首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple method is presented that establishes intrinsic rate parameters when slow pore diffusion of substrate limits immobilized enzyme reactions that obey Michaelis-Menten kinetics. The Aris-Bischoff modulus is employed. Data at high substrate concentrations, where the enzyme would be saturated in the absence of diffusion limitation, and at low substrate concentrations, where effectiveness factors are inversely proportional to reaction modulus, are used to determine maximum rate and Michaelis constant, respectively. Because Michaelis-Menten and Langmuir-Hinshelwood kinetics are formally identical, this method may be used to estimate intrinsic rate parameters of many heterogeneous catalysts. The technique is demonstrated using experimental data from the hydrolysis of maize dextrin with diffusion-limited immobilized glucoamylase. This system yields a Michaelis constant of 0.14%, compared to 0.11% for soluble glucoamylase and 0.24% for immobilized glucoamylase free of diffusional effects.  相似文献   

2.
Data reported here and previously indicate that when dextrin is hydrolyzed in the presence of immobilized glucoamylase, use of a larger average molecular weight substrate leads to lower overall rates of hydrolysis, while the maltose concentration during the bulk of the reaction and the maximum glucose concentration are lower than when the soluble form of the enzyme is employed under the same conditions. Computer simulation of the system demonstrated that all three observations were caused by pore diffusion limitation: the first by slow diffusion of substrate, the second by slow diffusion of intermediates, and the third by slow diffusion of glucose. Follow-up experiments with glucoamylase immobilized to particles of different sizes confirmed this finding, as results with the smallest beads were identical to those with soluble glucoamylase.  相似文献   

3.
Immobilized glucoamylase sheet was prepared using soluble collagen prepared from cow hide powder as the support material. The immobilized glucoamylase sheet was attached to the rotary disc and the rates of hydrolysis of maltose and soluble starch in the tank were measured. Qualitative discussions are made of the effect of stirring speed of immobilized enzyme disc on the overall reaction rate.  相似文献   

4.
The present work deals with maltodextrin hydrolysis by glucoamylase immobilized onto corn stover in a fluidized bed reactor. An industrial enzyme preparation was covalently grafted onto corn stover, yielding an activity of up to 372 U/g and 1700 U/g for support particle sizes of 0.8 and 0.2 mm, respectively. A detailed kinetic study, using a differential reactor, allowed the characterization of the influence of mass transfer resistance on the reaction catalyzed by immobilized glucoamylase. A simple and general mathematical model was then developed to describe the experimental conversion data and found to be valid.  相似文献   

5.
Multiple enzyme mixtures are attractive for the production of many compounds at an industrial level. We report a practical and novel approach for coimmobilization of two enzymes. The system consists of a silica microsphere core coated with two layers of individually immobilized enzymes. The model enzymes α‐amylase (AA) and glucoamylase (GluA) were individually immobilized on carbon nanotubes (CNTs). A CNT‐GluA layer was formed by adsorbing CNT‐GluA onto silica microsphere. A sol‐gel layer with entrapped CNT‐AA was then formed outside the CNT‐GluA/silica microsphere conjugate. The coimmobilized α‐amylase and glucoamylase exhibited 95.1% of the activity of the mixture of free α‐amylase and glucoamylase. The consecutive use exhibited a good stability of the coimmobilized enzymes. The developed approach demonstrates advantages, including controlling the ratio of coimmobilized enzymes in an easy way, facilitating diffusion of small molecules in and out of the matrix, and preventing the leaching of enzymes. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:42–47, 2015  相似文献   

6.
Glucoamylase, as a model enzyme, was immobilized on a ceramic membrane modified by surface corona discharge induced plasma chemical process-chemical vapor deposition (SPCP-CVD). Characterizations of the immobilized enzyme were then discussed. Three kinds of ceramic membranes with different amounts of amino groups on the surface were prepared utilizing the SPCP-CVD method. Each with 1-time, 3-times and 5-times surface modification treatments and used for supports in glucoamylase immobilization. The amount of immobilized glucoamylase increased with the increase in the number of surface modification treatments and saturated to a certain maximum value estimated by a two-dimensional random packing. The operational stability of the immobilized glucoamylase also increased with the increase in the number of the surface treatment. It was almost the same as the conventional method, while the activity of immobilized enzyme was higher. The results indicated the possibility of designing the performance of the immobilized enzyme by controlling the amount of amino groups. The above results showed that the completely new surface modification method using SPCP was effective in modifying ceramic membranes for enzyme immobilization.  相似文献   

7.
Some properties of a number of enzymes immobilized by the diazotized m-diaminobenzene (dDAB) method are described. The pH-activity profiles of beta-D-glucosidase, glucoamylase, peroxidase, uricase, and D-glucose oxidase were virtually unchanged on immobilization while those of catalase and dextranase were significantly altered. beta-D-Glucosidase, glucoamylase, and glucose oxidase were found to be more susceptible to denaturation on lyophilization when immobilized than in the native state; however, sorbitol had a marked protective effect in every case examined. Sorbitol was also found to exert a stabilizing effect when lyophilized immobilized preparations were stored. Immobilization marginally improved the stabilities of a number of enzymes to heating at 60 degrees at pH 8.0. The usefulness for continuous reaction of a column of glucoamylase attached to celite was established. The reuse of the solid supports was demonstrated.  相似文献   

8.
Proteins have been immobilized in porous support particles held in a fixed-bed reactor through which protein solution is continuously circulated. Changing the recirculation flow rate alters the observed immobilization kinetics and the maximum enzyme loading which can be achieved for glucose oxidase and glucoamylase on carbodiimide-treated activated carbon and for glucoamylase immobilized on CNBr-Sepharose 4B. Direct microscopic examination of FITC-labelled protein in sectioned Sepharose particles and indirect activity-loading studies with activated carbon-enzyme conjugates all indicate that immobilized enzyme is increasingly localized near the outer surface of the support particles at larger recirculation flow rates. Restricted diffusion of enzymes may be implicated in this phenomenon. These contacting effects may be significant considerations in the scaleup of processes for protein impregnation in porous supports, since apparent activity and stability of the final preparation depend on internal protein distribution.  相似文献   

9.
Various properties of glucoamylase immobilized onto corn stover supporting material and separation of immobilized enzyme by tangential flow filtration unit were studied. Optimum pH and temperature of immobilized enzyme were 3.5 and 60 degrees C, respectively. Enzyme stability was studied in a packed-bed column. The starch conversion rate was attained at 81% for 15 days; after that, the hydrolysis rate gradually decreased. Size of supporting material proved to be an important factor, with higher activity and good loading yield resulting from smaller supporting material. Glucoamylase immobilized onto supporting material less than 44 mum was used for hydrolysis of 10% soluble starch at pH 3.5 and 40 degrees C for 3 h. Then immobilized glucoamylase was separated from the product by means of a tangential flow filtration unit using a 0.2-mum pore size Nylon 66 membrane filter. This operation was continued until 180 ml filtrate was obtained from a 260-mL starting volume. Then, the next batch was started by adding 180 mL starch substrate into the reactor. The batchwise experiments were repeated 20 times. The average filtration rate of each batch was determined and found to sharply decline during the first four batches. Thereafter, it gradually decreased from batch to batch. The cause of decreasing filtration rate appeared to be due to retrogradation of starch. The percentage of starch hydrolysis within 20 batches was in the range 89-96%. The filtration rate becomes higher if the hydrolyzation time is extended to 14 h. Resistance to filtration was also investigated. Almost all of the total resistance is related to insoluble materials, with the significant part of this from the resistance due to insoluble materials deposited on a surface of membrane and boundary layer resistance. Using a microscopic method, no microorganisms were found in the filtrate.  相似文献   

10.
A simple kinetic model which describes the hydrolysis of α-d-glucans by immobilized glucoamylase (exo-1,4-d-glucosidase, EC 3.2.1.3) is reported. The hydrolysis of starch, amylose, amylopectin, maltose and 40DE starch hydrolysates using glucoamylase immobilized on alkylamine derivatives of titanium(IV) activated porous silica are described by a kinetic model based on Langmuir-Hinshelwood kinetics. This model involves enzyme kinetics with or without product inhibition and reverse reactions as well as mass transfer and diffusion effects in immobilized enzyme reactors. The results of other authors are also interpreted by the model developed in this article.  相似文献   

11.
Glucoamylase (commercial preparation Glucavamorin) was immobilized by sorption on a carbon support Sibunit. Starch saccharification by the resulting biocatalyst (dextrin hydrolysis) was studied. Investigation of the effect of adsorptional immobilization on kinetic parameters of glucoamylase, including the rate constant of thermal inactivation, showed that immobilization of Glucavamorin on Sibunit resulted in a thousand-fold increase in glucoamylase stability in comparison with the dissolved enzyme. Presence of the substrate (dextrins) in the reaction mixture had a considerable stabilizing effect. Increase in dextrin concentration increases the thermostability of the immobilized enzyme. The overall factor of glucoamylase stabilization adsorbed on Sibunit with the presence of 53% dextrin solutions in comparison with the dissolved enzyme approximated 105. The biocatalyst for starch saccharification made on the base of Subunit-adsorbed Glucavamorin had a high operational stability. Its half-inactivation time at 60°C exceeded 30 days.  相似文献   

12.
Glucoamylase (commercial preparation Glucavamorin) was immobilized by sorption on a carbon support Sibunit. Starch saccharification by the resulting biocatalyst (dextrin hydrolysis) was studied. Investigation of the effect of adsorptional immobilization on kinetic parameters of glucoamylase, including the rate constant of thermal inactivation, showed that immobilization of Glucavamorin on Sibunit resulted in a thousandfold increase in glucoamylase stability in comparison with the dissolved enzyme. Presence of the substrate (dextrins) in the reaction mixture had a considerable stabilizing effect. Increase in dextrin concentration increases the thermostability of the immobilized enzyme. The overall factor of glucoamylase stabilization adsorbed on Sibunit with the presence of 53% dextrin solutions in comparison with the dissolved enzyme approximated 10(5). The biocatalyst for starch saccharification made on the base of Subunit-adsorbed Glucavamorin had a high operational stability. Its half-inactivation time at 60 degrees C exceeded 30 days.  相似文献   

13.
Glucoamylase was immobilized on granular polyacrylonitrile (PAN) and the optimum condition in its immobilization reaction was determined. The effect of the ratio of the imidoester and methylester to the total cyanogen on the activity of the immobilized enzyme was studied. The activity of the immobilized enzyme increased in proportion to the molar number of imidoester and decreased with that of methylester. The K(m) and V(m) values of immobilized glucoamylase which were prepared at various conditions of immobilization were determined. There were opposite trends in K(m)S between glucoamylase immobilized on imidoester-rich support and immobilized on methylester in the support, evidenced as functions of temperature. This suggests that opposite charges in the support, produced by heat deformation of PAN by hydrolysis of methylester, were an influence on the apparent K(m) of immobilized glucoamylase, besides the diffusional limitation.  相似文献   

14.
A dual‐enzyme process aiming at facilitating the purification of trehalose from maltose is reported in this study. Enzymatic conversion of maltose to trehalose usually leads to the presence of significant amount of glucose, by‐product of the reaction, and unreacted maltose. To facilitate the separation of trehalose from glucose and unreacted maltose, sequential conversion of maltose to glucose and glucose to gluconic acid under the catalysis of glucoamylase and glucose oxidase, respectively, is studied. This study focuses on the hydrolysis of maltose with immobilized glucoamylase on Eupergit® C and CM Sepharose. CM Sepharose exhibited a higher protein adsorption capacity, 49.35 ± 1.43 mg/g, and was thus selected as carrier for the immobilization of glucoamylase. The optimal reaction temperature and reaction pH of the immobilized glucoamylase for maltose hydrolysis were identified as 40°C and 4.0, respectively. Under such conditions, the unreacted maltose in the product stream of trehalose synthase‐catalyzed reaction was completely converted to glucose within 35 min, without detectable trehalose degradation. The conversion of maltose to glucose could be maintained at 0.92 even after 80 cycles in repeated‐batch operations. It was also demonstrated that glucose thus generated could be readily oxidized into gluconic acid, which can be easily separated from trehalose. We thus believe the proposed process of maltose hydrolysis with immobilized glucoamylase, in conjunction with trehalose synthase‐catalyzed isomerization and glucose oxidase‐catalyzed oxidation, is promising for the production and purification of trehalose on industrial scales. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

15.
Enzymes are generally sensitive to temperature changes. Porous glass particles used for glucoamylase immobilization are poor thermal conductors and a non-uniform temperature distribution can conceivably develop in a packed bed reactor of immobilized glucoamylase on porous beads. This study was made to determine experimentally the temperature and concentration profiles in an immobilized glucoamylase column. This work provides a procedure for examining possible heat effects on reactor column performance in enzyme applications.  相似文献   

16.
The effect of the intraparticle diffusion resistance on the apparent stability of the immobilized enzyme suffering from the first-order deactivation has been studied quantitatively. A general expression for the relationship between the decreasing observed enzymatic reaction rate and the intrinsic enzyme deactivation rate has been introduced. The method to estimate the intrinsic deactivation rate constant also has been proposed. Using the invertases immobilized on a anion-exchange resin, the theory proposed in this work has been verified experimentally.  相似文献   

17.
Taking the hydrolysis of sucrose by invertase immobilized on anion-exchange resin as an example, the effects of mass-transfer resistance on the apparent stability of immobilized enzyme (IME) and the optimal policy for an IME reaction in a fixed-bed reactor have been studied theoretically and experimentally. The following results were obtained: (1) The effect of mass-transfer resistance on the effective deactivation rate of IME is summarized in two parameters concerning the intraparticle diffusion alpha(p) and the interparticle alpha(f). (2) At a constant processed amount of raw materials, there exists an optimal flow rate of reaction fluid to enhance the reactor performance while the mass-transfer resistance shifts the optimal point. (3) The intrinsic deactivation rate of IME has been estimated from the relationship between the fractional conversion at the reactor outlet and the operation time.  相似文献   

18.
Partially purified glucoamylase (1,4-α-d-glucan glucohydrolase, EC 3.2.1.3) from Aspergillus niger NRRL 330 has been immobilized on DEAE-cellulose activated with cyanuric chloride in 0.2 m acetate buffer, pH 4.2. In the matrix-bound glucoamylase, enzyme yield was 20 mg g?1 of support, corresponding to 40 200 units g?1 of DEAE support. Binding of the enzyme narrows the pH optimum from 3.8–5.2 to 3.6. Thermal stability of the bound glucoamylase enzyme was decreased although it showed a higher temperature optimum (70°C) than the free form (55°C). The rate of reaction of glucoamylase was also changed after immobilization. Vmax values for free and bound enzyme were 36.6 and 22.6 μmol d-glucose ml?1 min?1 and corresponding Km values were 3.73 and 4.8 g l?1 respectively. Free and immobilized enzyme when used in the saccharification process gave 84 and 56% conversion of starch to d-glucose, respectively. The bound enzyme was quite stable and in the batch process it was able to operate for about five cycles without any loss of activity.  相似文献   

19.
The transient response method was utilized to evaluate the rate constants of reaction over immobilized enzyme. Glucose oxidation catalyzed by the immobilized glucose oxidase in a fixed-bed reactor was selected as an example. A theoretical model including the effects of axial dispersion, film diffusion, and intraparticle diffusion was established for the reactor. The individual rate constant of each elementary step of this enzymatic reaction was determined through direct fitting of the experimental response data to the model.  相似文献   

20.
TiO2膜吸附固定糖化酶特性的研究   总被引:3,自引:0,他引:3  
分别以醋酸纤维素TiO2膜(AC.TiO2膜)、羧甲基纤维TiO2膜(CMC.TiO2膜)和聚丙烯TiO2膜(PP.TiO2膜)为载体吸附固定糖化酶,并与醋酸纤维素、羧甲基纤维素和聚丙烯固定糖化酶的性能进行了比较,得出以AC.TiO2膜和PP.TiO2膜对糖化酶的吸附性能及稳定性能均较好,PP.TiO2膜固定的糖化酶使用8次后其剩余酶活仍能保持在72%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号