首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 198 毫秒
1.
Eriophorum vaginatum is a tussock‐forming sedge that contributes significantly to the structure and primary productivity of moist acidic tussock tundra. Locally adapted populations (ecotypes) have been identified across the geographical distribution of E. vaginatum; however, little is known about how their growth and phenology differ over the course of a growing season. The growing season is short in the Arctic and therefore exerts a strong selection pressure on tundra species. This raises the hypothesis that the phenology of arctic species may be poorly adapted if the timing and length of the growing season change. Mature E. vaginatum tussocks from across a latitudinal gradient (65–70°N) were transplanted into a common garden at a central location (Toolik Lake, 68°38′N, 149°36′W) where half were warmed using open‐top chambers. Over two growing seasons (2015 and 2016), leaf length was measured weekly to track growth rates, timing of senescence, and biomass accumulation. Growth rates were similar across ecotypes and between years and were not affected by warming. However, southern populations accumulated significantly more biomass, largely because they started to senesce later. In 2016, peak biomass and senescence of most populations occurred later than in 2015, probably induced by colder weather at the beginning of the growing season in 2016, which caused a delayed start to growth. The finish was delayed as well. Differences in phenology between populations were largely retained between years, suggesting that the amount of time that these ecotypes grow has been selected by the length of the growing seasons at their respective home sites. As potential growing seasons lengthen, E. vaginatum may be unable to respond appropriately as a result of genetic control and may have reduced fitness in the rapidly warming Arctic tundra.  相似文献   

2.
Summary Studies were conducted to examine the importance of nitrogen storage to seasonal aboveground growth in the alpine herb Bistorta bistortoides. Stored reserves accounted for 60% of the total nitrogen allocated to the shoot during the growing season. The stored nitrogen was equally partitioned between preformed buds of the shoot and the roots/rhizome. Reliance on stored N was similar in populations of a 105-day growing season site and of a 75-day growing season site. Contrary to our initial hypothesis, stored nitrogen reserves were not used to extend the growing season of this species into the late-spring when soils are still cold, and saturated with snow-melt water. The time at which stored nitrogen was used to initiate shoot growth coincided with the time of root initiation, rapid soil warming, and near maximum soil concentrations of NO inf3 sup– and NH inf4 sup+ . Thus, nitrogen demand and soil nitrogen supply were both high at the same time. The importance of nitrogen storage in this species appeared to be in satisfying the high demand of simultaneous vegetative and reproductive growth during the early-growing season after soils thawed. The initiation of rapid leaf and inflorescence growth occurred in mid-June in both sites. The maximum pool size of shoot nitrogen (maximum nitrogen demand) occurred only 12 days later in the long season site, and 28 days later in the short season site. The early-season utilization of nitrogen stores allows plants of this species to initiate reproductive allocation at the same time vegetative tissues are exhibiting maximal growth rates. By releasing vegetative and reproductive growth from competition for nitrogen, seeds could mature early in the alpine growing season, before the frost probability sharply increases in mid-August.  相似文献   

3.
Degradation of marine organic matter under anoxic conditions involves microbial communities working in concert to remineralize complex substrates to CO 2 . In order to investigate the coupling between the initial and terminal steps of this sequence in permanently cold sediments, rates of extracellular enzymatic hydrolysis and sulfate reduction were measured in parallel cores collected from 5 fjords on the west and northwest coast of Svalbard, in the high Arctic. Inventories of total dissolved carbohydrates were also measured in order to evaluate their potential role in carbon turnover. Polysaccharide hydrolysis rates exhibited substrate-related and, to a lesser extent, depth-related differences (p < 0.0001); laminarin hydrolysis was consistently most rapid at nearly all depths and sites, and fucoidan hydrolysis was least rapid. Although there was a high degree of variability in parallel cores, sulfate reduction rates also exhibited statistically significant depth-and station-related differences. A comparison with data from previous investigations in Svalbard sediments suggests that this variability is linked to substrate availability rather than to organism distribution. Total dissolved carbohydrate concentrations were comparable to those measured in more temperate sediments, and likely comprise a considerable fraction of porewater dissolved organic carbon. A comparison of dissolved carbohydrate inventories with hydrolysis and sulfate reduction rates suggests that the turnover of carbon through the dissolved pool occurs quite rapidly, on the order of a few days to weeks. The transformation of particulate to dissolved organic matter must also be sufficiently rapid to maintain the measured rates of terminal remineralization.  相似文献   

4.
The cool and short growing season that characterizes Arctic climates puts severe constraints on life cycles and reproduction in the Arctic flora. The timing of flowering is particularly critical and may affect both breeding system and reproductive success through the heavy penalties associated with later flowering. An 11-year study of 75 species in the central highland of Iceland showed that the onset of flowering varies greatly among years. The number of species in flower by the first week of July was closely correlated with air temperature (degree days above zero) in the preceding 5 weeks, but no correlations were found with degree days in May or with total degree days in the previous growing season. Time of snowmelt, which has widely been regarded as the environmental event initiating growth and flowering in alpine and arctic tundra, only had a significant effect when two exceptionally cold and late summers were included. The species studied, most of which have a wide distribution in the Arctic, are predicted to respond quickly to warmer spring and early summer temperatures. Accelerated phenologies may alter patterns of resource allocation, have implications for pollinators and pollinator-competition, and could increase the size, species richness and intraspecific genetic diversity of the soil seed bank. Received: 15 February 1997 / Accepted: 25 October 1997  相似文献   

5.
Starch retention and disappearance from leaves and carbon movement under various temperatures were studied in two alpine species, Oxyria digyna (L.) Hill and Phleum alpinum L., and in two low-elevation species, Helianthus annuus L. and Elymus canadensis L. The alpine species exhibited starch disappearance from the leaf following cool night temperatures, whereas starch retention was noted under similar conditions for the low-elevation species. The alpine species, Oxyria, exhibited the highest rates of starch disappearance from the leaf under cool temperatures as well as the highest carbohydrate translocation under cool temperatures. The low-elevation species had low rates of starch disappearance and carbohydrate translocation under low temperatures, but exhibited relatively higher rates with an increase in temperature. Such a mechanism whereby alpine species can maintain relatively high rates of translocation under cold temperature represents a major form of physiological adaptation to the short, cool, growing season in the alpine tundra.  相似文献   

6.
《Plant Ecology & Diversity》2013,6(3-4):457-466
Background: In those alpine regions where growing season precipitation is decreasing due to climate change, the capacity of soils to retain water may become an important factor for the persistence of plant species. However, the importance of soil water storage capacity (WSC) for plant species diversity has not been studied so far.

Aims: We aim to evaluate the relevance of WSC for species diversity of alpine plant communities in relation to temperature and length of growing season.

Methods: Species diversity was determined in 150 plots from a broad range of alpine vegetation types in the calcareous western part of the central Swiss Alps. WSC of soil cores sampled in every plot was determined, as well as rooting zone temperature and snowmelt date. Linear mixed models were used to assess the relationship between environmental data and species diversity.

Results: Species diversity was most strongly and positively related to WSC, followed by mean daily minimum temperature (Tmin) of the growing season. Species diversity was significantly related to date of snowmelt only in sites with high WSC and/or Tmin.

Conclusions: WSC represents an integrative measure for habitat quality and accounts for differences in species diversity within the study region. In order to understand and predict responses of plant species to climate change in high mountain regions, it may be crucial to also take changes in plant water supply into account.  相似文献   

7.
Climate change scenarios predict an increased frequency of extreme climatic events. In Arctic regions, one of the most profound of these are extreme and sudden winter warming events in which temperatures increase rapidly to above freezing, often causing snow melt across whole landscapes and exposure of ecosystems to warm temperatures. Following warming, vegetation and soils no longer insulated below snow are then exposed to rapidly returning extreme cold. Using a new experimental facility established in sub‐Arctic dwarf shrub heathland in northern Sweden, we simulated an extreme winter warming event in the field and report findings on growth, phenology and reproduction during the subsequent growing season. A 1‐week long extreme winter warming event was simulated in early March using infrared heating lamps run with or without soil warming cables. Both single short events delayed bud development of Vaccinium myrtillus by up to 3 weeks in the following spring (June) and reduced flower production by more than 80%: this also led to a near‐complete elimination of berry production in mid‐summer. Empetrum hermaphroditum also showed delayed bud development. In contrast, Vaccinium vitis‐idaea showed no delay in bud development, but instead appeared to produce a greater number of actively growing vegetative buds within plots warmed by heating lamps only. Again, there was evidence of reduced flowering and berry production in this species. While bud break was delayed, growing season measurements of growth and photosynthesis did not reveal a differential response in the warmed plants for any of the species. These results demonstrate that a single, short, extreme winter warming event can have considerable impact on bud production, phenology and reproductive effort of dominant plant species within sub‐Arctic dwarf shrub heathland. Furthermore, large interspecific differences in sensitivity are seen. These findings are of considerable concern, because they suggest that repeated events may potentially impact on the biodiversity and productivity of these systems should these extreme events increase in frequency as a result of global change. Although climate change may lengthen the growing season by earlier spring snow melt, there is a profound danger for these high‐latitude ecosystems if extreme, short‐lived warming in winter exposes plants to initial warm temperatures, but then extreme cold for the rest of the winter. Work is ongoing to determine the longer term and wider impacts of these events.  相似文献   

8.
This study reports epidermal UV-transmittance in field-grown leaves of ecotypes of six species at three sites along a latitudinal UV-B gradient from Arctic Svalbard, via southern Norway to the French Alps for the years 1999–2001. Unexpectedly, Arctic populations had just as high epidermal UV-screening as alpine populations from lower latitudes. Dryas octopetala was the only species that significantly increased epidermal screening with increasing natural UV-B. Most species, however, showed clear differences in transmittance between years.Under controlled conditions in a growthroom, no ecotypic differences with respect to epidermal UV-B screening were found in Arctic and alpine ecotypes of Oxyria digyna, either in the absence or presence of UV-B radiation. Furthermore, UV-B transmittance in the absence of UV-B radiation in the growthroom was as low (5–6%) as in field-grown plants, indicating a high constitutive screening. Analysis of UV-B-absorbing phenolic compounds in O. digyna displayed no difference between the French Alps and Svalbard ecotypes, while the S. Norway ecotype contained significantly higher amounts of screening compounds. The qualitative analysis showed that the French Alps ecotype had a different composition of flavonoids compared with the two others, and that the ratio between di- and monohydroxylated flavonoids increased from south to north.  相似文献   

9.
Shorebirds have high resting and field metabolic rates relative to many other bird groups, and this is posited to be related to their high‐energy lifestyle. Maximum metabolic outputs for cold or exercise are also often high for bird groups with energetically demanding lifestyles. Moreover, shorebirds demonstrate flexible basal and maximal metabolic rates, which vary with changing energy demands throughout the annual cycle. Consequently, shorebirds might be expected to have high maximum metabolic rates, especially during migration periods. We captured least Calidris minutilla and pectoral C. melanotos sandpipers during spring and fall migration in southeastern South Dakota and measured maximal exercise metabolic rate (MMR; least sandpipers only), summit metabolic rate (Msum, maximal cold‐induced metabolic rate) and basal metabolic rate (BMR, minimum maintenance metabolic rate) with open‐circuit respirometry. BMR for both least and pectoral sandpipers exceeded allometric predictions by 3–14%, similar to other shorebirds, but Msum and MMR for both species were either similar to or lower than allometric predictions, suggesting that the elevated BMR in shorebirds does not extend to maximal metabolic capacities. Old World shorebirds show the highest BMR during the annual cycle on the Arctic breeding grounds. Similarly, least sandpiper BMR during migration was lower than on the Arctic breeding grounds, but this was not the case for pectoral sandpipers, so our data only partially support the idea of similar seasonal patterns of BMR variation in New World and Old World shorebirds. We found no correlations of BMR with either Msum or MMR for either raw or mass‐independent data, suggesting that basal and maximum aerobic metabolic rates are modulated independently in these species.  相似文献   

10.
《Plant Ecology & Diversity》2013,6(3-4):377-381
Background: In the Arctic region, temperature increases are expected to be greater under anticipated climate change than the global average. Understanding how dark respiration (Rd) of common Arctic plant species acclimates to changes in the environment is therefore important for predicting changes to the Arctic carbon balance.

Aims: The aim of this study is to investigate the influence of genotype and growing environment on Rd, the temperature response (Q10) of Rd, and foliar N (Nleaf) of the Arctic sedge Eriophorum vaginatum.

Methods: We measured Rd, and determined its Q10 and Nleaf of E. vaginatum populations that were reciprocally transplanted 30 years previously along a latitudinal transect of 370 km in northern Alaska.

Results: Rd and Q10 did not differ among populations (ecotypes) of E. vaginatum, but the local environment had a significant effect on both variables. Rd as well as Nleaf was higher in northern, colder sites, while Q10 was lower there.

Conclusions: Rd in the different populations of E. vaginatum is a very plastic trait and controlled by growing environment, as is Nleaf. The lower Q10 values in the northern sites were most likely a consequence of substrate inhibition of Rd at higher temperatures.  相似文献   

11.
Pelage is seasonally dimorphic in the Arctic fox. During the winter, fur lengths for this species are nearly double similar values taken during the summer season. Considerable site-specific differences in fur length are noted. In general, body sites which are exposed to the environment when an Arctic fox lies in a curled position show greater fur lengths in all seasons and greater seasonal variations than body sites that are more protected during rest. Well-furred sites may tend to conserve heat during periods of inactivity, and scantily furred sites may tend to dissipate heat during periods of exercise. The growth of winter fur may compensate for the severe cold of the arctic winter. Changes in fur lengths indicate a definite pattern in spite of individual variations. During the fall months, fur lengths seem to lag behind an increasing body-to-ambient temperature gradient. Both body-to-ambient temperature gradients and fur lengths peak during December through February. From March through June, gradual environmental warming is accompanied by a decrease in average fur lengths. Thus, there appears to be a remarkable parallel between the body-to-ambient temperature gradient and the fur lengths. The growth of fur in the Arctic fox parallels annual changes in ambient temperature and photoperiod.Presented at the Eighth International Congres of Biometerorology, 9–14 September 1979, Shefayim, Israel.  相似文献   

12.
Woody plants in the temperate and boreal zone undergo annual cycle of growth and dormancy under seasonal changes. Growth cessation and dormancy induction in autumn are prerequisites for the development of substantial cold hardiness in winter. During evolution, woody plants have developed different ecotypes that are closely adapted to the local climatic conditions. In this study, we employed distinct photoperiodic ecotypes of silver birch (Betula pendula Roth) to elucidate differences in these adaptive responses under seasonal changes. In all ecotypes, short day photoperiod (SD) initiated growth cessation and dormancy development, and induced cold acclimation. Subsequent low temperature (LT) exposure significantly enhanced freezing tolerance but removed bud dormancy. Our results suggested that dormancy and freezing tolerance might partially overlap under SD, but these two processes were regulated by different mechanisms and pathways under LT. Endogenous abscisic acid (ABA) levels were also altered under seasonal changes; the ABA level was low during the growing season, then increased in autumn, and decreased in winter. Compared with the southern ecotype, the northern ecotype was more responsive to seasonal changes, resulting in earlier growth cessation, cold acclimation and dormancy development in autumn, higher freezing tolerance and faster dormancy release in winter, and earlier bud flush and growth initiation in spring. In addition, although there was no significant ecotypic difference in ABA level during growing season, the rates and degrees of ABA alterations were different between the ecotypes in autumn and winter, and could be related to ecotypic differences in dormancy and freezing tolerance.  相似文献   

13.
Summary Seasonal patterns of net N mineralization and nitrification in the 0–10 cm mineral soil of 9 temperate forest sites were analyzed using approximately monthlyin situ soil incubations. Measured nitrification rates in incubated soils were found to be good estimates of nitrification in surrounding forest soils. Monthly net N mineralization rates and pools of ammonium-N in soil fluctuated during the growing season at all sites. Nitrate-N pools in soil were generally smaller than ammonium-N pools and monthly nitrification rates were less variable than net N mineralization rates. Nitrate supplied most of the N taken up annually by vegetation at 8 of the 9 sites. Furthermore, despite the large fluctuations in ammonium-N pools and monthly net N mineralization, nitrate was taken up at relatively uniform rates during the growing season at most sites.  相似文献   

14.
Summary Metabolic rates were studied in adults and larvae of the two phytophagous beetles Hydromedion sparsutum and Perimylops antarcticus (Col., Perimylopidae) indigenous to the Sub-Antarctic island of South Georgia. From the regression lines for log10 metabolic rate on temperature no difference in oxygen consumption was found between adults and larvae of Hydromedion or adults of Perimylops from lower sites near sea level and upper sites at about 200 m. Elevated rates of metabolism, however, was found in larvae of Perimylops from upper sites. The slopes of the regression lines of corresponding upper and lower sites adults or larvae were similar in all cases. The metabolic rates were of the same level in adults of both species and in the larvae, but generally higher in adults than in larvae. The activation energies, calculated from Arrhenius plots, varied from 6.7 to 13.6 kcal.mol–1 in larvae and from 10.7 to 11.3 kcal.mol–1 in adults. The low values may be interpreted as an expression of cold adapted metabolism. Compared with published data on phytophagous beetles, the metabolic rates of the two species from South Georgia are comparable to two alpine species, but lower than the rates of an Arctic species.  相似文献   

15.
The Arctic treeline is advancing in many areas and changes in carbon (C) cycling are anticipated. Differences in CO2 exchange between adjacent forest and tundra are not well known and contrasting conclusions have been drawn about the effects of forest advance on ecosystem C stocks. Measurements of CO2 exchange in tundra and adjacent forest showed the forest was a greater C sink during the growing season in northern Canada. There is, however, reason to expect that forests lose more C than tundra during the wintertime, as forests may accumulate and retain more snow. Deeper snow insulates the soil and warmer soils should lead to greater rates of belowground respiration and CO2 efflux. In this study, I tested the hypotheses that forests maintain a deeper snowpack, have warmer soils and lose more C during winter than adjacent tundra near the Arctic treeline in northwest Alaska. Measurements of snow depth, soil temperature and CO2 efflux were made at five forest and two treeline sites in late winter of three consecutive years. Snow depth and soil temperature were greater in forest than treeline sites, particularly in years with higher snowfall. There was a close exponential correlation between soil temperature and CO2 efflux across sites and years. The temperature-efflux model was driven using hourly soil temperatures from all the sites to provide a first approximation of the difference in winter C loss between treeline and forest sites. Results showed that greater wintertime C loss from forests could offset greater summertime C gain.  相似文献   

16.
17.
The High Arctic winter is expected to be altered through ongoing and future climate change. Winter precipitation and snow depth are projected to increase and melt out dates change accordingly. Also, snow cover and depth will play an important role in protecting plant canopy from increasingly more frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5 years, during which we experienced two extreme winter warming events. Most species were resistant to snow cover increase, but two species reduced flower abundance due to shortened growing seasons. Cassiope tetragona responded strongly with fewer flowers in deep snow regimes during years without extreme events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas octopetala. However, the affected species were resilient and individuals did not experience any long term effects. In the case of short or cold summers, a subset of species suffered reduced reproductive success, which may affect future plant composition through possible cascading competition effects. Extreme winter warming events were shown to expose the canopy to cold winter air. The following summer most of the overwintering flower buds could not produce flowers. Thus reproductive success is reduced if this occurs in subsequent years. We conclude that snow depth influences flower abundance by altering season length and by protecting or exposing flower buds to cold winter air, but most species studied are resistant to changes.  相似文献   

18.
Patterns of snow cover across the Arctic are expected to change as a result of shrub encroachment and climate change. As snow cover impacts both the subnivean environment and the date of spring melt, these changes could impact Arctic food webs by altering the phenology and survival of overwintering arthropods, such as spiders (Araneae). In this field study, we used snow fences to increase snow cover across a series of large (375 m2) heath tundra plots and examined the effects on the local spider community during the following growing season. Fences increased snow cover and delayed melt on the treatment plots, paralleling the conditions of nearby shrub sites. Frequent sampling over the season revealed that increased snow cover did not affect spider abundance across different genera nor did it affect overall community composition. Further, our snow treatment did not affect the dates when plots achieved seasonal catch milestones (25, 50, 75 % of total seasonal catch). Increased winter snow cover did, however, produce higher body masses in adults and juveniles of the dominant species Pardosa lapponica (Lycosidae), beginning immediately after snow melt until midway through the growing season. In addition, ovary/oocyte mass of mature P. lapponica females was significantly higher on treatment plots during the peak reproductive period. This is the first experimental manipulation study to report a significant effect of landscape-level changes to winter snow cover on the biomass of an Arctic macroarthropod.  相似文献   

19.
The phenological and physiological responses of arctic tundra plant species are key to predicting their survival in a warmer climate. One of the consequences of a warmer climate in the Arctic will be a longer growing season. We examined the effects of lengthened growing season and soil warming on the widely distributed forb, Polygonum bistorta L. Three treatments were established near Toolik Lake, Alaska in 1995 and 1996: extended season, extended season with soil warming, and an unmanipulated control. The season was extended by removing the snow load in the spring and keeping the treatments free of snow in the autumn. The spring snow removal extended the snow‐free period over that of controls by 8 d in 1995 and 24 d in 1996. As a result, the number of accumulated soil thaw days and consequently the depth of soil thaw increased on the treatment plots. Polygonum bistorta responded to the treatments by becoming active earlier and senescing earlier, resulting in a growth period of similar duration to that of the controls. Leaf size and leaf number were unaffected by the treatments, as were leaf photosynthetic assimilation rates and nutrient concentrations. The results indicate that internal constraints limit the response of this species to lengthened growing season, suggesting that it is a determinant or periodic species. With climate warming, this periodic growth will put P. bistorta at a competitive disadvantage relative to plants that can respond to lengthened growing season.  相似文献   

20.
The low degree of infection ofHedysarum coronarium L. (sulla) exposed to inoculum of the VAM endophyteGlomus caledonium was investigated. Infection began after a prolonged lag phase and remained at very low levels even after three months’ growth. Neither very high rates of inoculum, nor very low P content of the soil raised the low infection level of the sulla plants. There appeared to be some differences in rate of infection among ten different ecotypes of sulla but the level of infection remained low in all cases. In all tested populations some plants remained uninfected. The low infection rate of sulla may therefore have a genetic basis. It was shown that the growth ofH. coronarium is hardly improved by phosphate fertilization. This may explain the poor response of this plant species, adapted to grow in nutrient-deficient soil, to VAM. Programmes aimed at increasing the productivity in marginal soils through the introduction of efficient VAM endophytes should take into account the fact that certain plant species growing in marginal soils may not always benefit from mycorrhizal inoculation, due to their inherently low mycorrhizal dependency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号