首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An enzyme “amine transaminase”, which catalyzed transamination between amines and α-keto acids, was found to occur in certain fermentative bacteria, such as Escherichia coli and Aerobacter aerogenes. Using a partially purified enzyme preparation obtained from cell extract of E. coli, some properties of the enzyme were investigated. α-Ketoglutaric acid appeared to be the most efficient amino acceptor and substitution of α-ketoglutaric acid by other α-keto acid resulted in much lower activity. Putrescine, cadaverine and hexamethylenediamine were found to be active as amino donors, but the other monoamines, diamines and polyamines were inert. Treatment of the enzyme with acid ammonium sulfate resolved the enzyme into apo- and coenzyme. The apoenzyme was well reactivated by pyridoxal phosphate as well as pyridoxamine phosphate. Physiological role of the amine transaminase was suggested in relation to the metabolism of amines in bacterial cells.  相似文献   

2.
Seed development largely depends on the long‐distance transport of sucrose from photosynthetically active source leaves to seed sinks. This source‐to‐sink carbon allocation occurs in the phloem and requires the loading of sucrose into the leaf phloem and, at the sink end, its import into the growing embryo. Both tasks are achieved through the function of SUT sucrose transporters. In this study, we used vegetable peas (Pisum sativum L.), harvested for human consumption as immature seeds, as our model crop and simultaneously overexpressed the endogenous SUT1 transporter in the leaf phloem and in cotyledon epidermal cells where import into the embryo occurs. Using this ‘Push‐and‐Pull’ approach, the transgenic SUT1 plants displayed increased sucrose phloem loading and carbon movement from source to sink causing higher sucrose levels in developing pea seeds. The enhanced sucrose partitioning further led to improved photosynthesis rates, increased leaf nitrogen assimilation, and enhanced source‐to‐sink transport of amino acids. Embryo loading with amino acids was also increased in SUT1‐overexpressors resulting in higher protein levels in immature seeds. Further, transgenic plants grown until desiccation produced more seed protein and starch, as well as higher seed yields than the wild‐type plants. Together, the results demonstrate that the SUT1‐overexpressing plants with enhanced sucrose allocation to sinks adjust leaf carbon and nitrogen metabolism, and amino acid partitioning in order to accommodate the increased assimilate demand of growing seeds. We further provide evidence that the combined Pushand‐Pull approach for enhancing carbon transport is a successful strategy for improving seed yields and nutritional quality in legumes.  相似文献   

3.
The effect of different carbon and nitrogen compounds on growth and sporulation ofC. microcephala (Wallr.)Tul. causing ergot disease of Bajra has been studied. Nine different sources of carbon were used but cane sugar was found to be the best source for both, growth and sportulation of the fungus. Glucose, sucrose and maltose gave good growth but fair sporulation. Lactose and sorbitaol proved to be the poor sources. However, fungus failed to utilize starch, dextrin and mannitol.Nineteen nitrogen compounds were tried for the growth and sporulation of the fungus. Best growth and sporulation were supported by peptone and glycine. L-asparagine, DL-valine, Urea, magnesium nitrate and L-proline supported good growth and fair sporulation except DL-valine where it was excellent. Poor growth was obtained on L-isoleucin, ammonium sulphate, potassium nitrate,-alanine, ammonium chloride, DL-aspartic acid and DL-methionine. Fungus failed to utilize thio-urea.  相似文献   

4.
Arthrobacter paraffineus KY 4303, when grown on sucrose as the sole carbon source, produced novel glycolipids, either of which was different from trehalose lipid produced from n-alkane by the same microorganism. Two kinds of glycolipids were isolated by chromatography on silicic acid columns. Major components of these lipids were sucrose and α-branched β-hydroxy fatty acid. One of the lipid (SL–1, having high polarity) was identified as 6-O-monofattyacyl glucosly-β-fructoside. Another (SL–2, having low polarity) was partly characterized as sucrose ester of at least two moles of the fatty acid.

Formation of sucrose lipids was also demonstrated in sucrose-grown cells of several microorganisms of Corynebacteria, Nocardia and Brevibacteria, which were isolated as hydrocarbon-utilizing bacteria and could produce a considerable amount of trehalose lipid from n-alkane.  相似文献   

5.
Amino acid analysis of purified dextransucrase (sucrose: 1,6-α-D-glucan 6-α-D-glucosyltransferase EC 2.4.1.5) from Leuconostoc mesenteroides NRRL B-512F was carried out. The enzyme is virtually devoid of cysteine residue there being only one cysteine residue in the whole enzyme molecule comprising over 1500 amino acid residues. The enzyme is rich in acidic amino acid residues. The number of amino acid residues was calculated based on the molecular weight of 188,000 (Goyal and Katiyar 1994). Amino sugars were not found, implying that the enzyme is not a glycoprotein. It has been shown earlier that the cysteine residue in dextransucrase is not essential for enzyme activity (Goyal and Katiyar 1998). The presence of only one cysteine residue per enzyme molecule illustrates that its tertiary structure is solely dependent on other types of non-covalent interactions such as hydrogen bonding, ionic and nonpolar hydrophobic interactions.  相似文献   

6.
17-Alkoxycarbonyl- and 17-carboxamido-3β-hydroxy-13α-androsta-5,16-diene derivatives were synthetized in high yields in the palladium-catalyzed carbonylation reactions of the corresponding 3β-hydroxy-17-iodo-13α-androsta-5,16-diene. This substrate with a 17-iodo-16-ene functionality was obtained from the 17-keto derivative via its 17-hydrazone, which was treated with iodine in the presence of a base (1,1,3,3-tetramethylguanidine). 17-Carboxamides were obtained by chemoselective aminocarbonylation through the use of amines, including amino acid esters, as N-nucleophiles. The 17-methoxycarbonyl-16-ene derivative was synthetized by using methanol as O-nucleophile. The parent compound of this series, the 17-carboxylic acid derivative, was formed in the presence of water via hydroxycarbonylation.  相似文献   

7.
It was confirmed that washed yeast cells produced isoamyl alcohol and isobutanol from either pyruvic acid or α-ketoisovaleric acid. At the same time α-ketoisocaproic acid, a presumed intermediate to isoamyl alcohol, was found.

These results seem to support the presumptive scheme that pyruvic acid converts to α-ketoisocaproic acid via acetolactic acid and α-keto,isovaleric acid, from which isoamyl alcohol and isobutanol are formed.  相似文献   

8.
A phenotypic screen was employed to isolate Arabidopsis plants that are deficient in their ability to utilize or sense acetate. The screening strategy, based on resistance to the toxic acetate analogue monofluoroacetic acid, was adapted from one that has been used successfully to identify important metabolic and regulatory genes involved in acetate metabolism in fungi. Following conventions established from the fungal work, the mutants were called acn mutants for ac etate n on-utilization. Three highly resistant plant lines were the focus of genetic and physiological studies. Mutant acn1 appears to be a true acetate non-utilizing mutant, as it displays increased sensitivity to exogenous acetate. The progeny of the original acn2 mutant did not germinate, even in the presence of sucrose as an exogenous carbon source. The germination of seeds from the F3 generation depended on the sucrose concentration in the medium. Only a small proportion of seeds germinated in the absence of exogenous sucrose and in the presence of 100 mM sucrose, but up to 70% of seeds germinated on 20 mM sucrose. Mutant acn3 exhibited sensitivity to exogenous sucrose, showing significant chlorosis on medium containing 20 mM sucrose, but no chlorosis when grown in the absence of exogenous sucrose. This phenotype was alleviated if acetate was provided. The acn mutants demonstrate that disrupting organic acid utilization can have profound affects on carbohydrate metabolism.Communicated by G. Jürgens  相似文献   

9.
Summary In a laboratory incubation study the humic acid isolated from a forest soil of Palamau (Bihar) was subjected to biodegradation for a period of six weeks by using nine cultures of fungi. These fungi were tested earlier for their cellulose decomposing ability. The humic acid was used as sole source of carbon, nitrogen and carbon plus nitrogen in Czapek-Dox broth. Of the nine culturesAspergillus awamori (IARI),Penicillium sp. (Ranchi),Humicola insolense (Hissar) were found to be very effective in decomposing humic acid. The humic acid used as sole source of carbon was most efficiently degraded followed by that used as carbon+nitrogen source. When it was used as sole source of nitrogen, it could not be degraded so efficiently. This may be due to unavailability of its nitrogen to these microorganisms.  相似文献   

10.
Kojic acid production byAspergillus flavus strain S44-1 using sucrose as a carbon source was carried out in a 250-mL shake flask and a 2-L stirred tank fermenter. For comparison, production of kojic acid using glucose, fructose and its mixture was also carried out. Kojic acid production in shake flask fermentation was 25.8 g/L using glucose as the sole carbon source, 23.6 g/L with sucrose, and 6.4 g/L from fructose. Reduced kojic acid production (13.5 g/L) was observed when a combination of glucose and fructose was used as a carbon source. The highest production of kojic acid (40.2 g/L) was obtained from 150 g/L sucrose in a 2 L fermenter, while the lowest kojic acid production (10.3 g/L) was seen in fermentation using fructose as the sole carbon source. The experimental data from batch fermentation and resuspended cell system was analysed in order to form the basis for a kinetic model of the process. An unstructured model based on logistic and Luedeking-Piret equations was found suitable to describe the growth, substrate consumption, and efficiency of kojic acid production byA. flavus in batch fermentation using sucrose. From this model, it was found that kojic acid production byA. flavus was not a growth-associated process. Fermentation without pH control (from an initial culture pH of 3.0) showed higher kojic acid production than single-phase pH-controlled fermentation (pH 2.5, 2.75, and 3.0).  相似文献   

11.
A novel phosphate solubilizing bacterium (PSB) was isolated from the rhizosphere of sugarcane and is capable of utilizing sucrose and rock phosphate as the sole carbon and phosphate source, respectively. This PSB exhibited mineral phosphate solubilizing (MPS) phenotype on sugars such as sucrose and fructose, which are not substrates for enzyme glucose dehydrogenase (GDH), along with GDH substrates, viz., glucose, xylose, and maltose, as carbon sources. PCR amplification of the rRNA gene and sequence analysis identified this bacterium as Citrobacter sp. DHRSS. On sucrose and fructose Citrobacter sp. DHRSS liberated 170 and 100 μM free phosphate from rock phosphate and secreted 49 mM (2.94 g/L) and 35 mM (2.1 g/L) acetic acid, respectively. Growth of Citrobacter sp. DHRSS on sucrose is mediated by an intracellular inducible neutral invertase. Interestingly, in the presence of GDH substrates like glucose and maltose, Citrobacter sp. DHRSS produced approximately 20 mM (4.36 g/L) gluconic acid and phosphate released was 520 and 570 μM, respectively. Citrobacter sp. DHRSS GDH activity was found when grown on GDH and non-GDH substrates, indicating that it is constitutive and could act on a wide range of aldose sugars. This study demonstrates the role of different organic acids in mineral phosphate solubilization by rhizobacteria depending on the nature of the available carbon source.  相似文献   

12.
Lolium perenne, a main component species in managed grassland, is well adapted to defoliation, fertilization, and regrowth cycles; and hence, to changes in the assimilatory carbon source‐sink ratio. In the Swiss Free Air CO2 Enrichment experiment the source‐sink ratio is (i) increased by elevated partial pressure of CO2 (pCO2), (ii) decreased by enhanced carbon use under high N fertilization, and (iii) gradually increased during regrowth after defoliation. Since sucrose synthesis plays a central role in leaf carbohydrate metabolism in this fructan‐accumulating species, we investigated how sucrose‐phosphate synthase (SPS) responds to the differing assimilatory carbon fluxes and source‐sink ratios in the field. Assimilatory carbon flux, as estimated by leaf gas exchange, strongly depended on pCO2. Surprisingly, the SPS content per leaf area did not increase with pCO2, but increased with N fertilization. During later regrowth, when a dense canopy had formed, the SPS content decreased; in particular, SPS was decreased at high N under elevated pCO2. Further, the higher assimilatory carbon flux through SPS at elevated pCO2 was accompanied by a higher activation state of SPS. The SPS content correlated very strongly with the ratio of free sucrose to free amino acid in leaves, which represents the carbon source‐sink ratio. Hence, SPS content in L. perenne appears to be regulated by the current, strongly nitrogen‐dependent, source‐sink relation.  相似文献   

13.
When grown on medium containing ethanol as the sole carbon source, three of five strains of yeast tested produced a keto acid which was demonstrated by paper chromatography. This compound was isolated and its structure was examined by elementary analysis, infrared spectrum, nuclear magnetic resonance and periodate oxidation. The compound was proved to be identical with 5-hydroxy-4-ketohexanoic acid. Formation of this compound by cell suspensions of Hansenula miso IFO 0146 was achieved by addition of acetaldehyde, although the presence of α-ketoglutaric acid enhanced the formation of the keto acid from acetaldehyde during a short incubation period. Added 5-hydroxy-4-ketohexanoic acid was exhausted by the cell suspension.  相似文献   

14.
A specific symbiotic Bacillus species isolated from a rhabditid entomopathogenic nematode, Rhabditis (Oscheius) sp., was found to produce a number of bioactive compounds. The present study was conducted to determine the effect of six different carbon sources in combination with beef extract on the production of antifungal substances by Bacillus sp. The yield of crude antimicrobial substances and antimicrobial activity against the test microorganism also differed significantly when the carbon sources in the fermentation media were changed. The highest yield was recorded for fructose plus beef extract (956?mg/l). The antifungal activity was significantly high in beef extract plus maltose (21?±?1.5?mm) followed by beef extract plus glucose and beef extract plus fructose. Antifungal activity was significantly reduced in beef extract plus lactose and sucrose. High pressure liquid chromatography analysis of the crude antimicrobial substances revealed different peaks with different retention times indicating that they produced different compounds. When a carbon source was not included in the fermentation media, the antifungal production was substantially reduced. Carbon source in the fermentation medium plays a vital role in the production of antimicrobial substances. Beef extract and maltose as nitrogen and carbon sources in the fermentation medium produced maximum antifungal activity. It is concluded that Beef extract and maltose as nitrogen and carbon sources produced maximum activity which can effectively control the Fusarium oxysporum which causes vascular fusarium wilt in tomato, tobacco, legumes, cucurbits, sweet potatoes, banana, etc.  相似文献   

15.
Endogenous contents of indolyl-3-acetic acid (IAA) and abscisic acid (ABA) were quantified in excised roots of Catasetum fimbriatum (Orchidaceae) cultured in vitro on solidified Vacin and Went medium with 1, 2, 4, 6, 8 and 10 % sucrose, as well as 2 % sucrose plus mannitol. Maximum root growth was observed in media with 4 % sucrose and 2 % sucrose plus 2.2 % mannitol, suggesting that a moderate water or osmotic stress promotes orchid root growth. Contents of both ABA and IAA increased in parallel to increasing sucrose concentration and a correlation between root elongation and the ABA/IAA ratio was observed. Incubating isolated C. fimbriatum roots with radiolabeled tryptophan, we showed an accumulation of IAA and its conjugates.  相似文献   

16.
Seedlings of mung bean (Phaseolus aureus) contain a soluble enzyme capable of converting l-tryptophan to indole-3-pyruvic acid by transamination. The concentration of the enzyme is highest in the stem meristem and primary leaves and lowest in the roots. The enzyme was purified 28.6 fold by ammonium sulphate precipitation, Sephadex G-200 filtration, and electrophoresis. The isoelectric point of the enzyme protein was pH 6.6. The optimum pH and temperature for the catalytic conversion were ca. 8.5 and 53°C respectively. Using l -tryptophan and α-ketoglutarate as substrates Km was found to be 3.3 × 10?4 M and the activation energy 18,270 cal per mole. The enzyme converted only the l -form of tryptophan, phenylalanine, tyrosine, and histidine. Out of 13 other l -amino acids tested 8 could be transaminated. Eight α-keto acids tested could all be used as substrates. High efficiency of an α-keto acid as an amino group acceptor agreed usually with high efficiency of the corresponding amino acid as a donor. The pari ß-methyl-α-ketoisovaleric acid and isoleucine was an exception to that rule. Addition of pyridoxalphosphate to the reaction mixture was not needed. The indole-3-pyruvic acid formed in the reaction was trapped and partly stabilized as its borate complex and measured spectrophotometrically at 327 nm. The keto acid formed was further identified by chromatography of its 2,4-dinitrophenylhydrazone in 4 solvent systems. When using α-keto-glutaric acid as a substrate, the glutamic acid produced was determined by the glutamate dehydrogenase method. The sensitivity of the assay permits enzyme determinations in extracts from 5 mg leaves or 100 mg roots.  相似文献   

17.
Four aquatic fungi —Apodachlya brachynema and A. minima (Leptomitales), Aphanomyces laevis (Saprolegniales), and Pythium ultimum (Peronosporales) —were tested for growth in synthetic media containing one of a variety of carbon sources. Apodachlya brachynema readily utilized five amino acids — alanine, glutamate, aspartate, proline and leucine — as well as glucose and acetate. Growth on sucrose as a carbon source was slight. Apodachlya minima differed from A. brachynema in that it could not utilize proline and leucine. Aphanomyces laevis grew well on only three of the substrates tested — glucose, alanine and glutamate. Pythium ultimum utilized glucose, sucrose, maltose, cellobiose, alanine, glutamate, aspartate, proline, asparagine, ornithine, and serine, but not eight other amino acids. All of these fungi hydrolyzed gelatin. Radioactively labeled carbon dioxide was released during incubation of Aphanomyces laevis in media containing labeled leucine, proline, or phenylalanine. These data provide evidence of some catabolism of the three substrates although none of these substrates can support the growth of Aphanomyces laevis as a sole source of carbon and nitrogen.  相似文献   

18.
Halogenated compounds such as α-halocarboxylix acids (αHAs) are widely liberated into the ecosystem through the prevailing xenobiotic activities that involve the use of herbicides for weed management in the agricultural sector and mass production of various commercial halogenated chemical intermediates. Since such compounds exert stress on the environment owing to their recalcitrance and are not easily degraded, the study aimed to isolate, identify, and characterize dehalogenase-producing bacteria with the purpose of bioremediation. The MX1 bacterium was successfully isolated from seawater samples off the coast of Desaru, Malaysia, using an enrichment technique supplemented with 2,2-dichloropropionic acid (2,2-DCP). Interestingly, the MX1 strain grew best in a 20 mM 2,2-DCP minimal medium as the sole carbon source and illustrated a 44 ± 0.2 h cell-doubling time as well as a 38 μmol Cl?/ml maximum rate of chloride ion release. However, 2,2-DCP–containing medium with concentrations that exceeded 30 mM inhibited the growth of the MX1, possibly attributable to the increased toxicity of the compound on the bacteria. Biochemical examinations and 16S rDNA sequence analysis revealed that the MX1 strain shares high identity to Pseudomonas aeruginosa, and the gene sequence was deposited into GenBank as Pseudomonas aeruginosa MX1 under accession number KP336490. The presence of the putative dehalogenase gene in the MX1 strain was established by polymerase chain reaction (PCR) analysis, which proved the presence of conserved amino acid residues belonging to the Group I dehalogenase. This is the first report detailing a P. aeruginosa strain capable of degrading the recalcitrant 2,2-DCP and its functional amino acid residues.  相似文献   

19.
Summary Low molecular weight nitrogenous impurity compounds as well as raffinose are negative quality factors that interfere with efficient processing of sugarbeet (Beta vulgaris L.) for sucrose. In order to identify nutrient media for cell selection of biochemical mutants or transgenics that might have reduced levels of these processing impurities, the ability of 10 endogenous compounds to serve as sole nitrogen or carbon source for suspension plating and subculture callus growth was evaluated. The most productive concentrations of nitrate, ammonium, l-glutamine, l-glutamate, urea, and l-proline as sole nitrogen sources supported plating callus growth at 106, 159, 233, 167, 80, and 52%, respectively, as well as the historical 60 mM mix of nitrate and ammonium in Murashige-Skoog medium. Glycine betaine and choline did not support growth. d(+) Raffinose and d(+) galactose supported plating callus growth only 67 and 25%, respectively, as well as sucrose as sole carbohydrate source. No callus growth occurred on glutamine, glutamate, or glycine betaine as the sole carbon or carbon plus nitrogen source. Platings on either nitrate or ammonium as sole nitrogen source did not differ in sensitivity to the nitrate uptake inhibitor phenylglyoxal, suggesting that phenylglyoxal lacks the specificity for use in selection for mutants of nitrate uptake. The ability of raffinose to be used as the carbon source, and glutamine or glutamate as the nitrogen source, may preclude their use for selection of genetic variants accumulating less of these processing impurities. However, mutants or transgenics able to utilize either glutamine, glutamate, or glycine betaine might be selectable on media containing any one of these as carbon, nitrogen, or carbon plus nitrogen source, respectively, that is incapable of supporting wild-type cell growth.  相似文献   

20.
When solutions of [14C]glycollate, glycine, serine, glycerate,or glucose were supplied to segments of wheat leaves throughtheir cut bases in the light, most of the 14C was incorporatedinto sucrose in air but in CO2-free air less sucrose was made.The synthesis of sucrose was decreased because metabolism ofserine was partly blocked. Sucrose synthesis from glucose andglycerate in CO2-free air was decreased but to a smaller extent;relatively more CO2 was evolved and serine accumulated. Theeffects of DCMU and light of different wavelengths on metabolismby leaves of L-[U-14C]serine confirmed that simultaneous photosyntheticassimilation of carbon was necessary for the conversion of serineto sucrose. Of various products of photosynthesis fed exogenouslyto the leaves -keto acids were the most effective in promotingphotosynthesis of sucrose and release of 14CO2 from 14C-labelledserine. This suggests that in CO2-free air the metabolism ofserine may be limited by a shortage of -keto acid acceptorsfor the amino group. In CO2-free air added glucose stimulatedproduction of CO2 and sucrose from D-[U-14C]- glycerate andno competitive effects were evident even though glucose is convertedrapidly to sucrose under these conditions. In addition to asupply of keto acid, photosynthesis may also provide substratesthat can be degraded and provide energy in the cytoplasm forthe conversion of glycerate to sugar and phosphates and sucrose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号