influence of various hole attributes on nesting success and to consider the adaptive value of nest-site choice.

Methods Observations of birds living in undisturbed conditions in a strictly protected part of the Bia?owie?a National Park (Poland) during 27 breeding seasons coupled with measurements of hole attributes and observations of nests' fate.

Results Tree species used for breeding differed among habitats. Holes were on average 14.0 m above the ground, in trees with girth at breast height 206 cm; both parameters varied strongly among tree species. They were situated mainly in tree trunks (76%), in living trees (89%), in conical knotholes (51%); woodpecker-made holes constituted 32%. Nuthatches bred in very large (mean bottom area: 325 cm2) holes, the preferred tree species (Maple Acer platanoides, Ash Fraxinus excelsior) had larger holes than other tree species. Nuthatches reduced entrances by ‘plastering’ to a mean size of 2.9 × 3.3 cm. They made the holes substantially shallower by filling them with bark flakes (mean depth to nest level: 10 cm), eggs were laid in depressions among flakes, far from the entrance (mean distance: 21 cm), their ‘nests’ occupied only a fraction of the hole area. Broods in holes with smaller entrances were the most successful. Eggs and small young were covered with bark during the absence of the female. Larger nestlings, when endangered, moved to the rear wall of the hole, where they stayed tightly pressed. These behaviour patterns reduced the risk of predation.

Conclusion The features of holes used by Nuthatches (combination of strong walls, small entrances and large bottoms with copious filling) are probably an evolutionary solution to the need to evade predators while keeping contents of the nest dry.  相似文献   

11.
Seedling and sapling dynamics in a Puerto Rican rain forest were compared between forest understory and soil pits created by the uprooting of 27 trees during Hurricane Hugo. Soil N and P, organic matter, and soil moisture were lower and bulk densities were higher in the disturbed mineral soils of the pits than in undisturbed forest soils ten months after the hurricane. No differences in N and P levels were found in pit or forest soils under two trees with N–fixing symbionts (Inga laurina and Ormosia krugii) compared to soils under a tree species without N–fixing sym–bionts (Casearia arborea), but other soil variables (Al, Fe, K) did vary by tree species. Forest plots had greater species richness of seedlings (<10 cm tall) and saplings (10–100 cm tall) than plots in the soil pits (and greater sapling densities), but seedling densities were similar between plot types. Species richness and seedling densities did not vary among plots associated with the three tree species, but some saplings were more abundant under trees of the same species. Pit size did not affect species richness or seedling and sapling densities. Recruitment of young Cecropia schreberiana trees (>5 m tall) 45 months after the hurricane was entirely from the soil pits, with no tree recruitment from forest plots. Larger soil pits had more tree recruitment than smaller pits. Defoliation of the forest by the hurricane created a large but temporary increase in light availability. Recruitment of C. schreberiana to the canopy occurred in gaps created by the treefall pits that had lower soil nutrients but provided a longer–term increase in light availability. Treefall pits also significantly altered the recruitment and mortality of many understory species in the Puerto Rican rain forest but did not alter species richness.  相似文献   

12.
We examined the impact of soil stress (low water and nutrient availabilities) and two keystone insect herbivores on pinyon pine (Pinus edulis) needle litterfall. We compared trees growing on two distinct soil types: volcanic cinders, which exhibit pronounced water and nutrient limitation, and sandy-loam soils, which have higher water-storage capacity and nutrient availability. Using two long-term herbivore removal experiments (15 and 18 years, respectively), we also examined the effects of the pinyon needle scale (Matsucoccus acalyptus, which attacks juvenile trees) and the stem-boring moth (Dioryctria albovittella, which attacks mature trees) on pinyon litterfall. These herbivores reach high densities on cinder soils but are absent or occur at much lower levels on sandy-loam soils. Four years of litterfall measurements showed four major patterns. First, independent of herbivory, needle litterfall was 20% lower under trees on high-stress cinder soils than on sandy-loam soils. Second, in agreement with the negative impact of scales on tree growth (that is, a 30% decline in stem growth), trees with scale infestations had 25% lower litterfall rates than trees resistant to scale; however, 15 years of scale-insect removal did not significantly increase needle litterfall. This implies possible intrinsic differences in litter production between scale-resistant and scale-susceptible trees. Third, in contrast with significant negative effects of moth herbivory on tree growth (that is, a 27% decline in stem growth), moth herbivory had no effect on needle litterfall. This, along with increased stem density in moth-susceptible trees, may be evidence of compensatory production. Fourth, there were strong year by soil type and year by scale herbivory interactions, such that in some years the effect on litterfall can be obscured or reversed by some other factor. In summary, soil stress has a strong and predictable effect on needle litterfall, whereas the relationship between insect herbivory and needle litterfall is weaker and depends on the individual herbivore. These effects, however, are mediated by other environmental factors that have considerable annual variation.  相似文献   

13.
Conserving habitats crucial for threatened koala (Phascolarctos cinereus) populations requires rating habitat quality from a fine spatial scale to patches, landscapes and then regions. The koala has a specialized diet focused on the leaves of a suite of Eucalyptus species. We asked: what are the key regional influences on habitat selection by koalas in the far north coast of New South Wales? We addressed this question by investigating the multi-scale factors, and within-scale and cross-scale interactions, that influence koala habitat selection and distribution across four local government areas on the far north coast of New South Wales. We assembled and analysed a large data set of tree selection, identified by the presence of scats, in a wide range of randomly selected 5 × 5 km grids across the region. This resulted in more than 9000 trees surveyed for evidence of koala use from 302 field sites, together with associated biophysical site features. The dominant factor influencing habitat use and koala occurrence was the distribution of five Eucalyptus species. Koalas were more likely to use medium-sized trees of these species where they occurred on soils with high levels of Colwell phosphorous. We also identified new interactions among the distribution of preferred tree species and soil phosphorous, and their distribution with the amount of suitable habitat in the surrounding landscape. Our study confirmed that non-preferred species of eucalypts and non-eucalypts are extensively used by koalas and form important components of koala habitat. This finding lends support to restoring a mosaic of koala-preferred tree species and other species recognized for their value as shelter. Our study has provided the ecological foundation for developing a novel regional-scale approach to the conservation of koalas, with adaptability to other wildlife species.  相似文献   

14.
Dutch elm disease has severely reduced the number of large trees of U. glabra in Denmark. Consequently, the distance between large trees has increased and the overall density of the species has decreased. Patches of small trees with stem diameters up to 10 cm are, however, relatively frequent. With four microsatellites we studied potential differences in genetic diversity, mating patterns and pollen flow in trees of U. glabra that occur either in a continuous forest (Suserup Forest) or isolated in the open land. We found no indications of selfing in forest or open land but indications of biparental inbreeding in offspring of isolated trees. Estimates of effective pollen donors (N ep) and minimum number of pollen donors (N p) were alike in forest and open land (N ep of 31 and 34 and N p of 4 to >6 and 3 to >6, respectively). The number of alleles was also very similar. With indirect methods we found that average pollen dispersal was 104 m under forest conditions. The average distance between the isolated trees and their potential pollen donors was further, thus suggesting that effective pollen in the open land on average moves further than in a dense forest. Finally, 28% of small trees (diameters up to 10 cm) produced fruits. Reproduction at a young age may be a key stone in the survival of U. glabra as the vectors of the disease prefer older trees.  相似文献   

15.
《Plant Ecology & Diversity》2013,6(2-3):269-278
Abstract

Background: The invasion by Pinus elliottii is one of the most serious threats to the remaining native cerrado vegetation in São Paulo State, Brazil, causing biodiversity losses yet to be evaluated. We conducted a study in an area where P. elliottii began establishing in 1988.

Aims: To estimate diversity losses in the plant community and to understand the floristic and structural changes resulting from pine tree invasion of grassland savannah.

Methods: All plants taller than 50 cm were sampled in 35 plots (64 m2 each) within an area densely invaded by P. elliottii and in 10 plots in non-invaded grassland savannah. Density, species richness, diversity, ground cover and spatial distribution were compared by Wilcoxon tests, non-metric multidimensional scaling and Payandeh indices.

Results: Twenty-two years after the arrival of the first invasive trees (founders), the grassland savannah has become a dense pine forest with 12,455 individuals ha?1, a basal area of 26.44 m2 ha?1, a sparse native woody understory comprised of 16 species (H'?=?0.44), density of 1210 individuals ha?1 and the herbaceous layer totally absent.

Conclusions: Invasion by Pinus elliottii has completely changed the structure of the grassland savannah and caused severe plant diversity losses. Native species surviving the invasion in the understory do not typically represent the previous composition and functional traits of the native vegetation.  相似文献   

16.
《Plant Ecology & Diversity》2013,6(2-3):243-250
Background: Mature trees often provide ecological niches of value to specialised flora and fauna, signalled by such attributes as epiphytes, trunk rot and dead branches. In Britain, they are often found in parklands and wood pastures, which are rare habitats in Europe.

Aims: As species differences in veteran attributes of such trees have not been studied, we surveyed eight Holarctic tree species in Chillingham Park, in north-east England, where the stems are of broadly similar age (200–250 years).

Methods: The following variables were scored for 779 trees: presence or absence of veteran attributes, community status (alone, in a group, or in a linear feature), stem diameter, altitude at which growing, and the ground vegetation.

Results: Trees were generally of only moderate mean diameter. Alder (Alnus glutinosa) and ash (Fraxinus excelsior) had the most veteran attributes (4.30 and 4.16, respectively), followed by oak (Quercus sp.) (3.65), then by birch (Betula agg.) (3.49), beech (Fagus sylvatica) (3.12), sycamore (Acer pseudoplatanus) (2.77), larch (Larix sp.) (2.47) and Scots pine (Pinus sylvestris) (1.92). Trees growing at middle altitudes and alone, or in linear features (rather than in groups), had most veteran attributes; 32% of trees exhibited three or more.

Conclusions: To capture the veteran tree interest of a site, a survey protocol must consider the history of a site as well as the numbers of veteran attributes exhibited by individual trees, which may differ among species. Finally, alder has not attracted particular attention in these habitats, and we suggest that its fast-growing and rot-prone nature may make it of particular interest for conservation of saproxylic biodiversity.  相似文献   

17.
Abstract Germinable seed stores were estimated for 12–13 year old rehabilitation sites in the jarrah forest over two seasons (autumn and spring). Collected soils were subjected to combinations of smoking and heating treatments before the germination procedure was commenced. The mean topsoil seed reserve to a depth of 10 cm was 1938 seeds m?2. Of this total reserve, more than 80% was found in the upper 5 cm of soil. The topsoil seed reserve of these rehabilitation areas was almost seven times that of the adjacent native jarrah forest (292 seeds m?2; Ward et al. 1997). There was a seasonal effect with autumn-collected soils having significantly more germinable seeds (2723 seeds m?2) than soils collected in spring (1153 seeds m?2). More than half (53%) of the topsoil seed reserve in rehabilitated areas was composed of annual weed species, dominated by Aira caryophyllea, Centaurium erythraea and the native Levenhookia pusilla. Of the total of 70 species identified, 13 species showed significantly higher germination in smoked trays while 11 species exhibited significantly higher germination in heated trays. Species responding to the smoking treatment tended to be annuals while those responding to the heating treatment were typically legume shrub species. Examination of the topsoil seed reserve and the vegetation present in these areas showed that while the species composition was similar between the seed store and the vegetation, there was a large difference in densities, with species occurring at much higher densities in the topsoil than in the vegetation. However, the rankings of species were significantly correlated between the topsoil seed reserve and the vegetation present at the site. The implications of these results to prescribed burning of these rehabilitated areas is discussed.  相似文献   

18.
The habitat in an enclosed black rhino sanctuary, the Sweetwaters Game Reserve in Kenya, is being altered as populations of elephant, giraffe and black rhino increase. Height‐specific browse impact data were recorded for 1075 trees of the dominant species, the whistling thorn, Acacia drepanolobium. Rhinos and elephants browsed 18% of these trees in 1 year, including 5% that were killed or removed. The remaining trees were subjected to high levels of giraffe browse and low rainfall and grew by only 7.5 cm in a year. A mathematical model has been constructed that predicts how the number of trees ha?1 will change with time under different browsing impacts. The model compares recruitment rate with removal rate and estimates that the number of trees ha?1 will fall by 2% per year under the current browsing impact of black rhino (0.27 per km2), elephant (1.1 per km2) and giraffe (1.9 per km2). In 7 years, if the rhino and elephant populations continue to increase at the current rates, tree density will be falling by 5% per year and nearly one‐third of the trees will have been removed. These conditions are unsustainable and will result in habitat change and may affect rhino breeding. Several ways of alleviating the problem are discussed.  相似文献   

19.
1 Arthropods were collected on native locust, Robinia neomexicana A. Gray, and exotic Robinia pseudoacacia L. in northern Arizona over a 2‐year period to determine the number of arthropod species and number of individuals present. 2 More arthropod species were found on the native (251) than on the exotic Robinia (174). 3 Greater species diversity was likewise found on the native than the exotic. The five most numerous insects collected each year accounted for 81% to 91% of the total number collected on the exotic and native Robinia in 1997 and 1998. Only 12 species occurred on both the native and exotic Robinia in both years. 4 These findings are discussed in the context of using exotic trees in plantations and ecological theory regarding rates of arthropod species accumulation on exotic hosts.  相似文献   

20.
Pearson KM  Theimer TC 《Oecologia》2004,141(1):76-83
We examined whether pinyon mice (Peromyscus truei) and brush mice (P. boylii) could act as directed dispersal agents of pinyon pine (Pinus edulis) through differential responses to soil particle size and rock cover. In field experiments, we allowed mice to either cache pinyon seeds or recover artificially cached seeds (pilfer) from quadrats containing large- or small-particle soils. Both species placed most (70%) seed caches in small-particle soil. Pilfering was the same from both particle sizes in the first year, while more seeds were pilfered from large-particle soils in the second year. In separate experiments, rock cover interacted with soil particle size, with both species placing over 50% of their caches in small-particle soil with rock cover. Overall, we found greater seed-caching in small-particle soils near rocks, with equal or lower pilfering from small-particle soils, suggesting more seeds would survive in small-particle soils near rock cover. Three lines of evidence supported the hypothesis that mice could act as directed dispersers by moving pinyon seeds to beneficial microsites for germination and establishment. First, in greenhouse experiments, pinyon seed germination was 4 times greater in small-particle soil cores than in large-particle soil cores. Second, soils near rocks had significantly higher water content than areas of open soil at the driest time of the year, a critical factor for seedling survival in the arid southwestern USA. Third, 75% of juvenile pinyon trees were growing in small-particle soils, and 45% were growing near rock nurses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号