首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary

Radiocarbon dates for tree stumps at another three sites in the Cairngorm Mountains are presented. These are considered along with a previous set (Pears, 1969) and the evidence they provide for determining altitudinal limits of forest growth in the Flandrian Period is discussed. They support earlier tentative conclusions that the topographical factor and local site hydrology are the key factors in interpreting the macrofossil pattern.  相似文献   

2.
Little work has been done on the phenology of root growth and senescence largely due to methodological difficulties. The application of minirhizotron technology has enabled the tracking of individual roots through an entire growing season. As a result, direct measures of mortality, root growth, and an analysis of cohorts can be obtained. This study examined the belowground response of vegetation in a nutrient limited system to nitrogen addition. Small plots on a 36 year old dune on Hog Island, a barrier island in the Virginia Coast Reserve Long Term Ecological Research Site, were fertilized with nitrogen. Minirhizotron tubes were installed in each fertilized and control plot. Each tube was sampled monthly for nine months, March through October of 1992. Root length density increased throughout the growing season with the greatest root length density in the top 20 cm of the soil profile. The fertilized plots had greater root length densities (14.1 mm cm-2) than the unfertilized plots (2.9 mm cm-2). There was no significant depth × treatment interaction. Root mortality did not significantly change with fertilization. The largest loss of roots for a cohort occurred within the first month. The dune grassland community did not respond to fertilization with large changes in root distribution or increases in mortality in this study.  相似文献   

3.
* Greater fine-root production under elevated [CO2] may increase the input of carbon (C) and nitrogen (N) to the soil profile because fine root populations turn over quickly in forested ecosystems. * Here, the effect of elevated [CO)] was assessed on root biomass and N inputs at several soil depths by combining a long-term minirhizotron dataset with continuous, root-specific measurements of root mass and [N]. The experiment was conducted in a CO(2)-enriched sweetgum (Liquidambar styraciflua) plantation. * CO2) enrichment had no effect on root tissue density or [N] within a given diameter class. Root biomass production and standing crop were doubled under elevated [CO2]. Though fine-root turnover declined under elevated [CO2], fine-root mortality was also nearly doubled under CO2 enrichment. Over 9 yr, root mortality resulted in 681 g m(-2) of extra C and 9 g m(-2) of extra N input to the soil system under elevated [CO2]. At least half of these inputs were below 30 cm soil depth. * Increased C and N input to the soil under CO2 enrichment, especially below 30 cm depth, might alter soil C storage and N mineralization. Future research should focus on quantifying root decomposition dynamics and C and N mineralization deeper in the soil.  相似文献   

4.
Root biomass of a dry deciduous tropical forest in Mexico   总被引:3,自引:0,他引:3  
The deciduous tropical dry forest at Chamela (Jalisco, Mexico) occurs in a seasonal climate with eight rainless (November through June) and four wet months (700 mm annual precipitation). The forest reaches a mean height of 10 m. Tree density in the research area was 4700 trees per ha with a basal area at breast height of 23 m2 per ha. The above-and below-ground biomass of trees, shrubs, and lianas was 73.6 Mg ha–1 and 31 Mg ha–1, respectively. A root:shoot biomass ratio of 0.42 was calculated. Nearly two thirds of all roots occur in the 0–20 cm soil layer and 29% of all roots have a diameter of less than 5 mm.  相似文献   

5.
Defining root death in studies of root dynamics is problematic because cell death occurs gradually and the resulting effects on root function are not well understood. In this study, metabolic activity of grape roots of different ages was assessed by excised root respiration and tetrazolium chloride reduction. We investigated changes in metabolic activity and patterns of cell death occurring with root age and changes in root pigmentation. Tetrazolium chloride reduction of roots of different ages was strongly correlated to respiration ( R 2 = 0.786). As roots aged, respiration and tetrazolium chloride reduction declined similarly, with minimum metabolic activity reached at six weeks. Tetrazolium chloride reduction indicated that the onset of root browning corresponded to a 77% reduction in metabolic activity ( P < 0.001). Anatomical examination of roots at each pigmentation stage showed that even though some cells in brown roots were still alive, these roots were functionally dead. The effect of using different definitions of root death in relation to root survivorship was determined in a study of 'Concord' grapes with two pruning treatments, using three criteria for root death: browning, blackening or shriveling, and disappearance. There was no effect of vine pruning on root life span when life span was defined as the time from first appearance to the onset of browning. However, if death was judged as the point when roots either became black or shriveled or disappeared, vine pruning decreased root life span by 34% and 40%, respectively ( P < 0.001), and also increased the decay constant for root decomposition by about 45% ( P < 0.001). We conclude that the discrepancy among determinations of root life span assessed with different definitions of death might be partly caused by the latter evaluations of root life span incorporating a portion of root decomposition in definitions of root death.  相似文献   

6.
水曲柳和落叶松细根形态及母根与子根比例关系   总被引:7,自引:0,他引:7  
细根(直径〈2mm)的分枝是根系重要的结构特征,不同根序等级的细根在养分和水分吸收、C的消耗和寿命方面具有较大的差异,定量研究各根序等级之间的比例关系对认识细根死亡的顺序具有重要的理论意义。根据Pregitzer等2002年提供的方法,研究了17年生水曲柳(Fraxinus mandshurica Rupr.)和落叶松(Larix gmelinii Rupr.)人工纯林1-5级细根的直径、长度、比根长、生物量和数量。结果表明,两树种细根中1级根序的数量占总根系数量80%-90%,它们直径小、长度短、比根长高。随着根序等级(1级-5级)的增加细根直径增粗和长度增加、比根长减小。细根的数量和生物量在上下土层的分布受土壤资源有效性的影响。水曲柳5级根序-2级根序之间母根与子根的数量关系是1:3,落叶松是1:2-3。2级根序与1级根序之间母根与子根的数量关系,水曲柳是1:10—12,落叶松是1:8。如果当年生长的1级细根当中保持1:3的比例,将有65%-75%的1级细根死亡,占根系总数的55%~65%,总长度的40%-50%,以及总生物量的20%-30%。  相似文献   

7.
Growth and death of fine roots represent an important carbon sink in forests. Our understanding of the patterns of fine root turnover is limited, in particular in tropical forests, despite its acknowledged importance in the global carbon cycle. We used the minirhizotron technique for studying the changes in fine root longevity and turnover along a 2000-m-elevational transect in the tropical mountain forests of South Ecuador. Fine root growth and loss rates were monitored during a 5-mo period at intervals of four weeks with each 10 minirhizotron tubes in three stands at 1050, 1890, and 3060 m asl. Average root loss rate decreased from 1.07 to 0.72 g/g/yr from 1050 to 1890 m, indicating an increase in mean root longevity with increasing elevation. However average root loss rate increased again toward the uppermost stand at 3060 m (1.30 g/g/yr). Thus, root longevity increased from lower montane to mid-montane elevation as would be expected from an effect of low temperature on root turnover, but it decreased further upslope despite colder temperatures. We suggest that adverse soil conditions may reduce root longevity at high elevations in South Ecuador, and are thus additional factors besides temperature that control root dynamics in tropical mountain forests.  相似文献   

8.
Plants respond to their environment through adaptations such as root proliferation in nutrient-rich patches. Through their burrows and casts production in soil, earthworms create heterogeneity which could lead to local root adaptations or systemic effects. To investigate the effect of earthworms on root system morphology and determine whether earthworm effect is local or systemic, we set up two independent split root experiments with rice or barley, (i) without earthworm (CC), (ii) with earthworms in both compartments (EE), and (iii) with earthworms in one single compartment (CE). Earthworms had an effect on belowground plant biomass. The relative length of thick roots decreased with an increasing abundance of earthworms. Some root diameter classes responded to earthworm number in a linear or curvilinear way, making simple conclusions difficult. We found no difference in root biomass or morphology between the two compartments of the split root system in the CE treatment, but a positive effect of earthworm biomass on root biomass, volume, surface area, and length at the whole plant level. Results supported a systemic effect dependent on earthworm abundance. Modification of nutrient mineralization, soil physical structure, and/or the concentration of signal molecules could all be responsible for this systemic effect.  相似文献   

9.
The objective of this work was to study elongation curves of maize axile roots throughout their elongation period under field conditions. Relationships between their elongation rate and the extension rate of their branched region were also studied. Maize, early-maturing cultivar Dea, was grown on a deep, barrier-free clay loam (depth 1.80m). Trenches were dug during four periods until after silking and axile roots were excavated. Parameters measured were total length and the lengths of basal and apical unbranched zones. The rank of the bearing phytomer and general data about the carrying plant were also recorded. Results showed that axile roots from lower phytomers had similar elongation rates irrespective of the rank of the carrying phytomer. This elongation rate declined with root age. A monomolecular elongation model was fitted to the experimental data. Elongation was much slower in roots from upper phytomers. A rough linear relationship was found between the elongation rate of axile roots and the length of the apical unbranched zone. This result suggests that laterals appeared on a root segment a constant time after it was formed. Possible mechanisms with may account for the declining elongation rate with root age (increasing distance from aerial parts or adverse environmental conditions in deep soil layers) and variability between individual roots are also discussed.  相似文献   

10.
土壤增温对杉木幼苗细根生长量及形态特征的影响   总被引:1,自引:0,他引:1  
为了揭示杉木人工林对全球变暖的地下响应,在福建省三明市陈大国有林场开展杉木(Cunninghamia lanceolata)幼苗土壤增温试验,采用内生长环法探讨增温实验开始后第2年(2015年1月、7月取样)和第3年(2016年1月、7月取样)杉木幼苗细根生长量和形态特征(比根长,SRL;比表面积,SRA;组织密度,RTD)的变化。结果表明:(1)随着苗木的生长,土壤增温对细根生长量的影响趋势是先抑制,再无显著影响,最后促进。(2)土壤增温对细根形态特征的影响在不同取样时间有差异:土壤增温对7月份(夏季)取样的细根SRL或SRA有显著促进作用,对1月份(冬季)取样的细根SRL、SRA均无显著影响。(3)土壤增温对第二、第三次取样的1—2 mm细根RTD有促进作用。表明土壤增温对杉木幼苗细根生长量的影响与苗木生长阶段有关;同时苗木可通过细根形态的调整(增大SRL和RTD)以适应土壤增温引起的土壤资源变化和环境胁迫,维持自身的生长。  相似文献   

11.
We studied effects of nitrogen, other nutrients and water (liquid fertilization; LF) on fine root dynamics (production, mortality) and life span of mycorrhizal short roots in a Norway spruce stand, using minirhizotrons. Data were collected and analyzed during a two-year period at depths of 0–20 cm, 21–40 cm and 41–85 cm, six years after the start of treatment. Relative to control (C), root production was lower in LF plots at depth 0–20 cm. Root production increased significantly at depth 41–85 cm. Fine root mortality in LF plots was higher at all depths. Life span of mycorrhizal short roots in LF plots was significantly lower than C plots and at the end of the study no mycorrhizal short roots were alive. It is suggested that the water and nitrogen input lower longevity of mycorrhizal short roots and promote fine root production at deeper soil layers.  相似文献   

12.
Fine root turnover is a major pathway for car-bon and nutrient cycling in forest ecosystems. However, to estimate fine root turnover, it is important to first understand the fine root dynamic processes associated with soil resource availability and climate factors. The objectives of this study were: (1) to examine patterns of fine root production and mortality in different seasons and soil depths in the Larix gmelinii and Fraxinus man-dshurica plantations, (2) to analyze the correlation of fine root production and mortality with environmental factors such as air temperature, precipitation, soil temperature and available nitrogen, and (3) to estimate fine root turn-over. We installed 36 Minirhizotron tubes in six mono-specific plots of each species in September 2003 in the Mao'ershan Experimental Forest Station. Minirhizotron sampling was conducted every two weeks from April 2004 to April 2005. We calculated the average fine root length, annual fine root length production and mortality using image data of Minirhizotrons, and estimated fine root turnover using three approaches. Results show that the average growth rate and mortality rate in L. melinii were markedly smaller than in F. mandshurica, and were high-est in the surface soil and lowest at the bottom among all the four soil layers. The annual fine root production and mortality in F. mandshurica were significantly higher than in L. gmelinii. The fine root production in spring and summer accounted for 41.7% and 39.7% of the total annual production in F. mandshurica and 24.0% and 51.2% in L. gmelinii. The majority of fine root mortality occurred in spring and summer for F. mandshurica and in summer and autumn for L. gmelinii. The turnover rate was 3.1 a-1 for L. gmelinii and 2.7 a-1 for F. mandshurica. Multiple regression analysis indicates that climate and soil resource factors together could explain 80% of the varia-tions of the fine root seasonal growth and 95% of the seasonal mortality. In conclusion, fine root production and mortality in L. gmelinii and F. mandshurica have dif-ferent patterns in different seasons and at different soil depths. Air temperature, precipitation, soil temperature and soil available nitrogen integratively control the dynamics of fine root production, mortality and turnover in both species.  相似文献   

13.
Joslin  J. Devereux  Wolfe  Mark H. 《Plant and Soil》1998,204(2):165-174
In order to examine the below ground response of a mature upland hardwood forest in the southeastern U.S., to increases and decreases in water inputs, the gross production, mortality, and net production of fine roots were examined over the first and third years of a long-term water manipulation experiment (Throughfall Displacement Experiment). Treatments involved a 33% decrease (DRY), 33% increase (WET), and ambient (AMB) levels of throughfall to the forest floor, begun in July, 1993. Video images of roots appearing on minirhizotron faces installed on both upper and lower slopes were recorded biweekly to a depth of 90 cm from April through October of 1994 and of 1996. Comparisons were made between treatments in amounts of new root elongation, root mortality, and calculated net root production. Minirhizotron observations during 1994 growing season, immediately following winter 1994 installation, revealed a strong effect of installation disturbance and were therefore not considered valid reflections of the response of the stand to the treatments. The 1996 data, on the other hand, exhibited absence of installation biases inherent in 1994 data because of a longer period since treatment initiation (2 2/3 yr vs. 8 mths), and favorable root growth conditions in all treatments during a greater portion of the year. The 1996 data were, therefore, considered realistic measures of below ground treatment responses. During 1996, net root production at 0-30 cm depth, at the upper slope positions, was significantly greater in DRY than in WET and AMB. Net root production was also greater at the lower slope position, but not significantly so. Treatment differences were the result of gross root production, as patterns of mortality did not differ across treatments. Nor were there significant treatment differences at depths below 30 cm. Whether trees in DRY produced more roots to replace root biomass lost during a previous drought year, or whether a new root:shoot ratio was beginning to develop in response to treatments, will require observations from the response of the stand in future years to be determined.  相似文献   

14.
姜红英  谷加存  邱俊  王政权 《生态学杂志》2010,21(10):2465-2471
2004—2008年,采用微根管(minirhizotron)技术,对落叶松人工林细根生产和死亡进行连续动态观测,同时测定了温度(大气温度和土壤10 cm温度)和水分(降雨量和土壤10 cm深处含水量)的变化,研究细根生产、死亡的动态及其与温度和水分的关系.结果表明:落叶松细根年根长生产量在0.20~0.78 mm·cm-2,死亡量在0.26~0.72 mm·cm-2;2004—2006年细根年根长平均生产量(0.67 mm·cm-2)和死亡量(0.59 mm·cm-2)均高于2007—2008年细根年根长平均生产量和死亡量(0.37和0.39 mm·cm-2);在生长季内(5—10月),落叶松春末至夏季(6—7月) 的细根生产量占全年产量的51%~68%,秋末(10月)仅占全年的1%~4%;而夏末(8月)和秋季(9—10月)细根死亡量占全年的59%~70%,早春(5月)占全年的1%~5%.相关分析表明,大气温度变化可以解释细根生产量66%的变异,而土壤10 cm深处温度解释24%,降雨量解释27%.细根的死亡量与土壤10 cm深处温度呈指数正相关.  相似文献   

15.
落叶松和水曲柳人工林细根生长、死亡和周转   总被引:9,自引:3,他引:9       下载免费PDF全文
 细根周转是陆地生态系统碳分配格局与过程的核心环节,而细根周转估计的关键是了解细根的生长和死亡动态。该研究以18年生落叶松(Larix gmelinii)和水曲柳(Fraxi nus mandshurica)人工林为对象,采用微根管(Minirhizotron)技术对两树种0~40 cm深度的细根生长和死亡动态进行了为期1年的观测,研究了两树种细根在不同土层深度的生长与死亡动态、细根周转以及与土壤有效氮含量、土壤温度、大气温度和降水的关系。结果表明:1) 落叶松平均细根生长(Root length density production, RLDP)0.0045 mm•cm-2•d-1)明显低于水曲柳RLDP(0.0077 mm•cm-2•d-1)。两个树种细根平均RLDP在表层(0~10 cm)最大,而底层(30~40 cm)最小 ,两树种平均细根死亡(Root length density mortality, RLDM)也表现同样规律 。水曲柳春季生长的细根占41.7%,夏季占39.7%,而落叶松细根生长分别是24.0%和51.2%,水曲柳细根死亡主要发生在春季(34.3%) 和夏季(34.0%),而落叶松细根死亡主要发生在夏季和秋季(分别占28.5%和32.3%),两 树种细根生长与死亡在冬季均较小;2)落叶松细根年生长量(0.94 mm•cm-2•a-1)和年死亡量(0.72 mm•cm-2•a-1)明显低于水曲柳(1.52和1.21 mm•cm-2•a-1),两树种细根表层年生长量和年死亡量均最高,底层最低。落叶松细根年周转为3.1次•a-1(按年生长量计算)和2.4次•a-1(按年死亡量计算),相比较,水曲柳细根年周转分别为2.7次•a-1和2.2次•a-1;3)土壤有效氮含量、土壤温度、大气温度和降水综合作用影响细根生长和死亡动态,可以解释细根生长80%的变异和细根死亡95%以上的变异。  相似文献   

16.
17.
Nadelhoffer  K. J.  Johnson  L.  Laundre  J.  Giblin  A. E.  Shaver  G.R. 《Plant and Soil》2002,242(1):107-113
We used ingrowth cores to estimate fine root production in organic soils of wet sedge and moist tundra ecosystems near Toolik Lake on Alaska's North Slope. Root-free soil cores contained in nylon mesh tubes (5 cm diameter, 20–30 cm long) were placed in control and chronically fertilized (N plus P) plots in mid-August 1994 and were retrieved 1 year later. Estimated fine root production in control plots was 75 g m–2 year–1 in wet sedge and 56 g m–2 year–1 in moist tussock tundra. Fine root production in fertilized plots was 85 g m–2 year–1 in wet sedge and 67 g m–2 year–1 in moist tussock tundra. Although our estimates of fine root production were higher on fertilized than control plots, differences were not statistically significant within either tundra type. Comparisons between our estimates of fine root production and other estimates of aboveground (plus rhizome) production on the same (wet sedge tundra) or similar (moist tussock tundra) plots suggest that fine root production was about one-third of total net primary production (NPP) under non-fertilized conditions and about one-fifth of total NPP under chronic fertilization. Fine root N and P concentrations increased with fertilization in both tundra types, but P concentrations increased more than N concentrations in wet sedge tundra, whereas relative increases in N and P concentrations in moist tundra roots were similar. These data are consistent with other studies suggesting that NPP in wet sedge tundra is often P limited and that co-limitation by N and P is more important in moist tussock tundra.  相似文献   

18.
Abstract

Globally, forests cover 4 billion ha or 30% of the Earth's land surface and account for more that 75% of carbon stored in terrestrial ecosystem. However, 20 – 40% of the forest biomass is roots. Roots play a key role in acquisition of water and nutrients from the soil, the transfer of carbon to soil, as well as providing physical stabilisation. In temperate forests of Europe, average biomass of trees is estimated to be ca. 220 t ha?1, of which 52 t ha?1 are coarse roots and 2.4 t ha?1 are fine roots. Thus, forests and their soils belong to the planets largest reservoirs of carbon. As an outcome of a recently established European platform for scientists working on woody roots, COST action E38, a series of papers has been initiated in order to review the current knowledge on processes in and of roots of woody plants and to identify possible knowledge gaps. These reviews concentrate on aspects of roots as indicators of environmental change, biomass of fine roots, and modelling of course root systems. The reviews of roots as indicators of environmental change cover a number of aspects including, specific root length, the calcium to aluminium ratio, root electrolyte leakage, and ectomycorrhiza community composition.  相似文献   

19.
Efforts to characterize carbon (C) cycling among atmosphere, forest canopy, and soil C pools are hindered by poorly quantified fine root dynamics. We characterized the influence of free‐air‐CO2‐enrichment (ambient +200 ppm) on fine roots for a period of 6 years (Autumn 1998 through Autumn 2004) in an 18‐year‐old loblolly pine (Pinus taeda) plantation near Durham, NC, USA using minirhizotrons. Root production and mortality were synchronous processes that peaked most years during spring and early summer. Seasonality of fine root production and mortality was not influenced by atmospheric CO2 availability. Averaged over all 6 years of the study, CO2 enrichment increased average fine root standing crop (+23%), annual root length production (+25%), and annual root length mortality (+36%). Larger increase in mortality compared with production with CO2 enrichment is explained by shorter average fine root lifespans in elevated plots (500 days) compared with controls (574 days). The effects of CO2‐enrichment on fine root proliferation tended to shift from shallow (0–15 cm) to deeper soil depths (15–30) with increasing duration of the study. Diameters of fine roots were initially increased by CO2‐enrichment but this effect diminished over time. Averaged over 6 years, annual fine root NPP was estimated to be 163 g dw m?2 yr?1 in CO2‐enriched plots and 130 g dw m?2 yr?1 in control plots (P= 0.13) corresponding to an average annual additional input of fine root biomass to soil of 33 g m?2 yr?1 in CO2‐enriched plots. A lack of consistent CO2× year effects suggest that the positive effects of CO2 enrichment on fine root growth persisted 6 years following minirhizotron tube installation (8 years following initiation of the CO2 fumigation). Although CO2‐enrichment contributed to extra flow of C into soil in this experiment, the magnitude of the effect was small suggesting only modest potential for fine root processes to directly contribute to soil C storage in south‐eastern pine forests.  相似文献   

20.
Elevated atmospheric carbon dioxide (CO2) often stimulates the growth of fine roots, yet there are few reports of responses of intact root systems to long‐term CO2 exposure. We investigated the effects of elevated CO2 on fine root growth using open top chambers in a scrub oak ecosystem at Kennedy Space Center, Florida for more than 7 years. CO2 enrichment began immediately after a controlled burn, which simulated the natural disturbance that occurs in this system every 10–15 years. We hypothesized that (1) root abundance would increase in both treatments as the system recovered from fire; (2) elevated CO2 would stimulate root growth; and (3) elevated CO2 would alter root distribution. Minirhizotron tubes were used to measure fine root length density (mm cm?2) every three months. During the first 2 years after fire recovery, fine root abundance increased in all treatments and elevated CO2 significantly enhanced root abundance, causing a maximum stimulation of 181% after 20 months. The CO2 stimulation was initially more pronounced in the top 10 cm and 38–49 cm below the soil surface. However, these responses completely disappeared during the third year of experimental treatment: elevated CO2 had no effect on root abundance or on the depth distribution of fine roots during years 3–7. The results suggest that, within a few years following fire, fine roots in this scrub oak ecosystem reach closure, defined here as a dynamic equilibrium between production and mortality. These results further suggest that elevated CO2 hastens root closure but does not affect maximum root abundance. Limitation of fine root growth by belowground resources – particularly nutrients in this nutrient‐poor soil – may explain the transient response to elevated CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号