首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Our study compares the spatio-temporal visual receptive field properties of different subcortical stages of the ascending tectofugal visual system. Extracellular single-cell recordings were performed in the superficial (SCs) and intermediate (SCi) layers of the superior colliculus (SC), the suprageniculate nucleus (Sg) of the posterior thalamus and the caudate nucleus (CN) of halothane-anesthetized cats. Neuronal responses to drifting gratings of various spatial and temporal frequencies were recorded. The neurons of each structure responded optimally to low spatial and high temporal frequencies and displayed narrow spatial and temporal frequency tuning. The detailed statistical analysis revealed that according to its stimulus preferences the SCs has markedly different spatio-temporal properties from the homogeneous group formed by the SCi, Sg and CN. The SCs neurons preferred higher spatial and lower temporal frequencies and had broader spatial tuning than the other structures. In contrast to the SCs the visually active SCi, as well as the Sg and the CN neurons possessed consequently similar spatio-temporal preferences. These data support our hypothesis that the visually active SCi, Sg and CN neurons form a homogeneous neuronal population given a similar spatio-temporal frequency preference and a common function in processing of dynamic visual information.  相似文献   

2.
The mammalian superior colliculus receives visual inputs from the retina and primary visual cortex in its superficial layers and sends descending motor commands from its deeper layers. It is now becoming clear that a connection exists between these layers, but the signal transmission through it is not robust. The induction of burst discharges in the deeper layer neurons by direct visual inputs from the superficial layers may lead to 'express' saccadic eye movements with extremely short reaction times in behaving animals.  相似文献   

3.
GABA神经元在金黄地鼠视觉中枢的分布   总被引:2,自引:1,他引:2  
本文用免疫细胞化学技术研究了GABA在金黄地鼠视觉中枢的分布特征,同时用统计学方法作了定量分析,结果表明:GABA阳性神经元分布在整个视皮层和上丘中,呈不均匀分布,外膝体中GABA阳性神经元密度较低.视皮层中GABA阳性神经元密度为781mm~2,占视皮层细胞总数的19.7%,上丘中其密度为812/mm~2,占22.3%,视皮层Ⅰ层中GABA阳性神经元为52%,上丘表层(浅灰层及视觉层GABA阳性神经元为56%,GABA阳性神经元包括不同类型的细胞.在视皮层中可观察到GABA免疫疫应阳性的锥体细胞.  相似文献   

4.
On the basis of the results of electrical stimulation of the optic tract and upper layers of the superior colliculus in cats anesthetized with pentobarbital maps were compiled of the distribution of evoked potentials of the posterior thalamic nuclear complex, including the pulvinar and n. lateralis posterior, posterior, suprageniculatus, and lateralis dorsalis. Functional projections of the superior colliculus and optic tract to the posterior thalamus were shown to differ from each other. In response to stimulation of the superior colliculus the distribution of projections was more regular than to stimulation of the tract. Fibers running from the optic tract occupy a smaller territory than fibers from the superior colliculus. It is suggested that the transcollicular afferent channel of the visual system is not reduced in the course of evolution but, on the contrary, it acquires connections with the younger thalamic formations of the brain and assume more complex functions.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 355–359, July–August, 1978.  相似文献   

5.
The subcortical saccade-generating system consists of the retina, superior colliculus, cerebellum and brainstem motoneuron areas. The superior colliculus is the site of sensory-motor convergence within this basic visuomotor loop preserved throughout the vertebrates. While the system has been extensively studied, there are still several outstanding questions regarding how and where the saccade eye movement profile is generated and the contribution of respective parts within this system. Here we construct a spiking neuron model of the whole intermediate layer of the superior colliculus based on the latest anatomy and physiology data. The model consists of conductance-based spiking neurons with quasi-visual, burst, buildup, local inhibitory, and deep layer inhibitory neurons. The visual input is given from the superficial superior colliculus and the burst neurons send the output to the brainstem oculomotor nuclei. Gating input from the basal ganglia and an integral feedback from the reticular formation are also included.We implement the model in the NEST simulator and show that the activity profile of bursting neurons can be reproduced by a combination of NMDA-type and cholinergic excitatory synaptic inputs and integrative inhibitory feedback. The model shows that the spreading neural activity observed in vivo can keep track of the collicular output over time and reset the system at the end of a saccade through activation of deep layer inhibitory neurons. We identify the model parameters according to neural recording data and show that the resulting model recreates the saccade size-velocity curves known as the saccadic main sequence in behavioral studies. The present model is consistent with theories that the superior colliculus takes a principal role in generating the temporal profiles of saccadic eye movements, rather than just specifying the end points of eye movements.  相似文献   

6.
The present study investigated the inhibitory effect of visual distractors on the latency of saccades made by hemianopic and normal human subjects. The latency of saccades made by hemianopic subjects to stimuli in their intact visual field was not affected by visual distractors presented within their hemianopic field. In contrast, the latency of saccades made by normal subjects was increased significantly under distractor conditions. The latency increase was larger for temporal than nasal distractors. The results are inconsistent with previous proposals that the crossed retinotectal pathway from the nasal hemiretina to the superior colliculus may mediate a blindsight inhibitory effect when distractors appear within a hemianopic temporal visual field. Instead, the distractor effect appears to reflect the normal processes involved in saccade target selection which may be mediated by a circuit involving both cortical and subcortical structures.  相似文献   

7.
本实验用免疫细胞化学技术观察了不同年龄金黄地鼠视皮层和上丘中P物质(SP)阳性神经元数量和分布的变化,同时观察了不同年龄金黄地鼠视皮层SP阳性神经元的形态和类型。结果表明,出生后10天小鼠视皮层SP阳性神经元为36%,Ⅱ—Ⅳ层密度最大,约占40%。上丘中SP阳性神经元约为37%。出生后20天,视皮层及上丘中SP阳性神经元分别减少到23%和16%。视皮层Ⅱ—Ⅳ层减少最明显,Ⅴ层和Ⅵ层变化不大。成年鼠视皮层及上丘中偶见SP神经元,但出现一些SP阳性纤维。出生10天及20天鼠视皮层中SP阳性神经元的形态及类型没有差别。  相似文献   

8.
Experimental studies have provided evidence that the visual processing areas of the primate brain represent facial identity and facial expression within different subpopulations of neurons. For example, in non-human primates there is evidence that cells within the inferior temporal gyrus (TE) respond primarily to facial identity, while cells within the superior temporal sulcus (STS) respond to facial expression. More recently, it has been found that the orbitofrontal cortex (OFC) of non-human primates contains some cells that respond exclusively to changes in facial identity, while other cells respond exclusively to facial expression. How might the primate visual system develop physically separate representations of facial identity and expression given that the visual system is always exposed to simultaneous combinations of facial identity and expression during learning? In this paper, a biologically plausible neural network model, VisNet, of the ventral visual pathway is trained on a set of carefully-designed cartoon faces with different identities and expressions. The VisNet model architecture is composed of a hierarchical series of four Self-Organising Maps (SOMs), with associative learning in the feedforward synaptic connections between successive layers. During learning, the network develops separate clusters of cells that respond exclusively to either facial identity or facial expression. We interpret the performance of the network in terms of the learning properties of SOMs, which are able to exploit the statistical indendependence between facial identity and expression.  相似文献   

9.
Drifting gratings can modulate the activity of visual neurons at the temporal frequency of the stimulus. In order to characterize the temporal frequency modulation in the cat’s ascending tectofugal visual system, we recorded the activity of single neurons in the superior colliculus, the suprageniculate nucleus, and the anterior ectosylvian cortex during visual stimulation with drifting sine-wave gratings. In response to such stimuli, neurons in each structure showed an increase in firing rate and/or oscillatory modulated firing at the temporal frequency of the stimulus (phase sensitivity). To obtain a more complete characterization of the neural responses in spatiotemporal frequency domain, we analyzed the mean firing rate and the strength of the oscillatory modulations measured by the standardized Fourier component of the response at the temporal frequency of the stimulus. We show that the spatiotemporal stimulus parameters that elicit maximal oscillations often differ from those that elicit a maximal discharge rate. Furthermore, the temporal modulation and discharge-rate spectral receptive fields often do not overlap, suggesting that the detection range for visual stimuli provided jointly by modulated and unmodulated response components is larger than the range provided by a one response component.  相似文献   

10.
Rats 24 d old were injected intraocularly with [2-3H]glycerol and [35S]methionine and killed 1 h-60 d later. 35S label in protein and 3H label in total phospholipid and a mitochondria-specific lipid, diphosphatidylglycerol(DPG), were determined in optic pathway structures (retinas, optic nerves, optic tracts, lateral geniculate bodies, and superior colliculi). Incorporation of label into retinal protein and phospholipid was nearly maximal 1 h postinjection, after which the label appeared in successive optic pathway structures. Based on the time difference between the arrival of label in the optic tract and superior colliculus, it was calculated that protein and phospholipid were transported at a rate of about 400 mm/d, and DPG at about half this rate. Transported labeled phospholipid and DPG, which initially comprised 3-5% of the lipid label, continued to accumulate in the visual structures for 6-8 d postinjection. The distribution of transported material among the optic pathway structures as a function of time differed markedly for different labeled macromolecules. Rapidly transported proteins distributed preferentially to the nerve endings (superior colliculus and lateral geniculate). Total phospholipid quickly established a pattern of comparable labeling of axon (optic nerve and tract) and nerve endings. In contrast, the distribution of transported labeled DPG gradually shifted toward the nerve ending and stabilized by 2-4 d. A model is proposed in which apparent "transport" of mitochondria is actually the result of random bidirectional saltatory movements of individual mitochondria which equilibrate them among cell body, axon, and nerve ending pools.  相似文献   

11.
Based on quantitative analyses of the response characteristics of visual neurons in the superior colliculus to moving optical bar stimuli, it is demonstrated for the first time that the visual neurons in superior colliculus of the cat have, to some extent, orientational selectivity. The significance of this selectivity is discussed in reference to its morphological substrate and physiological functions. In addition, both the directional and orientational selectivities in the superior colliculus are relatively weak when compared with those in the primary visual cortex, and the majority of the neurons prefer upward or downward motion in the visual field.  相似文献   

12.
Neglect is a neurological disorder of spatial attention with reduced awareness of visual stimuli in the hemifield contralateral to an acute temporo-parietal lesion mainly of the right hemisphere. There is a close association of multisensory orientation centers (MSO) and vestibular tonus imbalance. A lesion of the dominant right MSO causes a left-sided neglect due to a lack of ipsilateral activation of the visual cortex, which is further enhanced by increasing inhibition from the contralateral visual cortex. The nondominant MSO in the left hemisphere might be involved in the manifestation of the less frequent and more transient right-sided neglect and in the plastic mechanisms of gradual recovery from left-sided neglect or extinction. There is evidence that a vestibular tonus inbalance due to peripheral or central vestibular pathway lesions may also induce a neglect. In a first model approach using an attractor network and assuming that there is only one MSO in the right hemisphere, it is possible to simulate attentional shifts into a visual hemifield and to induce a neglect. The neural network model consists of four layers of neurons: retina, MSO, visual cortex V1, and superior colliculus. The superior colliculus layer is modeled as a recurrent attractor network with one inhibitory interneuron and synaptic weights chosen to implement a winner-take-all network that centers the hill of activity on the strongest input. We are well aware of the simplifications used in the conceptual drawings and the computational model, but nevertheless hope that they will serve as an inspiration for further modeling and clinical studies.  相似文献   

13.
Regional variations in cell death are ubiquitous in the nervous system. In the retina, cell death in retinal ganglion cells is elevated in the retinal periphery and may be important in setting up the initial conditions that produce central retinal specializations such as an area centralis or visual streak. In central visual system structures, pronounced spatial and spatiotemporal inhomogeneities in cell death are seen both in layers and regions of the lateral geniculate nucleus and superior colliculus; similar indications of inhomogeneities are seen in those nonvisual structures that have been examined. Cell death in the cortex is highly nonuniform, by layer and by cortical area. A variety of possible functions for these regional losses are proposed, in the context of a uniform mechanism for cell death that allows it to assume multiple functions.  相似文献   

14.
We studied projections from extrastriate visual areas and the superior colliculus to the pontine nuclei of monkeys using degeneration staining and transport of wheatgerm agglutinin horseradish peroxidase, and 3H amino acids. The superior colliculus and the extrastriate cortical visual areas both project to the ipsilateral dorsolateral region of the pontine nuclei. The projections from extrastriate visual cortex occupy a much larger territory within the pontine nuclei than those from the superior colliculus. The superficial laminae of the superior colliculus project only to the ipsilateral pontine nuclei. The projection to the contralateral nucleus reticularis tegmenti pontis arises from cells in deeper laminae within the superior colliculus.  相似文献   

15.
Significant changes in the formation of electrical activity rhythms have been revealed in the lateral geniculate body, superior colliculus and visual cortex during section of one half of midbrain operculum in cats anesthetized with nembutal. It was determined that all changes in slow activity generation in the lateral geniculate body, superior colliculus are reflected in changes in the formation of electrical activity of the visual cortex. It is suggested that lateral geniculate body and superior colliculus may be involved in the generation of some electrical activity rhythms of the visual cortex.  相似文献   

16.
A subcortical pathway through the superior colliculus and pulvinar to the amygdala is commonly assumed to mediate the non-conscious processing of affective visual stimuli. We review anatomical and physiological data that argue against the notion that such a pathway plays a prominent part in processing affective visual stimuli in humans. Instead, we propose that the primary role of the amygdala in visual processing, like that of the pulvinar, is to coordinate the function of cortical networks during evaluation of the biological significance of affective visual stimuli. Under this revised framework, the cortex has a more important role in emotion processing than is traditionally assumed.  相似文献   

17.
Regional variations in cell death are ubiquitous in the nervous system. In the retina, cell death in retinal ganglion cells is elevated in the retinal periphery and may be important in setting up the initial conditions that produce central retinal specializations such as an area centralis or visual streak. In central visual system structures, pronounced spatial and spatiotemporal inhomogeneities in cell death are seen both in layers and regions of the lateral geniculate nucleus and superior colliculus; similar indications of inhomogeneities are seen in those nonvisual structures that have been examined. Cell death in the cortex is highly nonuniform, by layer and by cortical area. A variety of possible functions for these regional losses are proposed, in the context of a uniform mechanism for cell death that allows it to assume multiple functions. © 1992 John Wiley & Sons, Inc.  相似文献   

18.
19.
The undecapeptide substance P is found in different entities of the visual system that control eye movement and synchronize endogenous rhythms with the light cycle (i.e., superior colliculus, suprachiasmatic nucleus, intergeniculate leaflet). Immunocytochemical methods were used to compare the reactivity to substance P in the brain of five groups of golden hamsters and two groups of Wistar rats: (1) untreated hamsters kept under 14L:10D and sacrificed at noon; (2) identically maintained animals sacrificed at midnight; (3) enucleated animals kept under control conditions; (4) hamsters kept under constant darkness; (5) hamsters kept under the same conditions as the controls, but intraventricularly injected with colchicine. The results obtained in golden hamsters of groups (1) and (3) were compared with findings in Wistar rats treated accordingly [groups (6) and (7)]. Substance P-immunoreactive perikarya were found in the suprachiasmatic nucleus and superior colliculus of hamsters and Wistar rats. Substance P-immunoreactive nerve fibers were abundant in the hypothalamic area ventral to the paraventricular nucleus, in the intergeniculate leaflet, in some thalamic nuclei, and in the superior colliculus. Immunoreactivity to substance P in the suprachiasmatic nucleus and intergeniculate leaflet did not vary among the experimental groups. However, a conspicuous decrease in reactivity to substance P was observed in the superficial layers of the superior colliculus of enucleated hamsters and rats, compared with all other groups. These results indicate that substance P immunoreactivity in the superior colliculus, but not that in the suprachiasmatic nucleus or intergeniculate leaflet, depends on the integrity of the retinal projection.  相似文献   

20.
Z Wang  J Theeuwes 《PloS one》2012,7(8):e44290
Inhibition of return (IOR) refers to the relative suppression of processing at locations that have recently been attended. It is frequently explored using a spatial cueing paradigm and is characterized by slower responses to cued than to uncued locations. The current study investigates the impact of IOR on overt visual orienting involving saccadic eye movements. Using a spatial cueing paradigm, our experiments have demonstrated that at a cue-target onset asynchrony (CTOA) of 400 ms saccades to the vicinity of cued locations are not only delayed (temporal cost) but also biased away (spatial effect). Both of these effects are basically no longer present at a CTOA of 1200 ms. At a shorter 200 ms CTOA, the spatial effect becomes stronger while the temporal cost is replaced by a temporal benefit. These findings suggest that IOR has a spatial effect that is dissociable from its temporal effect. Simulations using a neural field model of the superior colliculus (SC) revealed that a theory relying on short-term depression (STD) of the input pathway can explain most, but not all, temporal and spatial effects of IOR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号