首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Halophilic Archaea are adapted to a life in the extreme conditions and some of them are capable of growth on cellulosic waste as carbon and energy source by producing cellulase enzyme. The production of cellulase using free and immobilized cells of halophilic archaeal strain Haloarcula 2TK2 isolated from Tuzkoy Salt Mine and capable of producing cellulose was studied. The cells were cultured in a liquid medium containing 2.5 M NaCl to obtain the maximum cellulase activity and immobilized on agarose or polyacrylamide or alginate. Optimal salt dependence of free and immobilized cells of Haloarcula 2TK2 was established and the effects of pH and temperature were investigated. Immobilization to Na-alginate enhanced the enzymatic activity of the Haloarchaeal cells when compared to free cells and other polymeric supports. From the results obtained it is reasonable to infer that decomposition of plant polymers into simpler end products does occur at high salinities and cellulase producing haloarchael cells may be potentially utilized for the treatment of hypersaline waste water to remove cellulose.  相似文献   

2.
The α-amylase of Bacillus amyloliquifaciens TSWK1-1 (GenBank Number, GQ121033) was immobilized by various methods, including ionic binding with DEAE cellulose, covalent coupling with gelatin and entrapment in polyacrylamide and agar. The immobilization of the purified enzyme was most effective with the DEAE cellulose followed by gelatin, agar and polyacrylamide. The K m increased, while V max decreased upon immobilization on various supports. The temperature and pH profiles broadened, while thermostability and pH stability enhanced after immobilization. The immobilized enzyme exhibited greater activity in various non-ionic surfactants, such as Tween-20, Tween-80 and Triton X-100 and ionic surfactant, SDS. Similarly, the enhanced stability of the immobilized α-amylase in various organic solvents was among the attractive features of the study. The reusability of the immobilized enzyme in terms of operational stability was assessed. The DEAE cellulose immobilized α-amylase retained its initial activity even after 20 consequent cycles. The DEAE cellulose immobilized enzyme hydrolyzed starch with 27 % of efficiency. In summary, the immobilization of B. amyloliquifaciens TSWK1-1 α-amylase with DEAE cellulose appeared most suitable for the improved biocatalytic properties and stability.  相似文献   

3.
The apical domain of the chaperonin, GroEL, fused to the carbohydrate binding module type II, CBDCex, of Cellulomonas fimi, was expressed in Escherichia coli. The recombinant protein, soluble or from inclusion bodies, was directly purified and immobilized in microcrystalline cellulose particles or cellulose fabric membranes. Assisted refolding of rhodanese by the immobilized mini-chaperone showed a two-fold improvement as compared to a control. Using chromatographic refolding, 35% of rhodanese activity was recovered in only 5 min (mean residence time) as compared to 17% for spontaneous refolding. This mini-chaperone immobilized in cellulose could be a cost-efficient method to refold recombinant proteins expressed as inclusion bodies.  相似文献   

4.
This paper presents two immobilization methods for the intracellular invertase (INVA), from Zymomonas mobilis. In the first method, a chimeric protein containing the invertase INVA, fused through its C-terminus to CBD Cex from Cellulomonas fimi was expressed in Escherichia coli strain BL21 (DE3). INVA was purified and immobilized on crystalline cellulose (Avicel) by means of affinity, in a single step. No changes were detected in optimal pH and temperature when INVA-CBD was immobilized on Avicel, where values of 5.5 and 30 °C, respectively, were registered. The kinetic parameters of the INVA-CBD fusion protein were determined in both its free form and when immobilized on Avicel. K m and V max were affected with immobilization, since both showed an increase of up to threefold. Additionally, we found that subsequent to immobilization, the INVA-CBD fusion protein was 39% more susceptible to substrate inhibition than INVA-CBD in its free form. The second method of immobilization was achieved by the expression of a 6xHis-tagged invertase purified on Ni-NTA resin, which was then immobilized on Nylon-6 by covalent binding. An optimal pH of 5.5 and a temperature of 30 °C were maintained, subsequent to immobilization on Nylon-6 as well as with immobilization on crystalline cellulose. The kinetic parameters relating to V max increased up to 5.7-fold, following immobilization, whereas K m increased up to 1.7-fold. The two methods were compared showing that when invertase was immobilized on Nylon-6, its activity was 1.9 times that when immobilized on cellulose for substrate concentrations ranging from 30 to 390 mM of sucrose.  相似文献   

5.
Partially purified glucoamylase from Aspergillus awamori NRRL 3112 was immobilized on diethylaminoethyl cellulose in the presence of low ionic-strength acetate buffers at pH 4.2. The active enzyme–cellulose complex was used to convert starch substrates continuously to glucose in stirred reactors. Substrate concentrations as high as 30% could be quantitatively converted to glucose at a rate of more than 25 mg/min/liter at 55°C for periods of 3 to 4 weeks in a 4-liter reactor. Shutdowns were due to mechanical problems and not to loss of enzymes, which could be recovered with no appreciable loss of specific activity. Transfer products, such as isomaltose and panose, were present in immobilized enzyme-produced syrups but to no greater degree than in soluble glucoamylase digests of starch.  相似文献   

6.
The activity of immobilized subtilisin BPN' on pure cellulose-based membrane support was investigated using site-directed and random immobilization approaches. The catalytic activity of site-directed immobilized subtilisin on pure cellulose fiber-based materials was found to be 81% of that in homogeneous solution, while that of randomly immobilized subtilisin was 27%. Pure cellulose membrane supports provided large surface areas for high enzyme loading without diffusional limitations. The activity of immobilized subtilisin on pure cellulose support was more than twice that on a modified polyether sulfone (MPS) membrane, which was attributed to the higher hydrophilicity of cellulose. Immobilized subtilisin maintained its initial activity for 14 days at 4 degrees C and 7 days at 24 degrees C. The immobilized enzyme could resist higher temperature and operate over a wider range of pH without loss of activity. This study showed that pure cellulose fiber-based membranes are well suited for enzyme immobilization and biocatalysis.  相似文献   

7.
Streptomyces fradiaewas immobilized in polyacrylamide gel prepared from 5% total acrylamide (90% acrylamide and 10%N,N′-methylenebisacrylamide). Production of protease by the immobilized mycelia was attempted in a batch system. A dilute medium containing 0.5% starch, 0.5% meat extract, and 0.05% yeast extract was employed. The reusability of the immobilized and washed mycelia was examined. The activity of protease production by washed mycelia was rapidly decreased with increasing use cycles. The activity of the immobilized mycelia increased gradually, and reached a maximum after ten use cycles. Then, the activity gradually decreased with increasing reaction cycles. This might be caused by destruction of the gels. On the other hand, the sterilization of the surface of the immobilized mycelia was effective for elongation of the lifetime. As a result, the half-life of protease production by the sterilized immobilized mycelia was about 30 days. The rate of protease production by immobilized mycelia was 12,000 U/ml/hr. This value was four times higher than that by submerged culture.  相似文献   

8.
An extracellular tannase (tannin acyl hydrolase) was isolated from Paecilomyces variotii and purified from cell-free culture filtrate using ammonium sulfate precipitation followed by ion exchange and gel filtration chromatography. Fractional precipitation of the culture filtrate with ammonium sulfate yielded 78.7% with 13.6-folds purification, and diethylaminoethyl–cellulose column chromatography and gel filtration showed 19.4-folds and 30.5-folds purifications, respectively. Molecular mass of tannase was found 149.8 kDa through native polyacrylamide gel electrophoresis (PAGE) analysis. Sodium dodecyl sulphate–PAGE revealed that the purified tannase was a monomeric enzyme with a molecular mass of 45 kDa. Temperature of 30 to 50°C and pH of 5.0 to 7.0 were optimum for tannase activity and stability. Tannase immobilized on alginate beads could hydrolyze tannic acid even after extensive reuse and retained about 85% of the initial activity. Thin layer chromatography, high performance liquid chromatography, and 1H-nuclear magnetic resonance spectral analysis confirmed that gallic acid was formed as a byproduct during hydrolysis of tannic acid.  相似文献   

9.
Aerobic cultures of an actinomycete were found to produce penicillin V acylase (PVA) (PA, EC-3.5.1.11) extracellularly. The presence of L-2-3 diamino-propionic acid in cell wall and formation of sclerotia on culture media led to its identification as Chainia, a sclerotial Streptomyces. Partially purified acylase was adsorbed on kieselguhr and entrapped in polyacrylamide gel. The immobilized preparation proved effective with respect to retention of enzyme and enzyme activity even after 15 successful cycles. The pH optimum for crude enzyme was in the range of pH 7.5–8.0, and for the (NH4)2 SO4 fraction it was pH 8.5. The immobilized enzyme showed maximal activity at pH 9.5. The optimum temperature for acylase activity was at 55°C. The crude enzyme, ammonium sulfate fraction, and immobilized enzyme showed K m value for penicillin V of 6.13 mM, 14.3 mM, and 17.1 mM, respectively. Received: 11 December 1997 / Accepted: 9 April 1998  相似文献   

10.
Pseudomonas fluorescens-CS2 metabolized ethylbenzene as the sole source of carbon and energy. The involvement of catechol as the hydroxylated intermediate during the biodegradation of ethylbenzene was established by TLC, HPLC and enzyme analysis. The specific activity of Catechol 2,3-dioxygenase in the cell free extracts of P. fluorescens-CS2 was determined to be 0.428 μmoles min−1 mg−1 protein. An aqueous-organic, Two-Phase Batch Culture System (TPBCS) was developed to overcome inhibition due to higher substrate concentrations. In TPBCS, P. fluorescens-CS2 demonstrated ethylbenzene utilization up to 50 mM without substrate inhibition on inclusion of n-decanol as the second phase. The rate of ethylbenzene metabolism in TPBCS was found enhance by fivefold in comparison with single phase system. Alternatively the alginate, agar and polyacrylamide matrix immobilized P. fluorescens-CS2 cells efficiently degraded ethylebenzene with enhanced efficiency compared to free cell cultures in single and two-phase systems. The cells entrapped in ployacrylamide and alginate were found to be stable and degradation efficient for a period of 42 days where as agar-entrapped P. fluorescens was stable and efficient a period of 36 days. This demonstrates that alginate and polyacrylamide matrices are more promising as compared to agar for cell immobilization.  相似文献   

11.
Summary To develop an efficient method for continuous production of L-malic acid from fumaric acid using immobilized microbial cells, screening of microorganisms having high fumarase activity was carried out and cultural conditions of selected microorganisms were investigated. As a result of screening microorganisms belonging to the genera Brevibacterium, Proteus, Pseudomonas, and Sarcina were found to produce fumarase in high levels. Among these microorganisms Brevibacterium ammoniagenes, B. flavum, Proteus vulgaris, and Pseudomonas fluorescens were further selected for their high fumarase levels in the cultivation on several media. These 4 microorganisms were entrapped into a k-carrageenan gel lattice, and the resultant immobilized B. flavum showed the highest fumarase activity and operational stability.Cultural conditions for the fumarase formation and the operational stability of fumarase activity of immobilized B. flavum are detailed. Productivity for L-malic acid using immobilized B. flavum with k-carrageenan was 2.3 fold of that using immobilized B. ammoniagenes with polyacrylamide.Presented at the Annual Meeting of the Agricultural Chemical Society of Japan, Nagoya, April 3, 1978  相似文献   

12.
A preparation of living Arthrobacter simplex cells immobilized in polyacrylamide gel, which showed steroid-Δ1-dehydrogenase activity, was studied. The entrapped microorganisms catalyzed the transformation of cortisol to prednisolone and this reaction was followed spectrophotometrically or with the aid of thin layer chromatography (TLC) and high pressure liquid chromatography (HPLC). About 40% of the original activity found with free bacteria was retained after immobilization. The steroid dehydrogenase activity of polyacrylamide-entrapped A. simplex could be raised to a minor extent in alcoholic solvents or by addition of a cofactor such as menadione. On incubation in various nutrient media, on the other hand, the activity could be increased considerablyl, usually 7–10 times. Possible causes for the observed increase in activity have been investigated, and microbial growth of the original entrapped microorganisms appears to be the major reason. Frozen activated preparations of immobilized A. simplex showed only a small loss of activity on storage for at least four months. A semicontinuous batch wise operation with immobilized A. simplex in different nutrient media was carried out. At the end of the experiment the steroid transformation capacity was 0.5 g steroid per day per g gel (wet weight).  相似文献   

13.
Abstract

Purified Acetobacter tropicalis dextransucrase was immobilized in different matrices viz. calcium-alginate, κ-carrageenan, agar, agarose and polyacrylamide. Calcium-alginate was proved to be superior to the other matrices for immobilization of dextransucrase enzyme. Standardization of immobilization conditions in calcium-alginate resulted in 99.5% relative activity of dextransucrase. This is the first report with such a large amount of relative activity as compared to the previous reports. The immobilized enzyme retained activity for 11 batch reactions without a decrease in activity which suggested that enzyme can be used repetitively for 11 cycles. The dextransucrase was also characterized, which revealed that enzyme worked best at pH 5.5 and 37?°C for 30?min in both the free as well as immobilized state. Calcium-alginate immobilized dextransucrase of A. tropicalis showed the Km and Vmax values of 29?mM and 5000?U/mg, respectively. Free and immobilized enzyme produced 5.7?mg/mL and 2.6?mg/mL of dextran in 2?L bench scale fermenter under optimum reaction conditions. This immobilization method is very unconventional for purified large molecular weight dextran-free dextransucrase of A. tropicalis as this method is used usually for cells. Such reports on entrapment of purified enzyme are rarely documented.  相似文献   

14.
Coprinus cinereus, which was able to decolorize the anthraquinone dye Cibacron Blue 3G-A (CB) enzymatically, was used as a biocatalyst for the decolorization of synthetic solutions containing this reactive dye. Coprinus cinereus was immobilized in both calcium alginate and polyacrylamide gels, and was used for the decolorization of CB from synthetic water by using a fluidized bed bioreactor. The highest specific decolorization rate was obtained when Coprinus cinereus was entrapped in calcium alginate beads, and was of about 3.84 mg g−1 h−1 with a 50% conversion time (t 1/2) of about 2.60 h. Moreover, immobilized fungal biomass in calcium alginate continuously decolorized CB even after 7 repeated experiments without significant loss of activity, while polyacrylamide-immobilized fungal biomass retained only 67% of its original activity. The effects of some physicochemical parameters such as temperature, pH and dye concentration on decolorization performance of isolated fungal strain were also investigated.  相似文献   

15.
Summary A bacteriumPseudomonas sp. KBEL 101 isolated from soil was immobilized within polyacrylamide gel and used for the synthesis of D-p-hydroxyphenylglycine from DL-5-substituted hydantoin. The half-life of immobilized whole cell D-hydantoinase was found to be about 50 hrs. In order to increase the operational stability of immobilized whole cell D-hydantoinase, a carbon or nitrogen source was supplied with the reaction mixture in the continuous stirred tank reactor. As a sole source of carbon, glycerol was found to be most effective, and the activity of immobilized whole cell enzyme was maintained stably during 7 days when 0.1%(W/V) glycerol solution was provided. In the case of nitrogen source, supplying of 0.1%(W/V) yeast extract prolonged the half-life of immobilized whole cell D-hydantoinase to about 25 days.  相似文献   

16.
This study was designed to investigate the stability of a lipase fused with a cellulose-binding domain (CBD) to cellulase. The fusion protein was derived from a gene cluster of a CBD fragment of a cellulase gene inTrichoderma hazianum and a lipase gene inBacillus stearothermophilus L1. Due to the CBD, this lipase can be immobilized to a cellulose material. Factors affecting the lipase stability were divided into the reaction-independent factors (RIF), and the reaction-dependent factors (RDF). RIF includes the reaction conditions such as pH and temperature, whereas substrate limitation and product inhibition are examples of RDF. As pH 10 and 50°C were found to be optimum reaction conditions for oil hydrolysis by this lipase, the stability of the free and the immobilized lipase was studied under these conditions. Avicel (microcrystal-line cellulose) was used as a support for lipase immobilization. The effects of both RIF and RDF on the enzyme activity were less for the immobilized lipase than for the free lipase. Due to the irreversible binding of CBD to Avicel and the high stability of the immobilized lipase, the enzyme activity after five times of use was over 70% of the initial activity.  相似文献   

17.
β-Galactosidase and other enzymes were immobilized on p-amino-carbanilated derivatives of cellulose and methylol cellulose using the diazo method and through glutaraldehyde. The optimum conditions for coupling cellulose tri-(p-amino-carbanilate) (CTAC) to β-galactosidase were established. The diazo coupling method with CTAC gave greater activity than with glutaraldehyde when coupled to β-galactosidase (Escherichia coli). The stability of the CTAC–β-galactosidase system was examined. The disubstituted p-amino-carbanilate derivative (CDAC) gave a lower activity, whereas the methylol analog (MCTAC) gave slightly greater activity. The CTAC was also used to immobilize glucose oxidase, trypsin, pepsin, and papain.  相似文献   

18.
Summary Whole cells of Kluyvera citrophila were immobilized in polyacrylamide gel. The penicillin acylase activity of immobilized whole cells was 60%–70% of native cells. When the immobilized cells were continuously cultivated for 40 h in an aerated fermentor containing peptone medium and were treated with alkali in order to remove -lactamase activity, the immobilized cells produced ampicillin up to 4.4 times faster than noncultivated cells.Ampicillin production was investigated in a column system using these cultivated immobilized whole cells. The cultivated immobilized cells showed excellent performance in continuous ampicillin production.  相似文献   

19.
Amorphous cellulose was used as a specific carrier for the deposition of self-assembled multienzyme complexes capable of catalyzing coupled reactions. Naturally glycosylated fungal cellobiohydrolases (CBHs) of glycosyl hydrolase families 6 and 7 were specifically deposited onto the cellulose surface through their family I cellulose-binding modules (CBM). Naturally glycosylated fungal laccase was then deposited onto the preformed glycoprotein layer pretreated by ConA, through the interaction of mannosyl moieties of fungal glycoproteins with the multivalent lectin. The formation of a cellulase-ConA-laccase composite was proven by direct and indirect determination of activity of immobilized laccase. In the absence of cellulases and ConA, no laccase deposition onto the cellulose surface was observed. Finally, basidiomycetous cellobiose dehydrogenase (CDH) was deposited onto the cellulose surface through the specific interaction of its FAD domain with cellulose. The obtained paste was applied onto the surface of a Clark-type oxygen electrode and covered with a dialysis membrane. In the presence of traces of catechol or dopamine as mediators, the obtained immobilized multienzyme composite was capable of the coupled oxidation of cellulose by dissolved oxygen, thus providing the basis for a sensitive assay of the mediator. Swollen amorphous cellulose plays three different roles in the obtained biosensor as: (i) a gelforming matrix that captures the analyte and its oxidized intermediate, (ii) a specific carrier for protein self-assembly, and (iii) a source of excess substrate for a pseudo-reagent-less assay with signal amplification. The detection limit of such a tri-enzyme biosensor is 50-100 nM dopamine.  相似文献   

20.
生物素化ATP硫酸化酶的表达、固定化与应用   总被引:1,自引:0,他引:1  
现代大规模焦测序技术的产生是DNA测序技术的一次革命,其关键技术之一是得到高活性的、固定于磁性微球表面的ATP硫酸化酶.生物素化的ATP硫酸化酶可以通过生物素与亲和素之间的特异结合特性固定在包被亲和素的磁性微球表面,但是利用化学修饰法将ATP硫酸化酶进行生物素化修饰很可能会影响酶的活性.利用融合表达策略,将大肠杆菌生物素酰基载体蛋白C端87个氨基酸肽段(BCCP87)与ATP硫酸化酶在大肠杆菌内融合表达,经SDS-PAGE和Western blot分析,表达的融合蛋白分子质量约为64 ku,并且能够在大肠杆菌内被生物素化.生物素化的ATP硫酸化酶能够与亲和素包被的磁珠结合,固定后的ATP硫酸化酶具有活性,并且能够用于定量检测焦磷酸盐(PPi)和焦测序,为今后建立高通量大规模焦测序系统提供了一个有效的工具酶.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号