首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Bird Study》2012,59(3):293-305
ABSTRACT

Capsule: Smaller woodlands not only support fewer species but also show different avian community composition due to loss of woodland interior and an increase in edge habitat.

Aims: To use observed community composition changes, rather than traditional total species richness-area relationships, to make area-specific management recommendations for optimizing woodland habitat for avian communities in fragmented landscapes.

Methods: 17 woodlands were selected in Oxfordshire, UK, with areas between 0.2 and 120 ha. Three dawn area searches were conducted in each woodland between 1st April and 28th May 2016 to record encounter rates for each species. The impact of internal habitat variation on woodland comparability was assessed using habitat surveys.

Results: Woodlands with area less than 3.6 ha showed a significant positive relationship between total avian species richness and woodland area. Woodlands with area over 3.6 ha were all consistent with a mean (± se) total richness of 25.4?±?0.6 species, however the number of woodland specialists continued to increase with woodland area. Woodland generalists dominated the total encounter rate across the area range, however the fractional contribution of woodland specialists showed a significant positive correlation with woodland area, while the fractional contribution of non-woodland species significantly decreased. Non-woodland species numbers peaked in mid-sized woodlands with enhanced habitat heterogeneity.

Conclusions: Community composition analysis enabled more targeted recommendations than total species richness analysis, specifically: large woodlands (over 25?ha) in southern UK should focus conservation efforts on providing the specific internal habitats required by woodland specialists; medium-sized woodlands (between approximately 4 and 25?ha) should focus on promoting internal habitat variety, which can benefit both woodland species and non-woodland species of conservation concern in the surrounding landscape; small woodlands (under 4?ha) should focus on providing nesting opportunities for non-woodland species and on improving connectivity to maximize habitat for woodland generalists and facilitate movement of woodland specialists.  相似文献   

2.
I. Amezaga  M. Onaindia 《Ecography》1997,20(3):308-318
Vegetation and seed bank changes due to the replacement of a native woodland 29 yr ago by coniferous plantations (evergreen coniferous Pinus: radiata and deciduous coniferous Larix kaempferi ) were studied in a replicated experiment in the Basque Country, northern Spain In the vegetation the species richness was lower in both coniferous plantations than in the native woodland but there was no significant difference in species richness between the two coniferous plantations The highest similanty between the vegetation and the seed bank was in the P radiata plantations (0 51) There was higher vegetation similarity between the native woodland and the larch plantation (0 65) than that with the pine plantation (0 58) Seed bank species richness was higher in the larch plantation than in the native woodland but species richness in the seed bank did not differ between the coniferous plantations The seed bank showed no difference in the species similarity between the plantations and the native woodland This was mainly due to the similanty between the broad ranged species In the coniferous plantations the vegetation diversity was lower than in the native woodland, however, in the seed bank the diversity was higher Coniferous plantations affected mainly the shade-tolerant and shade-intolerant vernals ( Caltha palustris, Galium odoratum, Heleborus viridis and Saxifraga hirsula ), which disappeared from the field layer of plantations while the shade-intolerant not vemals were favoured by the plantations ( Blackstonia perfoliata, Danthonia decumbens, Deschampsia flexuosa, Hypericum androsaemum, Holcus lanatus, Lotus cormiculatus and Plantago lanceolata ) There was no significant difference in vegetation or seed bank between the two types of coniferous plantations  相似文献   

3.
A study over 4 years into the number of breeding bird species and species turnover (extinctions and colonisations) in relation to area was conducted in 35 woodlands, set in an intensively farmed landscape, in north-east Essex, UK. A total of 46 species was recorded. The number of species breeding increased with woodland area; the slope of the species–area relationship did not differ between years. Habitat diversity was the only other measured variable to influence species richness. Absolute species turnover was independent of woodland area but relative turnover declined with increase in woodland area. The numbers of territories of nine species were determined. For four summer visitors the number of woods occupied increased as the overall populations increased but, for the other species, changes in overall population size led to changes in numbers in occupied woods. Chaffinch Fringilla coelebs and Song Thrush Turdus philomelos were more associated with woodland edges, Nightingale Luscinia megarhynchos, Garden Warbler Sylvia borin, Chiffchaff Phylloscopus collybita and Willow Warbler P. trochilus with interiors. Several species showed an inverse relationship between population density and woodland area. Collections of small woods hold similar species richness to single large woods. While the acquisition of large woods for conservation purposes should be a priority, the extension of smaller woods to a size of about 10 ha would be highly beneficial to both the species richness and population stability of regional woodland bird assemblages.  相似文献   

4.
Mountain forests deserve special attention from ecologists and conservation biologists given the ecosystem services they provide to society, and their threat under global change. In the subalpine region of the Andes, Polylepis woodlands occur as arboreal islands in a matrix of grassland and scrub. Due to overgrazing and burning, however, these woodland patches are believed to cover only 11% of their potential area in Bolivia, core area for Polylepis. We reviewed the knowledge on the species diversity for the Bolivian Polylepis woodland remnants, assessed the conservation status of the occurring species, determined their trophic niche, and related species richness with climatic variables and elevation. Based in 31 publications, we found 780 identified species occurring in Polylepis woodlands: 425 plants, 266 birds, 46 mammals, 35 butterflies and 8 reptiles. Ten of the 13 Bolivian Polylepis species, as well as 7 other plant species, 14 bird species and 4 mammal species were categorized as threatened or near threatened according to IUCN criteria. In general, plant species richness increased with increased precipitation and length of the growth season, while it decreased with increasing elevation. There was a positive relationship between bird species richness, precipitation and length of the growth season. The highest bird endemism in Polylepis woodland remnants occurred at intermediate elevations, temperatures and precipitation. Mammal species richness decreased with increasing maximum temperature. Finally, we discuss the most important knowledge gaps regarding biodiversity in Bolivian Polylepis woodland remnants.  相似文献   

5.
Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can mediate plant interactions, thereby affecting plant community structure. Little is known, however, about whether the presence of different AMF species leads to differences in plant community structure or invasion success by introduced species. To investigate the effects of AMF species on community structure and invasion, we created replicate microcosms containing soil inoculated with one of three different AMF species (Glomus spurcum Pfeiffer, Walker & Bloss, Scutellospora erythropa (Koske & Walker) Walker & Sanders, or Scutellospora verrucosa (Koske & Walker) Walker & Sanders) or a mixture of all three AMF species. Seeds of seven naturally co‐occurring plant species (Ageratum conyzoides L., Cyperus compressus L., Chamaecrista nictitans (L.), Crotalaria incana L., Hyptis pectinata (L.) Poit., Sida rhombifolia L., Melinis repens (Willd.) Zizka) in Hawai‘i were sown equally into these microcosms, which were placed on outdoor benches. Plant community development was monitored over a season. Mid‐way through the experiment, an invader (Bidens pilosa L.) was added to the established communities to determine whether mycorrhizal species identity affected invasion success. Final aboveground and belowground phytomass were used to assess plant community differences among treatments. Although the identity of the dominant plant species (Melinis repens) remained the same in all treatments, community dominance, community productivity, plant species richness, Shannon index of diversity, and invasion success all varied with AMF species identity. Invasion success was not inversely related to species richness or diversity. Instead, increased richness, diversity, and invasion success all appeared to be related to decreased dominance by M. repens in the presence of certain AMF species. These results indicate that the composition of the AMF community belowground can influence the structure of the plant community aboveground, and may play a role in facilitating or repelling invasion.  相似文献   

6.
We investigated factors that limited the distribution of phytophagous species within a woodiand system in Midlothian, Scotland. A pattern analysis was conducted of phytophagous species on a total of 45 Fagus sylvatica within 15 woodlands. Species richness counted on collected leaves was tested against within-and between-wood variables. Variables used in a regression with arthropod data from Fagus were used to estimate the phytophage richness on Betula pendula and Quercus robur in the same woods. Convariance in the number of phytophages in sampled woods was found for Fagus over three years and for Fagus, Betula and Quercus in 1992. Association analysis was used to classify the woods into species rich or poor based on presence or absence matrices. The main factors that limit phytophages on Fagus (gaps along the woodland edge, depth and species richness of the field layer. density of leaf litter and the extent of contiguous woodland cover, when including hedgerows and lines of trees) affect phytophages of similar life history strategy on other tree species within the same woods. Eighty-six per cent of species were lost because certain life history stages were vulnerable to factors that prevail in woods of poor structure. The nature conservation value of woodlands could be assessed using the correlated vulnerability of particular phytophages across tree species under specific woodland conditions.  相似文献   

7.
Novel or emergent ecosystems arising from human action present both threats and opportunities for biodiversity. It has been suggested that exotic species can “facilitate” or “inhibit” native biodiversity through habitat modification. In Britain, there is a discussion over the contribution to biodiversity of plantations of exotic conifer species as these are commonly thought to have little relevancy as a habitat for native biodiversity. To address this we compared the species richness of a range of different taxonomic groups (lichens, bryophytes, fungi, vascular plants, invertebrates and songbirds) in exotic and native forest stands of differing structural stages in northern and southern Britain. In terms of overall native species-richness there was no significant difference between the exotic and the native stands. In the north, six species groups showed higher values in the exotic Sitka spruce (Picea sitchensis) stands with the remaining six showing higher values in the native Scots pine (Pinus sylvestris) stands. Most notably, lichen species richness was much lower in the exotic stands compared to the native stands, whereas bryophyte and fungal species richness was proportionately higher in the exotic stands. In the south, five species groups (all invertebrate taxa) showed higher species richness in exotic Norway spruce (Picea abies) stands compared to native oak (Quercus robur) stands. Five species groups had higher species-richness in the oak stands, in particular lichens and fungi. It is concluded that emergent ecosystems of exotic conifer species are not irrelevant to biodiversity. Where already well-established they can provide habitat for native species particularly if native woodland is scarce and biodiversity restoration is an immediate priority.  相似文献   

8.
The macrofungal species richness and community assemblages in Italian native woodlands of oaks and Carpinus betulus and non-native woodlands of Pinus spp., Cupressus sempervirens and Eucalyptus camaldulensis were examined through the collection of basidiomata and ascomata over 1 year. The sampling in Collestrada (Umbria) and Pizzo Manolfo (Sicily) forests revealed 216 species of macrofungi. The results indicate differences in macromycete richness and diversity patterns between the two sites. The dominant tree species of the two sites were different; thus, the Collestrada forests had higher mycorrhizal species richness, while the Pizzo Manolfo forest had a higher relative number of saprotroph macrofungi. The macrofungal community of Quercus frainetto woodland from Collestrada forest was richer and more diverse than the other site's woodland types. This study highlighted that both Collestrada and Pizzo Manolfo forests provide a habitat for diverse macrofungal species, not in the least ectomycorrhizal species.  相似文献   

9.
Summary

The detrimental effects of conifer plantations on open ground habitats have been well catalogued and discussed, but the potential contribution of planted forests to the conservation of woodland biodiversity has not been quantified to the same extent. This quantification is needed urgently to help forest managers fulfil commitments to biodiversity enhancement as outlined in the UK Biodiversity Action Plan, the UK Forestry Standard and the UK Woodland Assurance Scheme (UKWAS). Results are presented from a five-year programme of research aimed at obtaining baseline information on biodiversity in planted forests and evaluating the contribution of planted forests to the conservation of native flora and fauna. Fifty-two plots were surveyed in total, covering a range of different tree crops (Scots pine Pinus sylvestris L., Sitka spruce Picea sitchensis (Bong.) Carr., Norway spruce Picea abies L. and Corsican pine Pinus nigra var maritima (Aitón) Melville) and stand ages (pre-thicket, mid-rotation, mature and over-mature) in three contrasting bioclimatic zones (upland, foothills and lowlands) throughout Britain. Additional plots were established in semi-natural woodland to allow comparisons between the biodiversity of plantations and native stands. Over 2000 species were recorded in total, including 45 Red Data Book species. Planted stands had similar or richer fungal and invertebrate communities to those of the native stands but poorer lichen and vascular plant communities. The latter were strongly affected by shading, dense, mid-rotation Sitka spruce stands having the lowest species counts. In contrast, these stands had a high diversity of mycorrhizal fungi, including a number of rare and threatened species normally associated with native pine wood. Bryophyte species-richness was related more to climate than woodland type, with the wetter upland spruce and native oak stands having the most diverse communities. Compared to the younger planted stands, over-mature planted stands had a higher proportion of species characteristic of semi-natural woodland stands. This related to greater structural diversity and higher deadwood volumes in the over-mature stands. It is concluded that conifer plantations make a positive contribution to biodiversity conservation in the UK and hence to the UK Biodiversity Action Plan. No single stand or crop type provides ‘optimal’ conditions for biodiversity, but the habitat value of plantations could be enhanced by increasing the area managed under alternative systems to clear-felling, such as ‘continuous cover’ and/or non-intervention natural reserves.  相似文献   

10.
Question: How are plant species and functional group composition, and potential sward height affected by implementation of different grazing regimes on previously abandoned semi-natural grassland? Location: The Jizerské mountains, northern Czech Republic. Methods: We established a randomized block experiment with the following treatments: unmanaged control (U), intensive (IG) and extensive (EG) continuous grazing, first cut followed by intensive (ICG) and first cut followed by extensive (ECG) continuous grazing for the rest of the growing season. The percentage cover of all vascular plant species was recorded in 40 permanent plots. Results: Total plant species richness increased in all managed treatments, whereas species number was reduced in U at the end of the experiment. Tall forbs (Aegopodium podagraria, Galium album, Anthriscus sylvestris, Cirsium arvense) as well as tall grasses (Elytrigia repens and Alopecurus pratensis) were more abundant in U. Species associated with both grazing treatments (IG, EG) were Dactylis glomerata, Festuca rubra agg. and Phleum pratense. Agrostis capillaris, Taraxacum spp., Trifolium repens, Ranunculus repens and Cirsium vulgare were promoted by ECG and ICG. Abundance of tall grasses and tall forbs reflected the intensity of management in the order U>EG, ECG>IG, ICG. Prostrate forbs, on the other hand, increased their cover with increasing intensity: ICG>IG>ECG>EG. Conclusions: Plant species composition of semi-natural grasslands is affected by the defoliation regime. Continuous grazing on abandoned grassland alters the sward structure towards a permanent pasture with short, light-sensitive grasses and prostrate forbs. To maintain or enhance plant species richness in semi-natural grasslands, understanding the effects of different grazing regimes on plant species composition is necessary.  相似文献   

11.
This study compared the bird assemblages of native semi-natural woodlands and non-native Sitka spruce (Picea sitchensis) plantations in Ireland to identify what vegetation variables most influenced birds and to identify management targets in plantations to maximise future bird conservation. Point counts were conducted in 10 Oak (Quercus spp.) and 10 Ash (Fraxinus excelsior) native woodlands and in five Mid-rotation (20–30 years old) and five Mature (30–50 years old) Sitka spruce plantations. Ordination was used to characterise woodland types according to their constituent bird species. Total bird density (calculated using Distance software) and species richness were assessed for the different woodland types. Oak and Ash woodland bird assemblages were separated from Mid-rotation and Mature plantations by the ordination. There was no difference in total bird density between any of the woodland types. Oak woodlands had significantly higher species richness than either Mid-rotation or Mature Sitka spruce plantations. Ash had higher species richness than Mature Sitka spruce plantations. Understorey vegetation was negatively associated with total bird density, which also varied with survey year. Understorey vegetation was positively associated with species richness. Reasons for the relationships between vegetation and bird assemblages are discussed. Management should seek to increase shrub and understorey vegetation in the Mid-rotation phase to improve the contribution of plantations to bird conservation.  相似文献   

12.
Sixteen sites (area 1000 m2) within the mallee region of southern Western Australia were sampled for vascular plant species richness. Species richness ranged from 17 species per 1000m2 in a Halosarcia syncarpa salt-complex site and a Eucalyptus occidentalis tree mallee site, up to 48 species per 1000 m2 in a Eucalyptus angulosa-Eucalyptus tetragona shrub mallee site. Woodland, woodland/mallee and mallee sites consisted mainly of perennial species while shrubland sites and salt-complex sites had a higher percentage of ephemeral species. Sites with the highest species richness occurred on soils with the lowest nutrient content. Sites with lowest species numbers were those with severe habitat conditions or where better nutrient conditions may have provided the dominants with a competitive advantage to suppress associated species.  相似文献   

13.
We hypothesised that plant species composition and richness would affect soil chemical and microbial community properties, and that these in turn would affect soil microbial resistance and resilience to an experimentally imposed drying disturbance. We performed a container experiment that manipulated the composition and species richness of common pasture plant species (Trifolium repens, Lolium perenne, and Plantago lanceolata) by growing them in monoculture, and in all the possible two and three-way combinations, along with an unplanted control soil. Experimental units were harvested at four different times over a 16-month period to determine the effect of plant community development and seasonal changes in temperature and moisture on belowground properties. Results showed that plant species composition influenced soil chemistry, soil microbial community properties and soil microbial resistance and resilience. Soil from planted treatments generally showed reduced soil microbial resistance to drying compared to unplanted control soils. Soils from under T. repens showed a higher resistance and resilience than the soils from under P. lanceolata, and a higher resistance than soils from under L. perenne. We suggest that differences across soils in either resource limitation or soil microbial community structure may be responsible for these results. Plant species richness rarely affected soil microbial community properties or soil microbial resistance and resilience, despite having some significant effects on plant community biomass and soil nitrogen contents in some harvests. The effect that treatments had for most variables differed between harvests, suggesting that results can be altered by the stage of plant community development or by extrinsic environmental factors that varied with harvest timing. These results in combination show that soil microbial resistance and resilience was affected by plant community composition, and the time of measurement, but was largely unrelated to plant species richness.  相似文献   

14.
One key environmental risk associated with the release of novel disease‐resistant plants is the potential for non‐target host populations to acquire resistance genes and undergo enemy release, leading to damage to associated native plant populations in high conservation‐value ecosystems. Unfortunately, the dynamics of most natural pathosystems are poorly understood, and risk assessment of disease‐resistant plants remains a challenge. Here we describe the first stage of a multi‐tiered risk assessment strategy aimed at quantifying potential ecological release in a model pathosystem (the weedy pasture species Trifolium repens infected with Clover yellow vein virus; ClYVV) in order to assess the level of risk posed by genetically modified and conventionally bred disease‐resistant host genotypes to non‐target plant communities in south‐eastern Australia. Glasshouse inoculation and growth experiments using 14 ClYVV isolates and 20 wild T. repens lines collected from high conservation‐value montane grassland and woodland communities show that viral infection reduces the survival and growth of host plants by on average 10–50%. However, T. repens lines exhibited variable levels of resistance and tolerance to virus infection and ClYVV isolates differed in infectivity and aggressiveness, with grassland isolates having a greater pathogenic effect on associated host plants than woodland isolates. We conclude that ClYVV potentially plays an important role in limiting the size of T. repens populations in some at‐risk non‐target ecosystems and that second‐tier field experiments are required to adequately quantify the risk associated with the commercial release of V‐R T. repens genotypes in Australia.  相似文献   

15.
Human population growth drives intrusion and progressive conversion of natural habitats for agriculture. We evaluated human impacts on bat species diversity and distribution among four vegetation types in and around Lake Bogoria National Reserve between November 2012 and July 2013. Plants were surveyed using the Braun–Blanquet cover/abundance method, whereas bats were sampled using standard mist nets erected on poles at ground level. Floristic similarity analysis revealed three broad vegetation assemblages, namely riverine vegetation, farmland and Acacia woodland/Acacia–Commiphora woodland. Two hundred and 33 bats representing eleven species in eleven genera and seven families were recorded. These were Epomophorus minimus, Rhinolophus landeri, Hipposideros caffer, Cardioderma cor, Lavia frons, Nycteris hispida, Chaerephon pumilus, Mops condylurus, Neoromicia capensis, Scotoecus hirundo and Scotophilus dinganii. Species richness estimators indicated that sampling for bats at ground level was exhaustive. Bat species richness and diversity were highest in the more structurally complex Acacia woodland compared to more homogenous farmlands where we recorded only common and generalist species that often occur in open habitats. The higher bat species richness and diversity in the Acacia woodland as compared to farmland underscore the importance of remnant natural savannah woodlands in the conservation of bats and other elements of biodiversity .  相似文献   

16.
Elymus repens (L.) Gould and Agrostis stolonifera (L.), are competitive grasses with guerrilla strategy that invade grasslands with a low stocking rate. In this work, we tested the hypotheses that grazing exclusion facilitates vegetative development of rhizomes and stolons of these clonal grasses and that such change is a key mechanism for their abundance in set-aside grasslands. The competitive capacities of these two guerrilla species were characterised by samples in plant community (species richness and biomass) and on the level of individual species (morphometric measurements on stolons and rhizomes) during a growing season. Compared to grasslands where grazing was excluded for three years, species richness was higher in grazed site and the plant community structure differed. Indeed, with grazing exclusion, a shift from annual species with a diversified growth-form to perennial species with a tall tussock and graminoid growth-form was monitored. In ungrazed situation, Elymus repens and Agrostis stolonifera were the dominant grasses, and the standing biomass for the lowland community showed a significant increase compared to the grazed site. Vegetative development increased competitive capacities of these two guerrilla species and led by phenomenon of competitive exclusion to the disappearance of annuals species. With grazing cessation, Elymus repens was found to increase the size of aerial traits (shoot length and the number of leaves per shoot) and this may both be propitious for achieving dominance within plant communities and also maintaining its competitive local advantage. By contrast, Agrostis stolonifera showed an increase in a root trait, i.e. rhizome length, in the fenced site, which provide good ability for spatial propagation and then to explore adjacent patches. We concluded that Elymus repens presented a morphological capacity to change its colonising strategy from a guerrilla strategy to a phalanx strategy, by morphological variability of aerial organs, when it was submitted to competitive stress and environment modifications. Agrostis stolonifera showed a capacity to escape aerial competition resulting from grazing cessation, than to increase underground propagation capacity. The present study highlighted the capacities of Elymus repens to respond in an adaptative way to competitive pressure.  相似文献   

17.
The objective of this study was to determine the influence of distance from surface water on riparian woodland communities in the Okavango Delta. Vegetation sampling was conducted in seven sites within the Okavango Delta in 20 m × 10 m belted plots placed perpendicular to the river bank. The plots were placed at 0–10 m, 10–20 m, 20–30 m, 30–40 m and 40–50 m distance classes increasing away from the river bank. Tree height, basal area, species richness, canopy cover and diversity were determined for each distance class. Indicator species analysis was used to determine the characteristic species at each distance class. Single‐factor ANOVA and Tukey post hoc analysis were used to compare species diversity, mean tree height, cover and basal area between distance classes. Correlation between distance from surface water and vegetation parameters was sought using Spearman regression analysis. All parameters except for species richness varied significantly (< 0.05) along distance from surface water. Distance from surface water was positively correlated all vegetation parameters except for mean species richness/plot. These results show that distance from surface water influences riparian plant community composition and distribution in the Okavango Delta. This implies that riparian plant species can be indicators of long‐term hydrologic conditions in the Delta.  相似文献   

18.
Subterranean termite assemblages in woodland, mallee and heath habitats of the Western Australian wheatbelt were sampled for seasonal changes in species richness and species abundance. The study was carried out in Durokoppin and Kodj Kodjin Nature Reserves between January and November 1988, and a trench method was used to sample termites. Species richness changed over time, with monthy means of: woodland 10 species (range: 5–15), mallee 8 species (range: 4–15), heath 8 species (range: 5–15). Species richness was highest in autumn and spring when termite activity in the soil was also highest due to favourable soil moisture. Amitermes neogermanus and Tumulitermes petilus were the most abundant species in woodland and mallee in all seasons. During summer, the pooled observations of these two species accounted for 50% (woodland) and 82% (mallee) of all observations. Their predominance may be due to greater tolerance of low soil moisture and a more diverse diet than obligate wood-feeders (e.g. Rhinotermitidae). The latter were generally absent near the soil surface in summer, possibly because food sources deeper within the soil were utilized. Four species were abundant in heath: Tumulitermes dalbiensis (monthly mean 20% of all species observations), T. comatus (13%), Amitermes. sp.‘R’ (18%)and Drepanotermes rubriceps (12%). These four species showed no seasonal change in their relative abundance, possibly because their diet restricted them to surface-foraging.  相似文献   

19.
In arid environments, grazing by exotic herbivores, including domestic livestock, can greatly influence native, small vertebrate assemblages. Whether the removal of livestock facilitates passive recovery of these assemblages depends on habitat condition and the species present. We explore changes in small mammal and reptile species richness, abundance, and composition in a degraded chenopod shrubland dominated by Acacia victoriae ssp. and open Acacia aneura (mulga) woodland destocked in 1976 and 1984, respectively. Data were obtained between 1997 and 2007, from two grazed and two ungrazed sites in each community. Species richness increased at a faster rate in ungrazed open A. aneura woodland, but did not differ significantly between ungrazed and grazed degraded chenopod shrubland. Subsequent analyses at a finer‐scale detected disparate responses in richness and abundance for microhabitat. At this scale, a greater number of species‐specific responses were also detected, including increased abundance of generalist species and decreased abundance of species requiring low cover. These results reiterate the potential for species‐specific responses to livestock that are more apparent in particular microhabitats. Furthermore, this investigation provides evidence for the gradual passive recovery of small mammal and reptile assemblages in both communities, which is facilitated by the removal of livestock in open A. aneura woodland in fair condition, but not degraded chenopod shrubland in poor condition.  相似文献   

20.
川西亚高山森林作为西南林区主体,是长江上游的生态屏障,该区域植被恢复方式主要为人工恢复和自然恢复,比较不同恢复方式下森林的物种组成和群落结构动态变化,对于川西亚高山森林恢复与重建有重要的意义,可以为制定合理的森林管理策略提供科学依据。基于茂县山地生态系统定位研究站不同恢复模式形成的的华山松人工林、油松人工林和自然恢复的次生林野外调查数据,分析了2005-2020年乔、灌、草三个层次的群落结构特征和多样性。结果表明:(1)不同恢复途径下,乔木层物种数都呈现增加趋势,华山松人工林、油松人工林、自然恢复的次生林乔木层物种数分别增加了11种、7种、8种;(2)华山松人工林中华山松重要值从48.06%降低到31.1%,乡土阔叶树种四川蜡瓣花进入乔木层,2020年重要值增大至21.62%,油松人工林中油松重要值逐渐降低,从43.59%降至29.76%;自然恢复的次生林中,乡土树种锐齿槲栎逐渐成为第一优势种,2020年重要值增至19.9%。(3) 华山松人工林、油松人工林和自然恢复的次生林中,温带区系成分分别占总属数的71.43%,80.77%和84%,温带区系特征明显。(4)华山松人工林和油松人工林乔木层径级结构均为偏正态分布;而自然恢复的次生林径级分布呈倒"J"形,以小径级个体为主。(5)不同林型的乔木层高度在15年间呈现增加的趋势,具体表现为油松人工林>华山松人工林>自然恢复的次生林。(6)乔木层Shannon-wiener指数和 Simpson指数均表现为自然恢复的次生林显著大于两个人工林,丰富度指数和均匀度指数表现为油松人工林最大;灌木层4个多样性指数均表现为油松人工林最大;草本层的丰富度指数、Shannon-wiener 指数和 Simpson 指数均表现为油松人工林较大,均匀度指数没有显著差异。结论:人工林恢复速度大于自然恢复的次生林,但自然恢复的次生林更新能力更强,且更有利于多样性的保存。两个人工林逐渐由常绿针叶林演替为以常绿针叶树为主的针阔混交林,自然恢复的次生林演替为以常绿阔叶树为主的针阔混交林。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号