首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simple approximate expressions have been derived from the theory of Zimm and Bragg for use in the analysis of experimental data on the helix-coil transition in polypeptide. On the basis of the resulting expressions practical procedures are proposed to determine two basic parameters characterizing a thermally induced transition, i.e., helix initiation parameter σ and enthalpy change for helix formation, ΔH. They have been applied to the data for poly(β-benzyl L -aspartate) (PBLA) with the result: σ = 1.6 × 10?4 and ΔH = ?450 cal/mole for PBLA in m-cresol; σ = 0.6 × 10?4 and ΔH = 260 cal/mole for PBLA in chloroform containing 5.7 vol-% of dichloroacetic acid. This result gives evidence that σ may change not only from one polypeptide to another but also for a given polypeptide in different solvents. The change in limiting viscosity number [η] accompanying the transition was measured in the same solvents. The curve of [η] versus helical content had a relatively monotonic shape for the chloroformdichloroacetic acid solutions as compared with that for the m-cresol solutions, indicating that [η] depended largely on σ. Provided that [η] is a direct measure of the mean-square radius of gyration, 〈S2〉, the results are consistent with the theoretical predictions of Nagai and of Miller and Flory for 〈S2〉.  相似文献   

2.
3.
4.
5.
The thermal helix–coil transition of poly(γ-benzyl L -glutamate-co-ε-carbobenzoxy-L -lysine) copolypeptides was studied in solvent mixtures of different compositions. The cooperativity parameter v changes linearly with polymer (and solvent) composition, whereas the heat of the transition shows a very pronounced minimum as a function of polymer composition. This minimum cannot be due only or mainly to the solvent changes and must be attributed to the effect on the transition of the side chains of the polypeptides.  相似文献   

6.
NMR measurements of poly(γ-benzyl-L -glutamate) are reported in several different strengths of magnetic field to determine the relaxation time of the helix–coil transition. Nmr spectra of various samples had line shapes varying from the double to single, depending on the extent of the polydispersity of the sample. This result indicated that the correct line shape of a polypeptide is obscured in the overlapping of multipeaks, which are due to the heterogeneity of the molecular weight in the sample. Thus, the conventional line-shape analysis could not be applied to the kinetic study of the helix–coil transition of polypeptides without consideration of this polydispersity effect on the line shape. To overcome this difficulty, we measured linewidths of nmr spectra for fairly monodisperse samples, using various nmr spectrometers, having field strengths from 60 to 220 MHz. The results were analyzed by a quadratic equation, which involves an additional term proportional to the frequency difference of two sites. The equation differs from the conventional quadratic equation, usually utilized in the case of the fast-exchange limit, only in this additional term. This modification is required to evaluate correctly the unusual broadening of the linewidth resulting from the polydispersity effect and to determine the relaxation time reflected in nmr. Nmr spectra of three samples (DP-35, 85, and 250) were measured by 220-, 100-, and 60-MHz spectrometers in trifluoroacetic acid/chloroform at 28°C and linewidths were analyzed. Relaxation times of the helix–coil transition obtained at the transition midpoint are 2.5 × 10?4, 7 × 10?4, and 1.1 × 10?3 sec, for DP-35, 85, and 250, respectively.  相似文献   

7.
13C-nmr spectra of poly(β-benzyl L-aspartate) containing 13C-enriched [3-13C]L -alanine residues in the solid state were recorded by the cross polarization–magic angle spinning method, in order to elucidate the conformation-dependent 13C chemical shifts of L -alanine residues taking various conformations such as the antiparallel β-sheet, the right-handed α-helix, the left-handed α-helix, and the left-handed ω-helix forms obtained by appropriate treatment. The latter two conformations for L -alanine residues are achieved when L -alanine residues are incorporated into poly(β-benzyl L -aspartate). We found that the alanine Cβ carbon show significant 13C chemical shift displacement depending on conformational change, and gave the 13C chemical shift values at about 17 ppm for the left-handed ω-helix, 14 ppm for the left-handed α-helix, 15.5 ppm for the right-handed α-helix, and 21.0 ppm for the antiparallel β-sheet relative to tetramethylsilane.  相似文献   

8.
In this paper two points are considered: the methods of evaluating the helical content θ and the calculation of the parameters of the transition from experimental data and its interpretation. The parameter ΔH obtained is in good agreement with the calorimetric one and v is found to be independent of temperature and solvent and in agreement with the ordinarily accepted value for poly(γ-benzyl-L -glutamate). The different methods of estimating θ are discussed for both polypeptides.  相似文献   

9.
Transient electric birefringence of poly(L -α,γ-diaminobutyric acid hydrochloride) in methanol/water mixtures has been measured over a wide range of field strengths and solvent compositions and at different polymer concentrations and temperatures. The molar ellipticity at 222 nm and the specific Kerr constant underwent an abrupt change between 75 and 80 vol % methanol at 25°C, accompanied by a solvent-induced helix–coil transition. Anomalous birefringence transients were observed between 78 and 80 vol% methanol above threshold field strengths. The double logarithmic plots of the steady-state specific birefringence versus the square of field strength for different solvent compositions and polymer concentrations could be superimposed by shifting them horizontally along the abscissa and vertically along the ordinate except for the range where anomalous transients were observed. The threshold field strength could be estimated from the point at which a downward deviation occurred. It increased with increasing polymer concentration and with increasing methanol content on the verge of the transition region. The results were interpreted as indicating that a conformational change from the charged helix to the charged coil is induced by high fields in this system, as in the case of poly(L -lysine hydrobromide) in methanol/water mixtures.  相似文献   

10.
The helix–coil transition for poly(β-benzyl-L -aspartate) [poly(Asp[OBzl])] in solvent mixtures of trifluoroacetic acid/deuterated chloroform (F3AcOH/CDCl3) was studied by means of proton and carbon-13 nmr. Conformational fixation of the side chain occurs before the coil–helix transition of the backbone, when neighboring phenyl rings face each other. Another type of conformational fixation occurs in the side chain after the coil–helix transition of the backbone. These conformational changes of the side chain are due to the changes of the strength of the interaction between the side-chain ester group and the F3AcOH molecule. In the absence of F3AcOH (coil-forming solvent), the polymer has a rather rigid structure in which the side chain may wrap around the backbone. These conformational changes of the polymer are closely related to the changes of the interaction between the polymer and F3AcOH molecules.  相似文献   

11.
12.
The molecular-weight dependence of the rms radius of gyration of poly(γ-benzyl L -glutamate) (PBLG) in helicogenic solvents shows negative and positive deviations from expectations for an intact and rigid α-helix in the higher and lower molecular-weight ranges, respectively. In order to study the reason for both deviations, we compare the extant experimental data of with those computed for wormlike chain, freely jointed rod, and a rigid rod having random-coil portions at both ends. The computation for the freely jointed rod and the rigid rod having frayed ends is carried out by a simulation method of Muroga. From the Zimm and Bragg theory and the above comparisons, it is concluded that both deviations can be self-consistently explained if PBLG in helicogenic solvents has an essentially intact α-helical structure with some flexibility arising from random fluctuations in hydrogen bond length. This flexibility explains the negative deviations in the high molecular weight region. The positive deviations in the low molecular weight region result from the tendency of helices to unwind at the ends. © 1998 John Wiley & Sons, Inc. Biopoly 45: 281–288, 1998  相似文献   

13.
A strong magnetic field has been utilized to orient the liquid crystalline phase of concentrated polypeptide solutions enabeling the preparation of nematic solid films. The uniaxially oriented nematic films are suitable for x-ray studies of the polypeptide backbone chain conformation. A distorted α-helix with 3.5 residues per turn is observed in nematic films of the L -isomer of poly (benzyl glutamate) when the film is cast from chloroform. The normal α-helix (3.6 residues per turn) is found in similarly prepared films cast from dichloromethane.  相似文献   

14.
Kunio Takeda 《Biopolymers》1985,24(4):683-694
Conformational changes of poly(L-ornithine) [(Orn)n] were studied in a sodium dodecyl sulfate (NaDodSO4) solution by CD. (Orn)n adopted an unstable and a stable helical structure below and above the NaDodSO4 concentration range where β-structure was favored, respectively. CD stopped-flow was used to monitor the transitions from coil to the unstable helix, from the helix to β-structure, and from coil to β-structure. Only the rate of the helix to β-structure transition was accelerated by an increase in NaDodSO4 concentration, whereas the rates of the others were independent of NaDodSO4 concentration. The fractions of coil, α-helix, and β-structure in each conformation of (Orn)n caused by NaDodSO4 were computed by simulating a mixed spectrum of typical CD spectra for these structures to the experimentally obtained spectrum. The contents of the unstable and stable helical structures were less than 50 and 73%, respectively.  相似文献   

15.
A polarimetric electric-field-jump relaxation apparatus is described and used to determine the relaxation spectrum for the helix–coil transition of poly(α,L -glutamic acid) in water at 24°C. A maximum relaxation time of 1.7 μc occurs at the transition midpoint (pH = 5.9) yielding a rate constant for helical growth of 6 × 107 sec?1.  相似文献   

16.
Poly-β-benzyl-L -aspartate (poly[Asp(OBzl)]) forms either a lefthanded α-helix, β-sheet, ω-helix, or random coil under appropriate conditions. In this paper the Raman spectra of the above poly[Asp(OBzl)] conformations are compared. The Raman active amide I line shifts from 1663 cm?1 to 1679 cm?1 upon thermal conversion of poly[Asp(OBzl)] from the α-helical to β-sheet conformation while an intense line appearing at 890 cm?1 in the spectrum of the α-helix decreases in intensity. The 890 cm?1 line also displays weak intensity when the polymer is dissolved in chloroform–dichloroacetic acid solution and therefore is converted to the random coil. This line probably arises from a skeletal vibration and is expected to be conformationally sensitive. Similar behavior in the intensity of skeletal vibrations is discussed for other polypeptides undergoing conformational transitions. The Raman spectra of two cross-β-sheet copolypeptides, poly(Ala-Gly) and poly(Ser-Gly), are examined. These sequential polypeptides are model compounds for the crystalline regions of Bombyx mori silk fibroin which forms an extensive β-sheet structure. The amide I, III, and skeletal vibrations appeared in the Raman spectra of these polypeptides at the frequencies and intensities associated with β-sheet homopolypeptides. Since the sequential copolypeptides are intermediate in complexity between the homopolypeptides and the proteins, these results indicate that Raman structure–frequency correlations obtained from homopolypeptide studies can now be applied to protein spectra with greater confidence. The perturbation scheme developed by Krimm and Abe for explaining the frequency splitting of the amide I vibrations in β-sheet polyglycine is applied to poly(L -valine), poly-(Ala-Gly), poly(Ser-Gly), and poly[Asp(OBzl)]. The value of the “unperturbed” frequency, V0, for poly[Asp(OBzl)] was significantly greater than the corresponding values for the other polypeptides. A structural origin for this difference may be displacement of adjacent hydrogen-bonded chains relative to the standard β-sheet conformation.  相似文献   

17.
18.
The host–guest technique has been applied to the determination of the helix–coil stability constants of two naturally occurring amino acids, L -alanine and L -leucine, in a nonaqueous solvent system. Random copolymers containing L -alanine and L -leucine, respectively, as guest residues and γ-benzyl-L -glutamate as the host residue were synthesized. The polymers were fractionated and characterized for their amino acid content, molecular weight, and helix–coil transition behavior in a dichloroacetic acid (DCA)–1,2-dichloroethane (DCE) mixture. Two types of helix–coil transitions were carried out on the copolymers: solvent-induced transitions in DCA–DCE mixtures at 25°C and thermally induced transitions in a 82:18 (wt %) DCA–DCE mixture. The thermally induced transitions were analyzed by statistical mechanical methods to determine the Zimm-Bragg parameters, σ and s, of the guest residues. The experimental data indicate that, in the nonaqueous solvent, the L -alanine residue stabilizes the α-helical conformation more than the L -leucine residue does. This is in contrast to their behavior in aqueous solution, where the reverse is true. The implications of this finding for the analysis of helical structures in globular proteins are discussed.  相似文献   

19.
A theory of adsorption of a polypetide chain capable of undergoing the coil–β-structure transition on a solid planar surface has been developed. The mutual influence of two order–disorder phase transitions, a conformational and an adsorption transition, was investigated. Various types of adsorption transitions are possible, depending on the initial conformational state (partly or completely β-structured) and the selectivity of adsorption: (a) the second-order phase transition, in which the chain is partly structured, both in adsorbed and desorbed states; and (b) the first-order phase transition, in which the chain exhibits a regular β-structure, at least on one side of the adsorption transition boundary. The chain bonding to the surface alters the degree of β-structure, both in the case of selective and nonselective adsorption (similar to the adsorption of the chains with other types of secondary structure). We show that the slope of the adsorption curves for partly β-structural chains increases as a result of an increase in the degree of β-structuring, and this effect is even stronger than the analogous effect of β-structuring.  相似文献   

20.
The rate of conformational change of aqueous poly(α-L -lysine) solutions was measured using the electric field pulse relaxation method with conductivity detection. The relaxation time as a function of pH exhibits two maxima. One is assigned to a proton transfer reaction and the other to the helix–coil conformational transition. The helix nucleation parameter and the maximum relaxation time yield the rate constant of helix growth process (kF) according to Schwarz's kinetic theory as kF = 2 × 107 sec?1, which is comparable to that of the poly(glutamic acid) solution. The thermodynamic parameters of the helix growth process are compared with those of poly(glutamic acid).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号