首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mixed micelles of deoxycholate (DOC) and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) have been prepared in which the POPC was specifically deuterated in the 2-, 6-, 10-, or 16-position of the palmitoyl chain or in the N-methyl position of the choline head group. The deuterium nuclear magnetic resonance (2H NMR) spectrum of each of these specifically deuterated mixed micelles consists of a singlet whose line width depends upon the position of deuteration. Spin-spin relaxation times indicate a gradient of mobility along the POPC palmitoyl chain in the mixed micelle, with a large increase in mobility on going from the 10- to the 16-position. Spin-lattice relaxation times (T1's) demonstrate a similar gradient of mobility. Both trends in NMR relaxation behavior are consistent with a bilayer arrangement for the solubilized POPC. 2H T1 times for DOC/POPC micelles are significantly shorter than those measured in other bilayer systems, indicating unusually tight phospholipid acyl chain packing in the mixed micelle.  相似文献   

2.
3.
High-resolution proton magnetic resonance techniques at 220 MHz were employed to follow the transformation of Triton X-100 between its micellar and cloud point phases as a function of temperature. The results obtained suggest that while a phase separation occurs rather sharply above the cloud point, the increase in temperature below the cloud point is accompanied by the gradual formation of very large structures suspended in the aqueous phase. The proton magnetic resonance studies show that the separation of phases, which occurs above the cloud point, appears to be accompanied by a fractionation of the polydisperse detergent. In addition, a lowering of the cloud point of Triton X-100 by dipalmitoyl phosphatidylcholine was observed by visual means and the results are reported here.  相似文献   

4.
Lipid exchange between mixed micelles of phospholipid and triton X-100   总被引:1,自引:0,他引:1  
If phospholipase catalyzed hydrolysis of phospholipid dissolved in a detergent mixed micelle is limited to the phospholipid carried by a single micelle, then hydrolysis ceases upon exhaustion of that pool. However, if the rate of phospholipid exchange between micelles exceeds the catalytic rate then all of the phospholipid is available for hydrolysis. To determine phospholipid availability we studied the exchange of 1,2-dioleoyl-sn-glycero-3-phosphocholine between mixed micelles of phospholipid and non-ionic Triton detergents by both stopped-flow fluorescence-recovery and nuclear magnetic resonance-relaxation techniques. Stopped-flow analysis was performed by combining mixed micelles of Triton and phospholipid with mixed micelles that contained the fluorescent phospholipid 1-palmitoyl-2-(12-[{7-nitro-2-1, 3-benzoxadiazo-4-yl}amino]dodecanoyl)-sn-glycero-3-phosphocholine (P-2-NBD-PC). The concentration dependence of fluorescence recovery suggested a second-order exchange mechanism that was saturable. The true second-order rate constant depends on the specific mechanism for exchange, which was not determined in this study, but the rate constant will be on the order of 106 to 107 M-1s-1. Incorporation of 1-palmitoyl-2-(16-doxylstearoyl)phosphatidylcholine into micelles increased the rate of proton relaxation and gave a limiting relaxation time of 1.3 ms. The results demonstrate that phospholipid exchange was rapid and that the phospholipid content of a single micelle did not limit the rate of phospholipid hydrolysis by phospholipases.  相似文献   

5.
Mixed micelles of the 26-residue, lytic peptide melittin (MLT) and 1-myristoyl-2-hydroxyl-sn-glycero-3-phosphocholine (MMPC) in aqueous solution at 25 degrees C were investigated by (13)C- and (31)P-NMR spectroscopy. (13)C alpha chemical shifts of isotopically labeled synthetic MLT revealed that MLT in the micelle is predominantly alpha-helical and that the peptide secondary structure is stable from pH 4 to pH 11. Although the helical transformation of MLT as determined from NMR is evident at lipid:peptide molar ratios as low as 1:2, tryptophan fluorescence measurements demonstrate that well-defined micellar complexes do not predominate until lipid:peptide ratios exceed 30:1. (31)P linewidth measurements indicate that the interaction between phosphate ions in solution and cationic groups on MLT is pH dependent, and that the phosphoryl group of MMPC senses a constant charge, most likely +2, on MLT from pH 4 to pH 10. (13)C-NMR relaxation data, analyzed using the model-free formalism, show that the peptide backbone of MLT is partially, but not completely, immobilized in the mixed micelles. Specifically, order parameters (S(2)) of C alpha-H vectors averaged 0.7 and were somewhat larger for residues in the N-terminal half of the molecule. The amino terminal glycine had essentially the same range of motion as the backbone carbons. Likewise, order parameters for the trp side chain were similar to those found for the peptide C alpha moieties, as was verified by trp fluorescence anisotropy decay data. In contrast, the motion of the lysine side chains was less restricted, the average S(2) values for the C epsilon-H vectors being 0.19, 0.30, and 0.44 for lys-7, 21, and 23, respectively, for MLT in the mixed micelles. Values of the effective correlation time of the local motion tau e were in the motional narrowing limit and usually longer for side-chain atoms than for those in the backbone. The dynamics were independent of pH from pH 4 to pH 9, but at pH 11 the correlation time for the rotational motion of the mixed micelles as a whole increased from 10 ns to 16 ns, and S(2) for the lys side chains increased. Overall it appears that the MLT helix lies near the surface of the micelle at low to neutral pH, but at higher pH its orientation changes, accompanied by deeper penetration of the lysine side chains into the micelle interior. It is apparent, however, that the MLT-lipid interaction is not dependent on deprotonation of any of the titratable cationic groups in the peptide in the pH 4-10 range, and that there is substantial backbone and side-chain mobility in micelle-bound MLT.  相似文献   

6.
A A Ribeiro  E A Dennis 《Biochemistry》1975,14(17):3746-3755
Proton magnetic resonance and gel chromatographic studies on mixtures of phospholipid and the nonionic surfactant Triton X-200 have shown that at temperatures above the thermotropic phase transition of the phospholipid and below the cloud point of Triton, mixed micelles are present at molar ratios above about 2:1 Triton/phospholipid. Proton T1 and T2 (from line widths) relaxation times are reported for protons in Triton micelles and in mixed micelles of Triton and dimyristoylphosphatidylcholine at a molar ratio of 3:1 Triton/phospholipid. The T1 values and their temperature dependence and the activation energies of the various Triton proton groups appear to reflect internal motions of the Triton molecules in the micelle. Measurements of the T1/T2 ratio and frequency dependence (55-220 MHz) suggest that the hydrophobic tert-butyl group in Triton is observed under extreme narrowing conditions. The T1 and T2 values of Triton are unchanged in the presence of phosphatidylcholine. The T1 values of various protons of dimyristoylphosphatidylcholine in mixed micelles are similar to those reported for the phospholipid in sonicated vesicles, which are used as membrane models, and presumably the same coupled trans-gauche motions dominate. The T2 values for the terminal methyl and choline methyl protons in the phospholipid are longer than those reported for these groups in vesicles. Hence, the motion of the phospholipid in the mixed micelles appears to be less restricted than in vesicles. T1 measurements in H20/D20 mixtures are consistent with the idea that water does not penetrate the hydrophobic core of the mixed micelles, while water does solvate the polar oxyethylene and choline methyl groups. Titration with Mn2+ confirms that the oxyethylene and choline methyl groups are on the exterior of the mixed micelle while the hydrophobic groups are located in the micellar interior.  相似文献   

7.
A mixed micellar assay for the binding of phorbol-esters to protein kinase C was developed to investigate the specificity and stoichiometry of phospholipid cofactor dependence and oligomeric state of protein kinase C (Ca2+/phospholipid-dependent enzyme) required for phorbol ester binding. [3H]Phorbol dibutyrate was bound to protein kinase C in the presence of Triton X-100 mixed micelles containing 20 mol % phosphatidylserine (PS) in a calcium-dependent manner with a Kd of 5 X 10(-9) M. The [3H]phorbol dibutyrate X protein kinase C . Triton X-100 . PS mixed micellar complex eluted on a Sephacryl S-200 molecular sieve at an Mr of approximately 200,000; this demonstrates that monomeric protein kinase C binds phorbol dibutyrate. This conclusion was supported by molecular sieve chromatography of a similar complex where Triton X-100 was replaced with beta-octylglucoside. Phorbol dibutyrate activation of protein kinase C in Triton X-100/PS mixed micelles occurred and was dependent on calcium. The PS dependence of both phorbol ester activation and binding to protein kinase C lagged initially and then was highly cooperative. The minimal mole per cent PS required was strongly dependent on the concentration of phorbol dibutyrate or phorbol myristic acetate employed. Even at the highest concentration of phorbol ester tested, a minimum of 3 mol % PS was required; this indicates that approximately four molecules of PS are required. [3H]Phorbol dibutyrate binding was independent of micelle number at 20 mol % PS. The phospholipid dependencies of phorbol ester binding and activation were similar, with PS being the most effective; anionic phospholipids (cardiolipin, phosphatidic acid, and phosphatidylglycerol were less effective, whereas phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin did not support binding or activation. sn-1,2-Dioleoylglycerol displaced [3H]phorbol dibutyrate quantitatively and competitively. The data are discussed in relation to a molecular model of protein kinase C activation.  相似文献   

8.
9.
Spin lattice relaxation times (T1) and apparent spin-spin relaxation times (T2) derived from linewidth have been used to investigate model membranes composed of egg yolk phosphatidylcholine. T1 measurements appear to be largely dominated by segmental motion and as a consequence are not very sensitive to small changes in membrane structure. On the contrary, apparent T2 times are shown to be sensitive to such changes in the membrane and are thus suggested as a useful tool for further investigation of membrane structure.  相似文献   

10.
We have designed a set of 17-residue synthetic peptides to be monomeric helices in aqueous solution. Circular dichrosim experiments indicate the presence of helical structure in aqueous solution at low temperature and low pH. The two-dimensional nuclear magnetic resonance results for one of the peptides show a segment of ten residues which clearly meets all of the criteria for the existence of helical structure at both 5 degrees C and 15 degrees C. The first four residues of the peptide are in a largely extended conformation. Calculations suggest that residues 5 through 14 are significantly helical at 5 degrees C. When the temperature is increased, circular dichroism spectra indicate that the helical content decreases. At 15 degrees C, the 3JN alpha coupling constants increase in the helical region, indicating an increase in motion or conformational averaging in the helical segment. None of the peptides has pH titration behavior consistent with salt bridge stabilization of helical conformation. Our data lend themselves to interpretation with the helix dipole model and specific side-chain interactions. When the N and C termini charges are removed the helical content of the peptides increases. The amount of helicity increases as the pH is lowered, due to the ionization of His16. Much of the helical stabilization appears to be due to a specific side-chain interaction between His16 and Tyr12.  相似文献   

11.
Hydrolsis of a-naphtyl palmitate dispersed with the detergent Triton X-100 at acid pH was studied by a histochemical diazocoupling technique in both fixed sections and cultures of primate tissues as well as by a biochemical assay employing the same chromogenic substrate. Evidence for the exclusive hydrolysis of this artificial fatty acid ester substrate by acid lipases was gathered from (1) comparison of isoelectric focusing zymograms developed with different substrates, (2) kinetic analysis of enzyme activity in the presence or absence of inhibitors, including a natural substrate of acid lipase, trioleylglycerol, (3) specific localization of marked enzyme activity in certain tissues, and (4) absence of detectable enzyme activity in a case of human acid lipase deficiency (Wolman's disease). Histochemically, acid lipase activity was most readily detected in cells active in the uptake and processing of neutral lipids, i.e., the phagocytes of the reticuloendothelial system, the adrenal cortex and the lipid-storing cells in the athero-sclerotic plaques of arteries.  相似文献   

12.
The structure and dynamics of phosphatidylcholine bilayers containing chlorophyll were studied by X-ray diffraction and absorption polarization spectroscopy in the form of hydrated orientated multilayers below the thermal phase transition of the lipid chains and by nuclear magnetic resonance in the form of single-wall vesicles above the thermal transition. Our results show that (a) chlorophyll is incorporated into the phosphatidylcholine bilayers with its porphyrin ring located anisotropically in the polar headgroup layer of the membrane and with its phytol chain penetrating in a relatively extended form between the phosphatidylcholine fatty acid chains in the hydrocarbon core of the mixed bilayer membrane and (b) the intramolecular anisotropic rotational dynamics of the host phosphatidylcholine molecules are significantly perturbed upon chlorophyll incorporation into the bilayer at all levels of the phosphatidylcholine structure. These dynamics for the host phosphatidtlcholine fatty acid chains are qualitatively different from that of the incorporated chlorophyll phytol chains on a 10?9 ? 10?10s time scale in the ideally mixed two-component bilayer.  相似文献   

13.
The metabolism in vitro of U-13C-glucose and NaH13CO3 by two strains of adult Hymenolepis diminuta, the ANU and UT strains, was examined using 13C n.m.r. spectroscopy. The incubation medium and perchlorate extracts from worms incubated in vitro with U-13C-glucose showed incorporation of significant quantities of label into the end products succinate, lactate and acetate, and also into glycogen. Similar experiments with NaH13CO3 showed incorporation principally into succinate C-1,4, plus significant labelling also in lactate C-1. This shows that nutochondrial malate or pyruvate contributes to the cytosolic pyruvate pool in H. diminuta. The metabolism of U-13C-glucose was followed directly by incubating live worms directly in the spectrometer. Worms from 24 h-fasted hosts metabolised the added glucose completely during an experimental period of 2 h and incorporation of label was evident in the time course spectra. Parasites from fed hosts metabolised the added glucose more slowly. This work confirms the accepted routes of glucose metabolism in H. diminuta and demonstrates the utility of the n.m.r. technique in investigating the metabolism of parasites.  相似文献   

14.
The structure and dynamics of phosphatidylcholine bilayers containing chlorophyll were studied by X-ray diffraction and absorption polarization spectroscopy in the form of hydrated orientated multilayers below the thermal phase transition of the lipid chains and by nuclear magnetic resonance in the form of single-wall vesicles above the thermal transition. Our results show that (a) chlorophyll is incorporated into the phosphatidylcholine bilayers with its porphyrin ring located anisotropically in the polar headgroup layer of the membrane and with its phytol chain penetrating in a relatively extended form between the phosphatidylcholine fatty acid chains in the hydrocarbon core of the mixed bilayer membrane and (b) the intramolecular anisotropic rotational dynamics of the host phosphatidylcholine molecules are significantly perturbed upon chlorophyll incorporation into the bilayer at all levels of the phosphatidylcholine structure. These dynamics for the host phosphatidylcholine fatty acids chains are qualitatively different from that of the incorporated chlorophyll phytol chains on a 10(-9)-10(-10)s time scale in the ideally mixed two-component bilayer.  相似文献   

15.
High resolution proton spin-lattice relaxation times (T1), spin-spin relaxation times (T2) and resonance linewidths were measured above the gel-to-liquid crystal transition temperature (Tm), in phosphatidylcholine bilayers possessing various degrees of intramolecular motional anisotrophy at the level of various alkyl chain proton groups. The experiments were designed to test the hypothesis that coupled trans-gauche isomerizations along the chains can be responsible for the anisotropic motion of phosphatidylcholine proton groups in bilayer membranes (Horwitz, A.F., Horsley, W.J. and Klein, M.O. (1972) Proc. Natl. Acad. Sci. U.S. 69,500). Systematic series of structural perturbations of the bilayer were achieved in mixed phosphatidylcholine/fatty acid and in mixed phosphatidylcholine bilayers where the degree of motional anisotrophy of the chains' proton groups was gradually reduced by progressively increasing the chain length disparity of the two components. The systematic T1 and T2 variations observed were interterpreted on the basis of the Woessner's treatment for computing the relaxation times of a spin pair reorienting randomly about an axis which, in turn, tumbles randomly (Woessner, D.E. (1962) J. Chem. Phys. 36, 1). The results confirmed in a qualitative sense the original hypothesis made by Horwitz et al. The time-averaged structural interpretations suggested by the mangetic relaxation studies are in agreement with low-angle X-ray diffraction results obtained below Tm. In addition, the T1 values evaluated at various temperatures in dipalmitoyl phosphatidylcholine vesicles incorporated with either 2H-labeled or unlabeled palmitic acid chains indicated that the average intermolecular contribution to the spin-lattice relaxation rate of the proton groups of the phosphatidylcholine chains appears comparable to the intramolecular term at temperatures moderately higher than Tm, but becomes less and less important as the temperature is further increased above the thermal transition.  相似文献   

16.
A change in relaxation times has been determined in skin tissues after administration of hyaluramine, by means of nuclear magnetic resonance. Results are discussed in terms of water redistribution between the free and bound compartment.  相似文献   

17.
18.
Physiologically relevant molecular species of plasmenylcholine and phosphatidylcholine were synthesized and their molecular dynamics and interactions with cholesterol were compared by determination of salient proton spin-lattice relaxation times and apparent activation energies for 1H-NMR observable motion. The molecular dynamics of PA PhosCho (1-hexadecanoyl-2-eicosatetra-5',8',11',14'-enoyl-sn-glycero-3-pho sphocholine) in multiple regions of the bilayer. Furthermore, the fluidity gradient of PA PhosCho was larger than that of PA PlasCho as ascertained by 1H spin-lattice relaxation time measurements. Introduction of cholesterol into each bilayer resulted in disparate effects on the dynamics of each subclass including: (1) increased motional freedom in the polar head group of PA PlasCho without substantial alterations in the dynamics of the polar head group of PA PhosCho; and (2) increased immobilization of the membrane interior in PA PlasCho in comparison to PA PhosCho. Analysis of Arrhenius plots of T1 relaxation times demonstrated that the apparent activation energies for vinyl and bisallylic methylene proton NMR observable motion in PA PhosCho were greater than that in PA PlasCho. Thus, comparisons of spin-lattice relaxation times and apparent activation energies demonstrate that vesicles comprised of PA PlasCho and PA PhosCho possess differential molecular dynamics and distinct interactions with cholesterol. Collectively, these results underscore the significance of the conjoint presence of the vinyl ether linkage and arachidonic acid as an important determinant of membrane dynamics in specialized mammalian membranes.  相似文献   

19.
MRI is an optimal clinical (research) tool to provide information on brain morphology and pathology and to detect metal ions that possess intrinsic magnetic properties. Non-heme iron is abundantly present in the brain in three different forms: "low molecular weight" complexes, iron bound to "medium molecular weight complexes" metalloproteins such as transferrin, and "high molecular weight" complexes as ferritin and hemosiderin. The total amount and form of iron may differ in health and disease, and MRI can possibly quantify and monitor such changes. Ferritin-bound iron is the main storage form of iron and is present predominantly in the extrapyramidal nuclei where its amounts normally increase as a function of age. Ferritin is water soluble and shortens both, T1 and T2 relaxation, with as result a signal change on the MR images. Hemosiderin, a degradation product of ferritin, is water-insoluble with a stronger T2 shortening effect than ferritin. The larger cluster size of hemosiderin and its water-insolubility also explain a lack of significant T1-shortening effect on T1-weighted images. Using both in vitro specimens and intact brain tissue in vivo we demonstrate here that MRI may be able to distinguish between ferritin- and hemosiderin-bound iron.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号