首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Chromosome numbers, mainly for Polish flora, were examined in order to investigate whether such features as chromosome numbers and polyploid frequencies are correlated with a plant’s origin (native vs. alien) and invasiveness. Polyploid frequencies were estimated using three methods: the 11 and 14 thresholds and the 3.5 x value. Comparisons of the 2n values were done on different levels: in all angiosperms and in dicots and monocots separately. Invasive and non-invasive plants were compared in the entire dataset and in alien species only. Significant differences in both chromosome numbers and polyploid frequencies between alien and native species were observed. In most cases, native plants had more chromosomes and were more abundant in polyploids than in alien species. Also, monocots had higher polyploid frequencies than dicots. Comparisons of invasive and non-invasive plants done for all of the data and only for alien species showed that invasive species generally had more chromosomes and polyploids were more frequent in them than in the latter group; however, these differences were not always statistically significant. Possible explanations for these observations are discussed.  相似文献   

2.
张军  彭焕文  夏富才  王伟 《生物多样性》2021,29(11):1470-18
多倍化是植物快速适应极端环境胁迫的一种重要机制。青藏高原高山区和泛北极地区具有相似的极端低温环境, 且两地的植物曾有密切的交流和联系。然而, 多倍体物种对两地植物区系生物多样性的贡献是否相同仍不清楚。我们系统地收集两地已有染色体数目和倍性报道的种子植物物种名录, 共计1,770种, 其中青藏高原高山区774种, 泛北极地区996种; 同时也相应地收集了每个物种的生活型信息。分析显示青藏高原高山区多倍体植物的比例为20.9%, 泛北极地区多倍体植物比例为61.5%; 青藏高原高山区一年生草本、多年生草本和木本植物中多倍体的比例分别为20.7%、21.6%和12.8%, 泛北极地区一年生草本、多年生草本和木本植物中多倍体的比例分别为60.2%、65.5%和38.3%。这些结果表明泛北极地区比青藏高原高山区具有较高比例的多倍体物种。青藏高原高山植物区系在渐新世‒中新世之交开始兴起, 此时高原已达到一定高度, 而后的高寒环境相对稳定, 致使多倍体物种相对较少; 而泛北极地区植物区系在3-4 Ma兴起, 此后经历了冰期‒间冰期、海平面波动等反复剧烈的气候环境变化, 可能促进了大量的多倍化事件发生。本研究通过比较青藏高原高山区和泛北极地区植物多倍体物种的比例, 揭示了两地多倍体比例差异的可能原因, 将提高对多倍体适应极端环境的理解。  相似文献   

3.
Polyploid speciation entails substantial and rapid postzygotic reproductive isolation of nascent species that are initially sympatric with one or both parents. Despite strong postzygotic isolation, ecological niche differentiation has long been thought to be important for polyploid success. Using biogeographic data from across vascular plants, we tested whether the climatic niches of polyploid species are more differentiated than their diploid relatives and if the climatic niches of polyploid species differentiated faster than those of related diploids. We found that polyploids are often more climatically differentiated from their diploid parents than the diploids are from each other. Consistent with this pattern, we estimated that polyploid species generally have higher rates of multivariate niche differentiation than their diploid relatives. In contrast to recent analyses, our results confirm that ecological niche differentiation is an important component of polyploid speciation and that niche differentiation is often significantly faster in polyploids.  相似文献   

4.
It has long been known that polyploid organisms are more prevalent in arctic than in temperate environments. Past explanations for this geographical trend have focused on the role of glacial cycles in generating polyploids and the influence of abiotic factors in favouring polyploidy in the north. In combination, these mechanisms probably suffice to explain the observed geographical cline in ploidy levels in members of the Daphnia pulex complex in the Holarctic. While only diploid members of the D. pulex complex are found in the temperate regions of North America and Europe, allozyme and DNA quantification analyses indicate that the southern Argentine pulex-complex fauna is dominated by polyploids. Indeed, the present study is the first to document the presence of polyploid members of the D. pulex complex in any temperate climate. The results of phylogeographic analyses suggest that this difference in polyploid distribution between the northern and southern hemispheres is based more on ecological and historical contingencies than direct selection for polyploidy. Specifically, competition with diploid relatives probably limits the lower latitudinal range of polyploids in the north, but appears not to have occurred in Argentina. Because of these differences, the present study provides important insights into the diverse factors that determine the distributions and evolutionary fates of polyploid organisms.  相似文献   

5.
The 140+ species of Echeveria have more than 50 gametic chromosome numbers, including every number from 12 through 34 and polyploids to n = ca. 260. With related genera, they comprise an immense comparium of 200+ species that have been interconnected in cultivation by hybrids. Some species with as many as 34 gametic chromosomes include none that can pair with each other, indicating that they are effectively diploid, but other species with fewer chromosomes test as tetraploids. Most diploid hybrids form multivalents, indicating that many translocations have rearranged segments of the chromosomes. Small, nonessential chromosomal remnants can be lost, lowering the number and suggesting that higher diploid numbers (n = 30–34) in the long dysploid series are older. These same numbers are basic to most other genera in the comparium (Pachyphytum, Graptopetalum, Sedum section Pachysedum), and many diploid intergeneric hybrids show very substantial chromosome pairing. Most polyploid hybrids here are fertile, even where the parents belong to different genera and have very different chromosome numbers. This seems possible only if corresponding chromosomes from a polyploid parent pair with each other preferentially, strong evidence for autopolyploidy. High diploid numbers here may represent old polyploids that have become diploidized by loss, mutation, or suppression of duplicate genes, but other evidence for this is lacking. Most species occur as small populations in unstable habitats in an area with a history of many rapid climatic and geological changes, presenting a model for rapid evolution.  相似文献   

6.
Aim  To assess evidence for geographical and environmental range expansion through polyploidy in wild potatoes ( Solanum sect. Petota ). There are diploids, triploids, tetraploids, pentaploids and hexaploids in this group.
Location  Wild potatoes occur from the south-western USA (Utah and Colorado), throughout the tropical highlands of Mexico, Central America and the Andes, to Argentina, Chile and Uruguay.
Methods  We compiled 5447 reports of ploidy determination, covering 185 of the 187 species, of which 702 determinations are presented here for the first time. We assessed the frequency of cytotypes within species, and analysed the geographical and climatic distribution of ploidy levels.
Results  Thirty-six per cent of the species are entirely or partly polyploid. Multiple cytotypes exist in 21 species, mostly as diploid and triploid, but many more may await discovery. We report the first chromosome count (2 n = 24) for Solanum hintonii . Diploids occupy a larger area than polyploids, but diploid and tetraploid species have similar range sizes, and the two species with by far the largest range sizes are tetraploids. The fraction of the plants that are polyploids is much higher from Mexico to Ecuador than farther south. Compared with diploids, triploids tend to occur in warmer and drier areas, whereas higher-level polyploids tend to occur in relatively cold areas. Diploids are absent from Costa Rica to southern Colombia, the wettest part of the group's range.
Main conclusions  These results suggest that polyploidy played an important role in this group's environmental differentiation and range expansion.  相似文献   

7.
Genome evolution in polyploids   总被引:71,自引:0,他引:71  
Polyploidy is a prominent process in plants and has been significant in the evolutionary history of vertebrates and other eukaryotes. In plants, interdisciplinary approaches combining phylogenetic and molecular genetic perspectives have enhanced our awareness of the myriad genetic interactions made possible by polyploidy. Here, processes and mechanisms of gene and genome evolution in polyploids are reviewed. Genes duplicated by polyploidy may retain their original or similar function, undergo diversification in protein function or regulation, or one copy may become silenced through mutational or epigenetic means. Duplicated genes also may interact through inter-locus recombination, gene conversion, or concerted evolution. Recent experiments have illuminated important processes in polyploids that operate above the organizational level of duplicated genes. These include inter-genomic chromosomal exchanges, saltational, non-Mendelian genomic evolution in nascent polyploids, inter-genomic invasion, and cytonuclear stabilization. Notwithstanding many recent insights, much remains to be learned about many aspects of polyploid evolution, including: the role of transposable elements in structural and regulatory gene evolution; processes and significance of epigenetic silencing; underlying controls of chromosome pairing; mechanisms and functional significance of rapid genome changes; cytonuclear accommodation; and coordination of regulatory factors contributed by two, sometimes divergent progenitor genomes. Continued application of molecular genetic approaches to questions of polyploid genome evolution holds promise for producing lasting insight into processes by which novel genotypes are generated and ultimately into how polyploidy facilitates evolution and adaptation.  相似文献   

8.
BackgroundWhereas the incidence or rate of polyploid speciation in flowering plants is modest, the production of polyploid individuals within local populations is widespread. Explanations for this disparity primarily have focused on properties or interactions of polyploids that limit their persistence.HypothesisThe emergence of local polyploid populations within diploid populations is similar to the arrival of invasive species at new, suitable sites, with the exception that polyploids suffer interference from their progenitor(s). The most consistent predictor of successful colonization by invasive plants is propagule pressure, i.e. the number of seeds introduced. Therefore, insufficient propagule pressure, i.e. the formation of polyploid seeds within diploid populations, ostensibly is a prime factor limiting the establishment of newly emergent polyploids within local populations. Increasing propagule number reduces the effects of genetic, environmental and demographic stochasticity, which thwart population survival. As with invasive species, insufficient seed production within polyploid populations limits seed export, and thus reduces the chance of polyploid expansion.ConclusionThe extent to which propagule pressure limits the establishment of local polyploid populations remains to be determined, because we know so little. The numbers of auto- or allopolyploid seed in diploid populations rarely have been ascertained, as have the numbers of newly emergent polyploid plants within diploid populations. Moreover, seed production by these polyploids has yet to be assessed.  相似文献   

9.
Recent molecular data using resynthesized polyploids of Brassica napus established that genome changes can occur rapidly after polyploid formation. In this study we present data that de novo phenotypic variation for flowering time also occurs rapidly after polyploidization. Two initial polyploid plants were developed by reciprocal crosses of B. rapa and B. oleracea followed by chromosome doubling to establish two lineages, each of which was expected to be homozygous and homogeneous. Several sublineages of each lineage were advanced by self-pollination. The range in days to flower of the sixth generation plants was 39-75 and 43-64 for the two lineages. Analysis of seventh generation progeny indicated that the variation was heritable. Lines were selected and self-pollinated to the eighth generation and also testcrossed to a natural B. napus cultivar; the testcross plants were then self-pollinated. Differences in flowering time were also inherited in these advanced generations. Days to flower was significantly correlated with leaf number in each generation. The rapid evolution of new phenotypic variation, like that observed in this model system, may have contributed to the success and diversification of natural polyploid organisms.  相似文献   

10.
Wu R  Ma CX  Casella G 《Genetics》2004,166(1):581-595
Two major aspects have made the genetic and genomic study of polyploids extremely difficult. First, increased allelic or nonallelic combinations due to multiple alleles result in complex gene actions and interactions for quantitative trait loci (QTL) in polyploids. Second, meiotic configurations in polyploids undergo a complex biological process including either bivalent or multivalent formation, or both. For bivalent polyploids, different degrees of preferential chromosome pairings may occur during meiosis. In this article, we develop a maximum-likelihood-based model for mapping QTL in tetraploids by considering the quantitative inheritance and meiotic mechanism of bivalent polyploids. This bivalent polyploid model is implemented with the EM algorithm to simultaneously estimate QTL position, QTL effects, and QTL-marker linkage phases by incorporating the impact of a cytological parameter determining bivalent chromosome pairings (the preferential pairing factor). Simulation studies are performed to investigate the performance and robustness of our statistical method for parameter estimation. The implication and extension of the bivalent polyploid model are discussed.  相似文献   

11.
植物多倍体基因组的形成与进化   总被引:43,自引:2,他引:41  
杨继 《植物分类学报》2001,39(4):357-371
多倍化是植物进化变异的自然现象,也是促进植物发生进化改变的重要力量。在被子植物中,约 70%的种类在进化史中曾发生过一次或多次多倍化的过程。目前的研究结果表明,自然界绝大多数多倍体是通过未减数配子的融合而形成的,并且很多多倍体种是通过多次独立的多倍化过程而重复发生的。由多倍化所导致的重复基因在多倍体基因组中可能有三种不同的命运,即:保持原有的功能、基因沉默或分化并执行新的功能。多倍化以后,重复基因组的进化动态则主要表现在染色体重排和“染色体二倍化”、不同基因组之间的相互渗透、以及核-质之间的相互作用等方面。  相似文献   

12.
Polyploidy in combination with parthenogenesis offers advantages for plasticity and the evolution of a broad ecological tolerance of species. Therefore, a positive correlation between the level of ploidy and increasing latitude as a surrogate for environmental harshness has been suggested. Such a positive correlation is well documented for plants, but examples for animals are still rare. Species of flatworms (Platyhelminthes) are widely distributed, show a remarkably wide range of chromosome numbers, and offer therefore good model systems to study the geographical distribution of chromosome numbers. We analyzed published data on counts of chromosome numbers and geographical information of three flatworm “species” (Phagocata vitta, Polycelis felina and Crenobia alpina) sampled across Europe (220 populations). We used the mean chromosome number across individuals of a population as a proxy for the level of ploidy within populations, and we tested for relationships of this variable with latitude, mode of reproduction (sexual, asexual or both) and environmental variables (annual mean temperature, mean diurnal temperature range, mean precipitation and net primary production). The mean chromosome numbers of all three species increased with latitude and decreased with mean annual temperature. For two species, chromosome number also decreased with mean precipitation and net primary production. Furthermore, high chromosome numbers within species were accompanied with a loss of sexual reproduction. The variation of chromosome numbers within individuals of two of the three species increased with latitude. Our results support the hypothesis that polyploid lineages are able to cope with harsh climatic conditions at high latitudes. Furthermore, we propose that asexual reproduction in populations with high levels of polyploidization stabilizes hybridization events. Chromosomal irregularities within individuals tend to become more frequent at the extreme environments of high latitudes, presumably because of mitotic errors and downsizing of the genome.  相似文献   

13.
植物多倍体研究的回顾与展望   总被引:12,自引:0,他引:12  
多倍化是促进植物进化的重要力量。多倍体主要是通过未减数配子融合,体细胞染色体加倍以及多精受精三种方式起源的。其中,不减数配子是多倍体形成的主要机制。三倍体可能在四倍体的进化中起了重要作用。过去认为多倍体只能是进化的死胡同,现在发现很多多倍体类群都是多元起源的而不是单元起源的。当多倍体形成后,基因组中的重复基因大部分保持原有的功能,也有相当比例的基因发生基因沉默。多倍体通常表现出不存在于二倍体祖先的表型,并且超出了其祖先的分布范围,因为在多倍体中发生了很多基因表达的变化。主要从多倍体的起源、影响多倍体发生的因素及多倍体基因组的进化等方面回顾并展望多倍体的研究。  相似文献   

14.
The origin and evolution of polyploids have been studied extensively in angiosperms and ferns but very rarely in gymnosperms. With the exception of three species of conifers, all natural polyploid species of gymnosperms belong to Ephedra, in which more than half of the species show polyploid cytotypes. Here, we investigated the origin and evolution of polyploids of Ephedra distributed in the Qinghai–Tibetan Plateau (QTP) and neighbouring areas. Flow cytometry (FCM) was used to measure the ploidy levels of the sampled species that are represented by multiple individuals from different populations, and then, two single‐copy nuclear genes (LFY and DDB2) and two chloroplast DNA fragments were used to unravel the possible origins and maternal donors of the polyploids. The results indicate that the studied polyploid species are allopolyploids, and suggest that allotetraploidy is a dominant mode of speciation in Ephedra. The high percentage of polyploids in the genus could be related to some of its biological attributes such as vegetative propagation, a relatively high rate of unreduced gamete formation, and a small genome size relative to most other gymnosperms. Significant ecological divergences between allotetraploids and their putative progenitors were detected by PCAs and anova and Tukey's tests, with the exception of E. saxatilis. The overlap of geographical distributions and ecological niches of some diploid species could have provided opportunities for interspecific hybridization and allopolyploid speciation.  相似文献   

15.
Cellular aggregates in Datura innoxia suspension cultures give rise to large numbers of shoots when such aggregates are cultured in the light on an auxin-free agar medium supplemented with kinetin. These shoots form roots on a kinetin-free medium to develop into complete plants. Most of the regenerated plants are diploid, and the frequencies of ancuploid or polyploid plants are much lower than might be expected from the distribution of chromosome number in the cultured cells. During root ditterentiation and plant development, scopolamine synthesis is initiated and there is a progressive increase in the alkaloid content. Consequently, the general pattern of alkaloid composition is restored to a normal state in the majority of the regenerated plants including aneuploid or polyploids. Nevertheless, some of the plants show an abnormal expression in alkaloid metabolism, such as the complete hydrolysis of scopolamine in the dried leaves.  相似文献   

16.
研究表明 ,多倍体小麦基因组中存在一类低拷贝、染色体专化的DNA序列 ,其在多倍体形成时常表现出不稳定性。这类序列被认为在异源多倍体的建立和稳定中起着关键作用。为进一步研究这一问题 ,对通过染色体显微切割从普通小麦 (TriticumaestivumL .)中分离的 5个 7B染色体专化DNA序列的特性进行了研究。以这些序列为探针对大量的多倍体小麦和它们的二倍体祖先物种进行了Southern杂交分析。结果表明 ,这些序列可被分为两种类型 :其中的 4个序列与所有的多倍体物种均杂交 ,但是在二倍体水平上 ,它们却只与和多倍体小麦B基因组紧密相关的物种杂交 ,这说明这些序列是在二倍体物种分化以后产生的 ,然后垂直传递给多倍体 ;其中的 1个序列与所有的二倍体及多倍体物种均杂交 ,暗示在多倍体形成后这些序列从A和D基因组中消除了。用这一序列分别与一个人工合成的六倍体和四倍体小麦进行Southern杂交的结果表明 ,序列消除是一个迅速的事件而且很可能与这些序列的甲基化状态有关。认为这些低拷贝的染色体专化序列对于多倍体形成后部分同源染色体之间的进一步分化起着重要作用。  相似文献   

17.
The American genus Cuphea with ca. 260 species is extremely diverse with respect to chromosome number. Counts are now available for 78 species and/or varieties, or 29% of the genus. Included in this study are first reports for 15 taxa from Brazil, Cuba, Dominican Republic, Mexico, and Venezuela. Twenty-two different numbers are known for the genus, ranging from n = 6 to n = 54. The most common number in the primary center of species diversity in Brazil is n = 8, which is regarded as the base number of the genus. Two numbers are most common in the secondary center in Mexico, n = 10 and n = 12. Species with n = 14 or higher are considered to be of polyploid origin. Polyploids comprise 46% of the total species counted and appear in 9 of the 11 sections for which chromosome numbers have been reported. Aneuploid species comprise ca. 25% of the genus and are known from 7 of the 11 sections. The two subgenera are not characterized by different chromosome numbers or sequences of numbers. None of the 14 sections are circumscribed by a single chromosome number. Morphological and ecological variability in widespread, weedy species is correlated with differing chromosome numbers in some species whereas in others the chromosome number is stable. Summary of chromosome numbers by taxonomic section is presented. Section Euandra, centered in eastern Brazil, and the largest section of the genus, appears to be chromosomally most diverse. In section Trispermum, characterized by difficult, variable species with intermediate forms, two of the four species studied have polyploid races. Section Heterodon, endemic to Mexico and Central America and comprising most of the annual species of the genus, is best known chromosomally. Chromosome numbers have been counted for 25 of 28 species, and 12 different numbers are reported. The most advanced sections, Melvilla and Diploptychia, with numerous species occurring at higher altitudes, are characterized by high polyploids. Apomictic species occur in sect. Diploptycia. The cytoevolution of Cuphea is complex with frequent polyploid and aneuploid events apparently playing a significant role in speciation in both centers of diversity.  相似文献   

18.
The thalloid liverwort Corsinia coriandrina includes morphologically similar haploid and polyploid populations with an allopatric geographical distribution. Haploid and polyploid colonies of the Old World, and one polyploid colony from Texas have been analysed. The polyploid, monoecious cytotype has a wider geographical range and ecological tolerance than the haploid, dioecious cytotype which appears to be restricted to southern Europe and Macaronesia. Similarity coefficients between the two Old World cytotypes based on isozyme data show them to be more genetically divergent than suggested by their morphology, and to fit the definition of sibling species. Fixed heterozygosity in six of eight enzyme loci suggests an alloploid origin of the Old World polyploids. The haploid cytotype could be one of the putative parents. Alleles in the polyploid that were not detected in the haploid are presumably derived from an unknown progenitor. The polyploid New World colony shows significant genetic divergence; it represents a different allopolyploid sibling species. Accordingly, at least two independent origins of the polyploid must be supposed; one in the Old World; the other in the New World. The presumed autopolyploid origin of polyploid liverworts is once more challenged by our analysis of polyploid Corsinia. Indeed, autopolyploidy has still not been documented conclusively in any polyploid liverwort.  相似文献   

19.
20.
以彩色马蹄莲品种‘Parfait’(Zantedeschiahybrid‘Parfait’)离体丛生芽块为实验材料,对其多倍体诱导过程中秋水仙素和二甲基亚砜(DMSO)浓度以及浸泡时间进行分析,并比较了多倍体与二倍体植株在叶形指数、气孔特征、叶绿素含量和染色体数的差异,最终通过回归分析确定最佳诱导条件。结果显示:随秋水仙素质量体积分数的提高及浸泡时间的缩短,各处理组的丛生芽存活率逐渐增加且均低于对照,而多倍体诱导率逐渐降低且均显著高于对照。综合考虑丛生芽存活率和多倍体诱导率等因素,根据回归分析确定‘Parfait’多倍体诱导的最佳条件为:丛生芽块在含质量体积分数0.20%秋水仙素和体积分数0.10%DMSO的MS液体培养基中浸泡24h,多倍体诱导率可达50.02%。比较分析结果表明:多倍体植株的叶片长度、厚度和长宽比分别为二倍体植株的1.23、1.19和2.93倍,保卫细胞的长度和宽度以及每气孔叶绿体数分别为二倍体植株的1.90、1.96和2.03倍,叶绿素a和总叶绿素含量分别为二倍体植株的1.28和1.17倍;但多倍体植株的叶宽和气孔密度均较小,分别仅为二倍体植株的42.08%和61.55%。除叶绿素b含量外,多倍体植株的其他生物学特性均与二倍体植株差异显著。染色体计数结果显示:获得的多倍体大多为四倍体,染色体数为2n=64,同时还得到了一些嵌合体和六倍体。研究结果表明:彩色马蹄莲品种‘Parfait’多倍体植株的多数生物学特性优于二倍体植株,且其对环境的适应性更强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号