首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Complexes of poly(BU) with various adenine derivatives were investigated by circular dichroism (CD) and absorption spectroscopy. A 1:2 stoichiometry was indicated on CD mixing curves for typical complexes of 9-substituted adenine and 2-aminoadenine derivatives with poly(BU). The CD spectrum of adenosine·2poly(BU) is characterized by well-resolved bands in the range of 210–350 nm. Other adenine derivative–poly(BU) complexes also afford similar CD spectra, while 2-aminoadenine derivative–poly(BU) complexes give quite different spectra. Attempts to assign representative CD spectra were made using the transition of helical poly(BU) and the respective purine polynucleotides. The similarity of the CD spectra suggests that poly(A)·2poly(BU) and adenine derivative–poly(BU) complexes are nearly identical in structure except for the ribose–phosphate linkage. The fact that the uv isosbestic point of adenosine·2poly(BU) falls in close proximity to that of the corresponding polymer complex also supports this conclusion. In the formation of stable helices, the ribose moiety is dispensable in the “strand” of purine. The Tm of 9-methyladenine·2poly(BU) is somewhat higher than that of adenosine·2poly(BU) under equivalent conditions. The Tm difference with the monomer–poly(U) system was found to be about 20°C in 0.4M NaCl–0.02M Na–cacodylate–5 × 10?4M EDTA (pH 7.0). Further, it was noted that the monomer–poly(BU) complexes are formed even when the Tm is lower than that of self-folded poly(BU).  相似文献   

2.
We have used a combination of densimetric, calorimetric, and uv absorption techniques to obtain a complete thermodynamic characterization for the formation of nucleic acid homoduplexes of known sequence and conformation. The volume change ΔV accompanying the formation of four duplexes was interpreted to reflect changes in hydration based on the electrostriction phenomenon. In 10 mM sodium phosphate buffer at pH 7, the magnitude of the measured ΔV's ranged from ?2.0 to +7.2 ml/mol base pair and followed the order of poly(rA) · poly(dT) ~ poly(dA) · poly(dT) < poly(rA) · poly(dU) ~ poly(rA) · poly(rU). Inclusion of 100 mM NaCl in the same buffer gave the range of ?17.4 to ?2.3 mL/mol base pair and the following order: poly(dA) · poly(dT) < poly(rA) · poly(dT) < poly(rA) · poly(rU) ~ poly(rA) ~ polyr(dU). Standard thermodynamic profiles of forming these duplexes from their corresponding complementary single strands indicated similar free energies that resulted from the compensation of favorable enthalpies with unfavorable entropies along with a similar counterion uptake at both ionic strengths. The differences in these compensating effects of entropy and enthalpy correlated very well with the volume change measurements in a manner suggesting that the homoduplexes in the B conformation are more hydrated than are those in the A conformation. Moreover, the increased thermal stability of these homoduplexes resulted from an increase in the salt concentration corresponding to larger hydration levels as reflected by the ΔV results. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
S1 is an acidic protein associated with the 3′ end of 16S RNA; it is indispensable for ribosomal binding of natural mRNA. We find that S1 unfolds single stranded stacked or helical polynucleotides (poly rA, poly rC, poly rU). It prevents the formation of poly (rA + rU) and poly (rI + rC) duplexes at 10–25 mM NaCl but not at 50–100 mM NaCl. Partial, salt reversible denaturation is also seen with coliphage MS2 RNA, E. coli rRNA and tRNA. Generally, only duplex structures with a Tm greater than about 55° are formed in the presence of S1. The protein unfolds single stranded DNA but not poly d(A·T).  相似文献   

4.
C Otto  F F de Mul  J Greve 《Biopolymers》1987,26(10):1667-1689
Raman spectra of the bacteriophage T4 denaturing protein gp32, its complex with the polynucleotides poly(rA), poly(dA), poly(dT), poly(rU), and poly(rC), and with the oligonucleotides (dA)8 and (dA)2, were recorded and interpreted. According to an analysis of the gp32 spectra with the reference intensity profiles of Alix and co-workers [M. Berjot, L. Marx, and A. J. P. Alix (1985) J. Ramanspectrosc., submitted; A. J. P. Alix, M. Berjot, and J. Marx (1985) in Spectroscopy of Biological Molecules, A. J. P. Alix, L. Bernard, and M. Manfait, Eds., pp. 149–154], 1 gp32 contains ≈ 45% helix, ≈ 40% β-sheet, and 15% undefined structure. Aggregation of gp32 at concentrations higher than 40 mg/mL leads to a coordination of the phenolic OH groups of 4–6 tyrosines and of all the sulfhydryl (SH) groups present in the protein with the COO? groups of protein. The latter coordination persists even at concentrations as low as 1 mg/mL. In polynucleotide–protein complexes the nucleotide shields the 4–6 tyrosine residues from coordination by the COO? groups even at high protein concentration. The presence of the nucleotide causes no shielding of the SH groups. With Raman difference spectroscopy it is shown that binding of the protein to a single-stranded nucleotide involves both tyrosine and trytophan residues. A change in the secondary structure of the protein upon binding is observed. In the complex, gp32 contains more β-sheet structure than when uncomplexed. A comparison of the spectra of complexed poly(rA) and poly(dA) with the spectra of their solution conformations at 15°C reveals that in both polynucleotides the phosphodiester vibration changes upon complex formation in the same way as upon a transition from a regular to a more disordered conformation. Distortion of the phosphate–sugar–base conformation occurs upon complex formation, so that the spectra of poly(rA) and poly(dA) are more alike in the complex than they are in the free polynucleotides. The decrease in intensity of the Raman bands at 1304 cm?1 in poly(rA), at 1230 cm?1 in poly(rU), and at 1240 and 1378 cm?1 of poly(dT) may be indicative of increased stacking interactions in the complex. No influence of the nucleotide chain length upon the Raman spectrum of gp322 in the complex was detected. Both the nucleotide lines and the protein lines in the spectrum of a complex are identical in poly(dA) and (dA)8.  相似文献   

5.
The interaction of the 1,N6-etheno derivatives of poly(rA) (poly(epsilon rA] with poly(rU) has been studied by absorption and fluorescence spectroscopy. The stoichiometry of the interaction is found to be 1 epsilon A:1 rU and 1 epsilon A:2 rU as well as in the case of poly(rA)-poly(rU) interaction. The fluorescence properties, including the intensity and polarization of fluorescence, respond to the conformational transition of poly(epsilon rA)-poly(rU) complexes. The introduction of epsilon A groups into poly(rA) results in a marked decrease in the melting temperature, suggesting that epsilon A may destabilize the helical structure. The three-exponential decay law obtained with poly(epsilon rA)-poly(rU) complexes indicates the existence of at least three different stacked conformational states.  相似文献   

6.
The study by resonance Raman spectroscopy with a 257 nm excitation wave-length of adenine in two single-stranded polynucleotides, poly rA and poly dA, and in three double-stranded polynucleotides, poly dA.poly dT, poly(dA-dT).poly(dA-dT) and poly rA.poly rU, allows one to characterize the A-genus conformation of polynucleotides containing adenine and thymine bases. The characteristic spectrum of the A-form of the adenine strand is observed, except small differences, for poly rA, poly rA.poly rU and poly dA.poly dT. Our results prove that it is the adenine strand which adopts the A-family conformation in poly dA.poly dT.  相似文献   

7.
The vibrational spectra and structure of poly(rA-rU)-poly(rA-rU)   总被引:2,自引:0,他引:2  
Infrared and Raman spectra of aqueous poly(rA-rU)·poly(rA-rU), the double-helical complex containing strands of alternating riboadenylate and ribouridylate residues, display significant differences from one another and from corresponding spectra of poly(rA)·poly(rU), the double-helical complex of riboadenylate and ribouridylate homopolymers. Parallel studies on the copolymer and homopolymer complexes by cesium sulfate density gradient centrifugation, ultraviolet absorption spectroscopy, hydrogenion titration, 1-N oxidation of adenine residues by monoperphthalic acid and X-ray diffraction reveal, however, that the geometry of base pairing between adenine and uracil is closely similar in each complex and apparently of the Watson-Crick type. Therefore the differences observed between vibrational spectra of poly (rA-rU)·poly (rA-rU) and poly(rA)·poly(rU) are not due to different base-pairing schemes but may be attributed to differences in vibrational coupling between vertically stacked bases. Vibrational coupling may also account for the differences between infrared and Raman spectra of the same complex. Thus, the present results indicate that infrared and Raman frequencies of RNA in the region 1750–1550 cm?1 should be dependent on the base sequence.  相似文献   

8.
Interaction between polylysine and DNA's of varied G + C contents was studied using thermal denaturation and circular dichroism (CD). For each complex there is one melting band at a lower temperature tm, corresponding to the helix–coil transition of free base pairs, and another band at a higher temperature tm, corresponding to the transition of polylysine-bound base pairs. For free base pairs, with natural DNA's and poly(dA-dT) a linear relation is observed between the tm and the G + C content of the particular DNA used. This is not true with poly(dG)·poly(dC), which has a tm about 20°C lower than the extrapolated value for DNA of 100% G + C. For polylysine-bound base pairs, a linear relation is also observed between the tm and the G + C content of natural DNA's but neither poly(dA-dT) nor poly(dG)·poly(dC) complexes follow this relationship. The dependence of melting temperature on composition, expressed as dtm/dXG·C, where XG·C is the fraction of G·C pairs, is 60°C for free base pairs and only 21°C for polylysine-bound base pairs. This reduction in compositional dependence of Tm is similar to that observed for pure DNA in high ionic strength. Although the tm of polylysine-poly(dA-dT) is 9°C lower than the extrapolated value for 0% G + C in EDTA buffer, it is independent of ionic strength in the medium and is equal to the tm0 extrapolated from the linear plot of tm against log Na+. There is also a noticeable similarity in the CD spectra of polylysine· and polyarginine·DNA complexes, except for complexes with poly(dA-dT). The calculated CD spectrum of polylysine-bound poly(dA-dT) is substantially different from that of polyarginine-bound poly(dA-dT).  相似文献   

9.
Abstract

Phase transitions were studied of the sodium salt of poly(rA) ?poly(rU) induced by elevated temperature without Ni2+ and with Ni2+ in 0.07 M concentration in D2O (~0.4 [Ni]/[P]). The temperature was varied from 20° C to 90° C. The double-stranded conformation of poly(rA)?poly(rU) was observed at room temperature (20° C—23° C) with and without Ni2+ ions. In the absence of Ni2+ ions, partial double- to triple-strand transition of poly(rA) ?poly(rU) occurred at 58° C, whereas only single-stranded molecules existed at 70° C. While poly(rU) did not display significant helical structure, poly(rA) still maintained some helicity at this temperature. Ni2+ ions significantly stabilized the triple-helical structure. The temperature range of the stable triple-helix was between 45° C and 70° C with maximum stability around 53° C. Triple-to single-stranded transition of poly(rA) ?poly(rU) occurred around 72° C with loss of base stacking in single-stranded molecules. Stacked or aggregated structures of poly(rA) formed around 86° C. Hysteresis took place in the presence of Ni2+ during the reverse transition from the triple-stranded to the double-stranded form upon cooling. Reverse Hoogsteen type of hydrogen-bonding of the third strand in the triplex was suggested to be the most probable model for the triple-helical structure. VCD spectroscopy demonstrated significant advantages over infrared absorption or the related electronic CD spectroscopy.  相似文献   

10.
Studies on spin-labeled polyriboadenylic acid   总被引:2,自引:0,他引:2  
A M Bobst 《Biopolymers》1972,11(7):1421-1433
Spin-labeled samples of poly rA, poly rU, and poly rG have been prepared, and physicochemical properties primarily of labeled poly rA are reported. The nitroxide radical, 4-(2-iodoacetamido)-2,2,6,6-tetramethylpiperidinooxyl, is incorporated to a greater extent in poly rA and poly rU, as compared to poly rG. No incorporation is observed in the case of poly rC. Special attention has been paid to the separation of the covalently attached labels from the free labels, and to the preservation of the integrity of the chain length of the labeled polymers. The determination of molar extinction coefficients of the three labeled polymers indicates virtually no difference from those known for the chemically unpertubed polyribonucleotides. The correlation times for the spin-labeled single stranded poly rA and poly rU have been calculated. More mobile building blocks are found in poly rU as compared to poly rA. Conformational properties of labeled poly rA in aqueous solutions have been investigated using electron spin resonance, circular dichroism, and absorption spectroscopy. The objective of the study of labeled poly rA was to examine its conformational transitions upon the uptake of protons by the adenine bases. Based on electron spin resonance data there is strong evidence that the single strand-double strand transition can take place in three steps. In addition to the already known two forms of double-stranded poly rA in acidic solution, called A and B, it is suggested that a third phase, consisting possibly of large aggregates, is involved in the transition of the less protonated double strands to those of complete protonation.  相似文献   

11.
Magnesium ions strongly influence the structure and biochemical activity of RNA. The interaction of Mg2+ with an equimolar mixture of poly(rA) and poly(rU) has been investigated by UV spectroscopy, isothermal titration calorimetry, ultrasound velocimetry and densimetry. Measurements in dilute aqueous solutions at 20°C revealed two differ ent processes: (i) Mg2+ binding to unfolded poly(rA)·poly(rU) up to [Mg2+]/[phosphate] = 0.25; and (ii) poly(rA)·2poly(rU) triplex formation at [Mg2+]/[phosphate] between 0.25 and 0.5. The enthalpies of these two different processes are favorable and similar to each other, ~–1.6 kcal mol–1 of base pairs. Volume and compressibility effects of the first process are positive, 8 cm3 mol–1 and 24 × 10–4 cm3 mol–1 bar–1, respectively, and correspond to the release of water molecules from the hydration shells of Mg2+ and the polynucleotides. The triplex formation is also accompanied by a positive change in compressibility, 14 × 10–4 cm3 mol–1 bar–1, but only a small change in volume, 1 cm3 mol–1. A phase diagram has been constructed from the melting experiments of poly(rA)·poly(rU) at a constant K+ concentration, 140 mM, and various amounts of Mg2+. Three discrete regions were observed, corresponding to single-, double- and triple-stranded complexes. The phase boundary corresponding to the transition between double and triple helical conformations lies near physiological salt concentrations and temperature.  相似文献   

12.
J M Eyster  E W Prohofsky 《Biopolymers》1974,13(12):2527-2543
The eigenvalues and eigenvectors of 11-fold double-helical poly(rU)·poly(rA) have been calculated. The vibrational potential energy of the double-helical structure is initially considered to be a sum of the vibrational potential energy of the single-helical structures poly(rU) and poly(rA). Coupling between the single helices is introduced by including a stretch force constant for each hydrogen bond between the uracil and adenine base residues. In addition, a model is presented for nonbonded interactions between nearest neighbor base pairs, which is consistent with a previous model for such interactions in the single helices. Because of the simple structural relationship between the uncoupled single helices and the double helix we are able to cast the secular equation for poly(rU)·poly(rA) in a form suitable for the use of perturbation theory using the previously calculated normal modes for the single helices as the unperturbed modes. Perturbation theory was found to be inapplicable for the region of the spectrum ?450 cm?1. In this region an exact Green function technique is used to calculate the strongly coupled modes. We explicitly display one aspect of these double-helical normal modes. The stretching motions of the hydrogen bonds in the region of the spectrum <450 cm?1 have been plotted as bar graphs for each mode.  相似文献   

13.
Isotherms of the EtBr adsorption on native and denatured poly(dA)poly(dT) in the temperature interval 20–70°C were obtained. The EtBr binding constants and the number of binding sites were determined. The thermodynamic parameters of the EtBr intercalation complex upon changes of solution temperature 20–48°C were calculated: 1.0·106 M−1K≤1.4·106 M−1, free energy ΔG o=−8.7±0.3 kcal/mol, enthalpy ΔH o≅0, and entropy ΔS o=28±0.5 cal/(mol deg). UV melting has shown that the melting temperature (T m) of EtBr-poly(dA)poly(dT) complexes (μ=0.022,4.16·10−5 M EtBr) increased by 17°C as compared with the ΔT m of free homopolymer, whereas the half-width of the transition (T m) is not changed. It was shown for the first time that EtBr forms complexes of two types on single-stranded regions of poly(dA)poly(dT) denatured at 70°C: strong (K 1=1.7·105 M−1; ΔG o=−8.10±0.03 kcal/mol) and weak (K 2=2.9·103 M−1; ΔG o=−6.0±0.3 kcal/mol).The ΔG o of the strong and weak complexes was independent of the solution ionic strength, 0.0022≤μ≤0.022. A model of EtBr binding with single-stranded regions of poly(dA)poly(dT) is discussed.  相似文献   

14.
The kinetics of hydrogen-tritium exchange reaction have been followed by a Sephadex technique of a double-helical poly(ribo-2-methylthio-adenylic acid)·poly(ribouridylic acid) complex with the Hoogsteen-type basepair. Only one hydrogen in every 2-methylthio-adenine·uracil basepair has been found to exchange at a measurably slow rate, 0.023 s?1 (at 0°C), which is, however, much greater than that for a double-helix with the Watson-Crick type A·U pair. The kinetics of hydrogen-tritium exchange were also examined by triple-helical poly(rU)·poly(rA)·poly(rU) which involves both the Watson-Crick and Hoogsteen basepairings. Here, three hydrogens in every U·A·U base triplet have been found to exchange at a relatively slow rate, 0.0116 s?1 (at 0°C). The kinetics of hydrogen-deuterium exchange reactions of these polynucleotide helices have also been followed by a stopped-flow ultraviolet absorption spectrophotometry at various temperatures. On the basis of these experimental results, the mechanism of the hydrogen exchange reactions in these helical polynucleotides was discussed. In the triple helix, the rate-determining process of the slow exchange of the three (one uracil-imide and two adenine-amino) hydrogens is considered to be the opening of the Watson-Crick part of the U·A·U triplet. This opening is considered to take place only after the opening of the Hoogsteen part of the triplet.  相似文献   

15.
The vibrational cd (VCD) of a double-stranded RNA, poly(rA) - poly(rU), at pH 7 and moderate added salt concentration (0.1M) has been measured in both the base-stretching and phosphate-stretching regions of the ir as a function of temperature. The data in both cases show two distinct phase transitions. The first is from double- to a triple-stranded form, and the second is from triple- to single-stranded forms, which still retain substantial local order even up to 80°C. The nature of these transitions has been identified by comparison of the VCD and ir absorption spectra of the initially double-stranded samples with those of single-stranded poly(rA) and poly(rU) and with triple-stranded poly-(rA) -poly-(rU) poly (rU). The large differences in the VCD band shapes allows positive identification of the intermediate and final states. Thus under VCD-concentration conditions, a simple helix-to-coil transition can be eliminated for poly (rA ) - poly (rU) while such a two-step transition can be seen at low salt conditions. All of these observations are consistent with previous studies of the phase transitions of poly (rA) - poly (rU) under various salt conditions. Additionally, the VCD is indicative of premelting for all the triple-, double-, and single-strand complexes studied. The triple-strand complex did not show disproportionation to double strand on heating under these added salt conditions. The unusual VCD pattern for low temperature poly (rA) - poly (rU), as compared to high G? C content RNAs and DNAs, is qualitatively, but not quantitatively, explained using exciton coupling of localized dipolar transitions in each type of base within the strand. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Ultraviolet (UV) and infrared (IR) absorption and vibrational circular dichroism (VCD) spectroscopy were used to study conformational transitions in the double-stranded poly(rA). poly(rU) and its components-single-stranded poly(rA) and poly(rU) in buffer solution (pH 6.5) with 0.1M Na+ and different Mg2+ and Cd2+ (10(-6) to 10(-2) M) concentrations. Transitions were induced by elevated temperature that changed from 10 up to 96 degrees C. IR absorption and VCD spectra in the base-stretching region were obtained for duplex, triplex, and single-stranded forms of poly(rA) . poly(rU) at [Mg2+],[Cd2+]/[P] = 0.3. For single-stranded polynucleotides, the kind of conformational transition (ordering --> disordering --> compaction, aggregation) is conditioned by the dominating type of Me2+-polymer complex that in turn depends on the ion concentration range. The phase diagram obtained for poly(rA) . poly(rU) has a triple point ([Cd2+] approximately 10(-4)M) at which the helix-coil (2 --> 1) transition is replaced with a disproportion transition 2AU --> A2U + poly(rA) (2 --> 3) and the subsequent destruction of the triple helix (3 --> 1). The 2 --> 1 transitions occur in the narrow temperature interval of 2 degrees -5 degrees . Unlike 2 --> 1 and 3 --> 1 melting, the disproportion 2 --> 3 transition is a slightly cooperative one and observed over a wide temperature range. At [Me2+] approximately 10(-3) M, the temperature interval of A2U stability is not less than 20 degrees C. In the case of Cd2+, it increases with the rise of ion concentration due to the decrease of T(m) (2-->3). The T(m) (3-->1) value is practically unchanged up to [Cd2+] approximately 10(-3)M. Differences between diagrams for Mg(2+) and Cd2+ result from the various kinds of ion binding to poly(rA).poly-(rU) and poly(rA).  相似文献   

17.
 As an extension of our earlier discoveries that ZnII-cyclen complex (1) (cyclen=1,4,7,10-tetraazacyclododecane) and ZnII-acridine-pendant cyclen complex ZnII-N-(9-acridin)ylmethyl-cyclen (3) are the first compounds to selectively recognize thymidine and uridine nucleosides in aqueous solution at physiological pH, the interaction of these and a relevant complex, bis(ZnII-cyclen) (7), has been investigated with a series of polynucleotides, single-stranded poly(U) and poly(G), and double-stranded poly(A)·poly(U), poly(dA)·poly(dT) and poly(dG)·poly(dC). These ZnII-cyclen complexes interact with the imide-containing nucleobases in the single-stranded poly(U), unperturbed by the presence of the anionic phosphodiester backbone. The affinity constant of 1 for each N(3)-deprotonated uracil base in poly(U) is determined to be log K= 5.1 by a kinetic measurement, which is almost the same as log K=5.2 for the interaction of 1 with uridine. Thus, they disrupt the A-U (or A-T) hydrogen bonds to unzip the duplex of poly(A)·poly(U) or poly(dA)·poly(dT), as demonstrated by lowering of the melting temperatures (T m) of poly(A)·poly(U) and poly(dA)·poly(dT) in 5 mM Tris-HCl buffer (pH 7.6, 10 mM NaCl) with increase in their concentrations. The order of the denaturing efficiency is well correlated with that of the 1 : 1 affinity constants for each complex with uracil or thymine;7>3>1. The comparison of circular dichroism (CD) spectra for poly(A)·poly(U), poly(A), and poly(U) in the presence of 3 has revealed a structural change from poly(A)·poly(U) to two single strands, poly(A) and poly(U), caused by 3 binding exclusively to uracils in poly(U). On the other hand, the acridine-pendant cyclen complex 3, which earlier was found to associate with guanine by the ZnII coordinating with guanine N(7), in addition to the π-π stacking, interacts with guanine in the double helix of poly(dG)·poly(dC) from outside and stabilized the double-stranded structure, as indicated by higher T m. Received: 31 December 1997 / Accepted: 23 February 1998  相似文献   

18.
Three isoaccepting forms of leucyl transfer RNA in mitochondria   总被引:2,自引:0,他引:2  
  相似文献   

19.
Conformational transitions of nitroxide labeled and unlabeled nucleic acids were analyzed by esr and uv spectroscopy to evaluate potential perturbation effects caused by chemical modifications of nucleic acids with spin labels. The melting temperature (Tm) determined by uv or esr melting profiles of 2 → 1 or 3 → 1 transitions is similar for labeled and unlabeled polyadenylic acid [(A)n] and polyuridylic acid [(U)n] complexes provided spin-labeled (A)n with a nitroxide to nucleotide ratio of 0.002 is used. Complexes formed with spin-labeled (A)n of greater spin-labeling extent display a noticeable perturbation of their thermal melting profiles. The studies reconfirm the existence of a low temperature esr transition at about 20 °C with calf thymus and T4 DNA duplexes spin-labeled with a nitroxide to nucleotide ratio of about 0.006. The uv melting profiles of the spin-labeled duplexes reveal no low-temperature discontinuity, but the Tm values reflecting the 2 → 1 transitions were reduced by several degrees versus those of the unlabeled duplexes. Thus, these studies suggest that with homopolymers, chemically modified to a low extent with nitroxides, the monitoring of local conformational transitions of duplexes or triplexes reflect the overall 2 → 1 or 3 → 1 transitions. In the case of the heteropolymers the possibility that the chemical modification is responsible for the low-temperature phenomenon cannot be ruled out.  相似文献   

20.
A direct method for measuring the derivative of thermal transition profiles (ΔAT), first described by Pavlov and Lyubchenko [Biopolymers 17 , 795–798 (1978)], is applied to the secondary structure of several eukaryotic ribosomal and messenger RNAs. The method consists of generating an effective ΔT between a sample and reference cuvette by altering the Tm (midpoint denaturation temperature) of one of the solutions with respect to the other. This can be done by changing salt concentration, solvent, pH, or ligands. Scanning the two cuvettes by varying the wavelength at different temperatures permits detailed examination of the base composition of differentially melting domains. We report here the ΔAT profiles generated by monovalent ion concentration differences for a number of high-molecular-weight natural RNAs, as well as the synthetic polynucleotides poly(rA) and “random” poly[r(A,G,U,C)]. The 18S and 28S rRNAs from chick embryos exhibit a reproducible series of peaks in the ΔAT profiles at low salt with ΔT = 4K. The high-temperature transitions in 28S rRNA appear to contain G·C base pairs exclusively, in contrast to those in 18S rRNA or any natural mRNA. Each mRNA we have examined (bacteriophage MS2, globin mRNA from rabbit reticulocytes, and procollagen mRNA from chick embryos) exhibits a distinctive ΔAT profile in low salt. The stability of many of the transitions in each of the mRNAs is no greater than that of the secondary structure in random poly(A,G,U,C) in low salt. More than 50% of the base pairing in procollagen mRNA actually “melts” below the mean for the random copolymer, indicating that despite its high G·C content, this mRNA contains a secondary structure that is exceptionally low in stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号