首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
为在PrinceRupert林区的“亚北方”部分建立生态立地质量与森林生产力的联系,对从93个小杆松林分和77个白云杉林分获得的数据进行了分析.所研究的林分处于两个气候状况、8个土壤水分状况以及5个土壤养分状况.这些气候、土壤水分和养分状况被视为等级变量用于林地分类和回归分析.小杆松和白云杉的立地指数随土壤水分和养分状况变化而变化,但不依赖于气候变化.与土壤水分相关的变化格局对两个种来说很相似,但与土壤养分相关的变化格局则全然不同.在所建立的5类回归模型中,土壤小区模型对于两个种都显示出立地指数与土壤水分和养分状况具有很强的相互关系(R2>0.80,SEE≤1.6m).可以认为土壤水分和养分的等级度量在大范围内可作为小杆松和白云杉立地指数的预测预报因子.  相似文献   

2.
Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface‐incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open‐top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures.  相似文献   

3.
A. Yair  A. Danin 《Oecologia》1980,47(1):83-88
Summary A detailed study of the distribution of plant communities was conducted in an experimental site, located in the arid northern Negev of Israel, where the spatial variation in rainfall, runoff and soil moisture regime are currently being studied. Phytogeographical methods of analysis usually used for studies on a regional scale were applied for a small area extending over 11,325 m2 of a north-facing hillside. Data obtained indicate that the best water regime and a high diversity of plant species are characteristic of a massive limestone rock unit; whereas worse water regimes characterize densely jointed and thinly bedded limestones. Over slopes, developed in a uniform lithology, whose lower part is composed of a colluvial mantle, a gradual downslope worsening of the soil moisture regime is recorded within the colluvium. These changes are well expressed in the distribution of the plant communities and their phytogeographical affinities along the slopes.  相似文献   

4.
【目的】探究青海湖岸带土壤与沉积物的地化特征与细菌群落对水位扩张的响应。【方法】从岸上至岸下沿垂直青海湖岸带方向,采集距离湖面不同高度土壤(土壤:S1、S2)、岸边不同水深表层沉积物(过渡区:E0、E6、E17)及湖心表层沉积物(沉积物:D1、D2)样品,土壤与沉积物水深(土壤水深表示为负数)从小到大的变化表征岸边土壤被淹水转变为沉积物的过程。采用地球化学分析和16SrRNA基因高通量测序技术,探究岸带土壤与沉积物样品中的地化特征与微生物群落构成。【结果】青海湖水位上升导致的生境转变对岸带土壤与沉积物的理化性质、营养水平、有机碳类型等地化特征产生显著影响。具体表现为,随着水位升高,岸带土壤与沉积物的pH、矿物结合态有机碳含量显著升高,而碳氮比值、可溶性有机碳(dissolved organic carbon,DOC)、颗粒态有机碳含量显著下降。随着水位上升,青海湖岸带被淹没土壤的细菌群落多样性下降,且群落结构发生明显变化。这种变化与环境因子变化密切相关,具体表现为,细菌群落物种丰富度指数和香农多样性指数随着水位上升呈下降趋势;活性金属结合态有机碳含量与细菌群落多样性的变化密切相关;理化...  相似文献   

5.
刘彦春  尚晴  王磊  田野  琚煜熙  甘家兵 《生态学报》2016,36(24):8054-8061
作为大气与陆地生态系统之间的第二大碳通量,土壤呼吸是评价陆地生态系统碳循环及碳汇能力的不确定性来源之一。降雨格局改变及其导致的土壤水分变化是调节土壤呼吸的重要驱动。气候过渡带的水热状况受全球降雨格局改变的影响更为明显,揭示该区域森林土壤呼吸对降雨改变的响应规律有助于改善碳循环模型的预测精度。然而,气候过渡区的土壤碳排放过程如何响应降雨格局改变尚不清楚。通过在亚热带-暖温带的过渡区(宝天曼)开展降雨改变实验,以阐明锐齿栎林土壤呼吸及其温度敏感性对降雨增加(50%)和减少(50%)的响应规律。结果表明,降雨增加显著提高土壤湿度(+8.92%)而不影响土壤温度。与对照相比,降雨增加导致土壤呼吸显著提高80.5%,其土壤呼吸的温度敏感性(4.07)显著高于对照样地(2.66)。增雨处理下的土壤呼吸与土壤湿度呈负相关。降雨减少则显著降低土壤湿度(-10.25%),并对土壤呼吸有促进趋势,然而,对土壤呼吸的温度敏感性(2.64)无显著影响。减雨处理下的土壤呼吸强度与土壤湿度呈正相关。这意味着在我国亚热带—暖温带过渡区,降雨增加或减少均对土壤呼吸有不同程度的刺激作用,进而很可能减弱该区域森林生态系统土壤的固碳潜力。  相似文献   

6.
《Plant Ecology & Diversity》2013,6(3-4):405-422
Background: Steep environmental gradients, coupled with predicted high temperature rises in the Arctic make arctic mountain vegetation highly suitable for surveillance of changes related to global warming. However, guidelines and baselines for such a purpose are widely lacking since arctic mountain vegetation has been little explored.

Aims: We explore options for long-term surveillance on the basis of a detailed analysis of extant plant community patterns and their underlying environmental conditions in the mountainous inland of West Greenland.

Methods: Distribution, abundance and site conditions of vegetation types were analysed, using 664 vegetation samples and detailed vegetation maps in four altitudinal belts.

Results: Most plant communities had a restricted elevation distribution and were confined to special habitats predominantly defined by mesotopography and soil moisture.

Conclusions: Based on the strong linkage to habitat conditions, horizontal and vertical changes of species distribution and vegetation pattern are excellent indicators for inferring underlying environmental changes on three different scales. The recommendations given concerning climate sensitive species and plant communities, ecotones for setting up observation sites as well as stratification of analysis by habitats can be the basis for establishing long-term surveillance programmes on arctic mountain vegetation.  相似文献   

7.

Questions

Knowledge of how extreme drought events induce plant dieback and, eventually, plant mortality, may improve our forecasting of ecosystem change according to future climate projections, especially in Mediterranean drylands. In them, shrublands are the main vegetation communities in transition areas from a subhumid to semi-arid climate. This study analyzed differences in plant dieback after an unusual drought in 2014 and identified their main underlying factors in relation to three groups of explanatory variables: water availability, soil properties and vegetation structure attributes.

Location

Four Mediterranean shrublands along a climatic gradient in SE Spain.

Methods

At each experimental field site, we sampled a pool of vegetation structure characteristics, soil depth and soil surface properties, and we also determined water availability by continuously monitoring soil moisture and the microclimate conditions.

Results

The climatic analysis showed that there was an extreme drought event in 2014, which was below the first percentile of the driest years. Under such conditions, vegetation dieback occurred at all the study sites. However, plant dieback differed between sites and plant biotypes. Subshrubs were the main affected biotype, with diebacks close to 60% at the driest sites, and up to 40% dieback for shrubs depending on their vertical development. Relative extractable water and bare soil surface cover were the best explanatory variables of plant community dieback but changed between plant biotypes. Vegetation structure variables related to plant vertical development (leaf area index [LAI], plant height, phytovolume) were significant explanatory variables of plant dieback in shrubs, subshrubs and grasses. Consecutive dry days fitted the best model to explain subshrub dieback.

Conclusions

We found that rainfall pattern rather than total annual rainfall was the climatic factor that best determined water availability for plants in Mediterranean drylands. These results also pointed out the relevance of plant structure and soil properties for explaining ecosystem responses to extreme drought.  相似文献   

8.
Background: The extent to which nutrient availability influences plant community composition and dynamics has been a focus of ecological enquiry for decades.

Aims: Results from a long-term nitrogen (N) and phosphorus (P) addition experiment in alpine tundra were used to evaluate the importance of the two nutrients in structuring plant communities in three communities that differed in their snow cover amounts and duration and soil moisture characteristics.

Methods: A factorial N and P experiment was established in three meadows differing in initial vegetation composition and soil moisture. Plant and soil characteristics were measured after 20 years, and the dissimilarity among meadows and treatments were measured using permutational analysis of variance.

Results: Plant species richness declined uniformly across the three meadow types and in response to N and N + P additions, while both evenness and the Shannon diversity index finding indicated that nutrient additions had the highest impact on moister habitats. Overall, N impacts overshadowed changes attributed to P additions, and the N and N + P plots in wet meadow sites were the least diverse and scored the lowest dissimilarity averages among treatments. Dissimilarity estimates indicated that the control and P plots in the dry meadow community were more distinct in composition than all other plots, and especially those in the moist or wet meadows. Above-ground biomass of grasses and sedges (graminoids) increased with N additions while forbs appeared to show responses dictated in part by the graminoid responses. The most abundant grass species of moist and wet meadow, Deschampsia cespitosa, dominated N and N + P plots of the wet sites, but did not show a N response in moist areas in spite of its general abundance in moist meadow. Competition from other plant species in the moist areas likely diminished the D. cespitosa response and contributed to the resilience of the community to nutrient enrichment.

Conclusions: Initial community composition, as influenced by the specific moisture regime, appears to control the extent to which changes in nutrient resources can alter plant community structure. Long-term fertilization tends to support most but not all findings obtained from shorter-termed efforts, and wet meadows exhibit the largest changes in plant species numbers and composition when chronically enriched with N.  相似文献   

9.
A large proportion of temperate forest plant diversity is found in the herb layer. However, for many of its species, little is known about their autecology, which makes it difficult to assess potential threats and efficiently safeguard the diversity of understorey herbaceous communities. This also applies to Gagea spathacea (Liliaceae), a globally rare spring geophyte, which mainly occurs in deciduous forests of northern Central Europe. We investigated the causal relationships between population characteristics of G. spathacea and abiotic site conditions across different forest communities in the center of its distributional range. Leaf length (a surrogate of the species' vegetative propagation) was positively related to soil moisture and soil nitrogen. Consequently, mean leaf length was highest in moist forest communities of the alliance Alno-Ulmion. Moreover, mean variability in leaf length was lowest in those forests, indicating a higher and more stable vegetative propagation via bulbils. We found no support for a significant relationship between leaf length and leaf density or between leaf length and flower formation. Population density varied strongly among forest sites, but was not related to soil moisture and hardly influenced by soil nitrogen. Our results suggest that soil water and nutrient supply play a vital role in determining the species' vegetative propagation, whereas the duration of habitat continuity is most likely an important determinant of population size and density. Conservation strategies therefore require a better understanding of the complex interrelationships between abiotic site conditions and the historical context-dependency of habitats.  相似文献   

10.
This study investigates the influence of texture, soil moisture and nutrient status on the growth and survival of seedlings of two typical fynbos (Leucadendron pubescens and Passerina vulgaris) and succulent karoo (Ruschia spp.) species, which grow in the boundary zone between these two vegetation types. Seedlings of each species were grown in shalederived and sandstone‐derived soils and under xeric and mesic regimes. Under the xeric regime, the shale‐derived and sandstone‐derived soils represented fine and coarse‐textured soils, respectively. Under the mesic regime, the same soils represented nutrient‐rich and nutrient‐poor soils, respectively. The seedlings of both fynbos species died rapidly under the xeric regime, irrespective of soil type. In contrast, the succulent karoo seedlings survived for over 77 days without water. Under mesic conditions, the fynbos seedlings grew faster than the succulent karoo seedlings, irrespective of soil type. Fynbos seedlings appear to be directly limited by the environment (moisture and salinity), whereas succulent karoo seedlings may be limited by interactions with other plants.  相似文献   

11.
黄土丘陵沟壑区不同植被类型土壤有效水和持水能力   总被引:7,自引:0,他引:7  
李航  严方晨  焦菊英  唐柄哲  张意奉 《生态学报》2018,38(11):3889-3898
以黄土丘陵沟壑区坊塌流域不同植被类型为研究对象,在野外调查的基础上,利用离心机法测定不同植被类型0—10、10—20 cm土层不同吸力下的土壤含水率,并利用Van Gennuchten模型对土壤水分特征曲线进行拟合,对比分析了不同植被类型不同土层土壤水分特征曲线、土壤水分有效性和持水性。结果表明:随着植被恢复的进行,不同植被类型土壤水分特征曲线出现了明显的差异,但是其斜率基本不变且不同植被类型0—10、10—20 cm土层土壤水分特征曲线都呈近似的"S"型;不同植被类型0—10、10—20 cm土层土壤有效水范围分别为22.65%—26.80%、23.97%—28.13%,除白羊草群落和刺槐林外呈现出多年生蒿禾类群落低于灌木群落而高于一年生草本群落的变化趋势;不同植被类型土壤持水能力在0—10 cm土层没有显著性差异,在10—20 cm呈现出多年生蒿禾类群落低于灌木群落而高于一年生草本群落,其中白羊草群落最大,刺槐林最低。刺槐林有效水分和土壤持水能力都较低,建议适当采取间伐并促进其近自然化恢复来实现土壤水分的可持续利用,尽量避免在阳坡缺水地区种植刺槐。对于研究地区土壤水分的可持续利用、植被恢复和科学合理的进行植被配置具有重要意义。  相似文献   

12.
唐浩琪  张娜  孙波  梁玉婷 《微生物学报》2020,60(6):1117-1129
在农业生态系统中,土壤微生物是土壤-作物系统养分循环的重要驱动力,其中丛枝菌根真菌(Arbuscularmycorrhizalfungi,AMF)能够促进作物对养分的吸收,适应逆境胁迫。【目的】进一步揭示AMF和根际细菌群落的跨界网络互作,挖掘与作物氮磷利用显著相关的关键微生物类群,揭示关键类群的生态网络特征。【方法】利用Illumina测序技术对3种典型农田旱地土壤(黑土、潮土和红壤)中AMF和根际细菌群落结构进行分析;构建互作网络并利用偏冗余分析、相关性分析探究了与氮磷利用相关的潜在关键类群。【结果】3种土壤中AMF与根际细菌均以正相互作用为主。不同土壤中AMF与根际细菌互作关系差异明显,在红壤中跨界互作最为密切,其中球囊霉属真菌(Glomus)与根际细菌中的放线菌(Actinobacteria)和变形菌(Proteobacteria)之间的交互作用最多。而在黑土中主要体现为根际细菌的界内互作。与氮磷利用率显著相关的关键微生物类群主要属于球囊霉属真菌、放线菌和α变形菌。【结论】典型旱地土壤中AMF与根际细菌的正相互关系对作物氮磷利用有潜在促进作用,关键类群在有机质和养分贫乏的红壤中可能起到更重要的作用。  相似文献   

13.
North American coastal sandplain heathlands are unique in species composition and vegetation, but the extent to which edaphic factors influence the structure of these communities is currently debated. It was hypothesized that salt spray and edaphic factors maintain the dwarf stature and community composition of heathlands by limiting plant growth and excluding competitively dominant woody species close to the ocean. Field surveys were carried out to investigate the spatial patterns of salt spray accumulation, soil salt and soil moisture. High salt spray correlated significantly with increased leaf necrosis and water stress in Myrica pensylvanica and with decreased plant height. Plant community composition changed across a salt spray and soil gradient, as well. Distinctive sub-communities were identified that separated according to soil salt and soil moisture but salt spray was the main factor affecting sites occupied only by heathland vegetation. Results from this study suggest that salt spray suppresses the growth of heathland plants in close proximity to the ocean, and therefore maintains the low stature in these dwarf shrublands. This research also demonstrates that the physical environment influences the community structure in heathlands, particularly by limiting tree species from growing in high salt spray, low water availability sites.  相似文献   

14.
The main objective of this study was to examine the relationships between wet meadow plant communities of Molinon alliance and their environmental conditions in Slovenia. The ecology of these communities was analysed in detail. The study provides the data on the vegetation and environmental parameters, the significance of parameters for the plant species composition, most important environmental gradients and differences between plant communities. In all plots the vegetation was recorded and soil parameters were analysed (pH, plant-available P and K, Nt, organic C, C/N ratio, exchangeable Ca2+, Mg2+, K+, Na+, H+, electrical conductivity, base saturation). Other conditions were also considered (e.g., mean annual temperature and precipitation, humidity index, mean Ellenberg moisture and nutrient value) to test possible correlations as well. Vegetation was classified by means of multivariate cluster analysis, while vegetation-site relationships were examined with direct gradient analysis (CCA). Six associations from the Molinon alliance (Selino-Molinietum, Plantagini altissimae-Molinietum, Carici davallianae-Molinietum, Gentiano-Molinietum litoralis, Junco conglomerati-Betonicetum and Sanguisorbo-Festucetum commutatae) were identified and analysed. Soil reaction was identified as most significant environmental parameter explaining the variation of the studied vegetation. There are several statistically significant differences in site conditions between the communities (pH, moisture, nutrient status, Ca2+). The studied associations represent clearly defined ecological units.  相似文献   

15.
Many invasive alien plants drive changes in native community composition, structure and diversity. They alter soil nutrient regimes of native communities and affect native plant recovery outcomes following their removal. We assessed whether Eucalyptus grandis invasion and removal alters the soil physico‐chemical properties and native vegetation recovery in the Eastern Cape Province, South Africa. We collected samples from topsoil in E. grandis invaded sites (canopy cover > 75%), cleared sites (eight years ago) and native sites (canopy cover > 80%) and quantified soil moisture, concentrations of soil macro elements (N, C and P), pH and exchangeable cations (K, Ca, Mg, Na) as well as measured soil water repellency using the Water Droplet Penetration Time and infiltration. We conducted vegetation surveys in plots measuring 10 × 10 m. Invasion by E. grandis had varying effects on soil physico‐chemical properties, causing increase in soil pH and P, while decreasing total N and C. The removal of E. grandis also showed varying effects on soil physico‐chemical properties, but seems to have further triggered the loss of some soil nutrients (especially soil P). Soil water repellency (a measure of soil compaction) has improved in cleared sites to non‐repellent soils compared to repellent soils in invaded site. Eucalyptus grandis reduced species richness of the invaded sites. The presence of native species on cleared sites indicates a positive trajectory towards vegetation recovery. We conclude that E. grandis invasion and removal trigger varying effects on soil properties (both increases and decreases). For soil and vegetation restoration of cleared sites to be effective, active restoration techniques such as soil transfer, nutrient manipulation and native plant seeding should be considered.  相似文献   

16.
Diversity of Antarctic terrestrial protozoa   总被引:6,自引:0,他引:6  
Heterotrophic protozoa have a global distribution in terrestrial habitats. The functional groups significantly represented are zooflagellates, cillates, gymnamoebae and testate amoebae. Their range extends into the Antarctic zone, but the species richness of the communities is rarely of the same order of magnitude as those in temperate latitudes. Species diversity is usually very low owing to dominance of the communities by single, or a few, species which are best adapted to the Antarctic terrestrial environment. This is characterized by seasonal, diurnal or unpredictable fluctuations in moisture, temperature and bacterial food supply of high amplitude. The fauna shows pauperization with latitude and climatic severity. Nearly all records of species distribution are consistent with the model that community composition is determined by local conditions. An important exception is the distribution of the testate amoeba genus Nebela whose species distribution is influenced by biogeographical factors. Successional changes in community composition in fellfield habitats are characterized by the sequence: pioneer microflagellate colonizers, larger flagellates and small ciliates, and finally testate amoebae. The succession is most closely correlated with the accumulation of organic matter. A model of the strategies of dominant microflagellate species can be constructed by ordinating them on a two-dimensional habitat template of A-r-K selection continuum. The globally ubiquitous microflagellate Heteromita globosa emerges as the most strongly A-selected and K-selected. The occurrence of terrestrial protozoa near their latitudinal limits of distribution can serve as sensitive indicators of the biological effects of climatic change. Having short generation times and effective means of cyst dispersal, changes in the gross distribution can provide rapid warning of critical changes in thermal regimes.  相似文献   

17.
Background : The Snowy Mountains contain Australia's longest-lasting snowpatches. Because of climate change, their longevity has declined, with the loss of some specialist vegetation in the underlying snowbeds.

Aims: To characterise the current status of the vegetation associated with the longest-lasting snowpatches in Australia and its association with abiotic factors.

Methods: We assessed plant composition, soil depth, moisture and nutrients and subsurface temperatures in five zones of increasing vegetation height and cover in snowbeds.

Results: The zone beneath the middle of snowpatches was characterised by little vegetation cover and lower species richness, later emergence from snow, skeletal soils, and lower mean soil temperatures than zones further downslope where soils increased in depth and nutrient levels. Vegetation beneath these snowpatches no longer occurs in distinct communities. Plants have not simply migrated upslope, instead, areas that have deep soil that used to have snowpatch specialist species are being colonised upslope by grasses and downslope by tall alpine herbfield species that prefer bare ground.

Conclusions: Reduced longevity of Australia's longest-lasting snowpatches has led to the loss of distinct snowpatch plant communities. With limited soils beneath the centre of current snowpatches, and a lack of other suitable sites there is no location for these plant communities to migrate to.  相似文献   

18.
Nutrients in exotic species and invaded communities play a key role in determining the dynamics of invaders and the invasibility of a receipt community. This study focused on the effects of the native holoparasite Cuscuta campestris (for short Cuscuta) on nutrients in the exotic invasive Mikania micrantha (for short Mikania) and stands invaded by Mikania. We conducted a set of field investigations on Mikania with Cuscuta parasitism for 1–4 years, and measured soil properties, community composition, and the growth and nutrient content of Mikania and Cuscuta in two types of sub-communities (i.e. with Mikania only, or with Mikania and Cuscuta). Cuscuta dramatically reduced the cover, biomass, and nutrients (i.e. N, P, and K content) of Mikania, significantly enhanced soil water, pH and nutrient content (i.e. organic matter, total N and P, available P and K), and greatly increased the cover and species richness of native plants. In addition, N and K of Cuscuta were positively correlated with N of Mikania, which was negatively associated with soil total N, available P and K. These findings suggest that Cuscuta may be an effective measure against Mikania and be beneficial to the restoration of invaded communities.  相似文献   

19.
Correlative approaches to understanding the climatic controls of vegetation distribution have exhibited at least two important weaknesses: they have been conceptually divorced across spatial scales, and their climatic parameters have not necessarily represented aspects of climate of broad physiological importance to plants. Using examples from the literature and from the Sierra Nevada of California, I argue that two water balance parameters—actual evapotranspiration (AET) and deficit (D)—are biologically meaningful, are well correlated with the distribution of vegetation types, and exhibit these qualities over several orders of magnitude of spatial scale (continental to local). I reach four additional conclusions. (1) Some pairs of climatic parameters presently in use are functionally similar to AET and D; however, AET and D may be easier to interpret biologically. (2) Several well-known climatic parameters are biologically less meaningful or less important than AET and D, and consequently are poorer correlates of the distribution of vegetation types. Of particular interest, AET is a much better correlate of the distributions of coniferous and deciduous forests than minimum temperature. (3) The effects of evaporative demand and water availability on a site's water balance are intrinsically different. For example, the 'dry' experienced by plants on sunward slopes (high evaporative demand) is not comparable to the 'dry' experienced by plants on soils with low water-holding capacities (low water availability), and these differences are reflected in vegetation patterns. (4) Many traditional topographic moisture scalars—those that additively combine measures related to evaporative demand and water availability—are not necessarily meaningful for describing site conditions as sensed by plants; the same holds for measured soil moisture. However, using AET and D in place of moisture scalars and measured soil moisture can solve these problems.  相似文献   

20.
Aim The objectives were to (1) analyse the combined effects of soil pH, Ca content and soil moisture on total density and species richness of land snails in forest ecosystems, (2) explore relationships between the quantitative composition of snail assemblages and habitat characteristics, (3) investigate the relationships between soil pH and density of some of the most frequent species, and (4) compare the data with those from studies conducted in other temperate‐humid regions of Europe. Location Study sites were selected from 15 landscape types including different lithologies within the area of Baden‐Württemberg (35,000 km2), SW Germany. Methods Snails were recorded quantitatively from 83 study sites, with four plots representing a total of 0.25 m2 per site. Topsoil samples from each site were analysed for pH, exchangeable Ca, and Ca content of carbonates. Three categories of soil moisture (dry, intermediate and wet) were established and defined according to the (climatic) water balance. Numbers of individuals and species were brought in relation to soil moisture and soil pH. Cluster analyses were conducted to identify groups of quantitatively similar snail species assemblages. Results Topsoil pH (2.7–7.5) and soil Ca contents were closely correlated. On dry soils, total snail density and species richness are generally low and do not change with pH, but clearly increase with increasing pH on intermediate moisture soils and on wet soils. On the latter, numbers of individuals and species are generally much higher compared with intermediate moisture sites at the same value of soil pH. Changes of density in relation to soil pH vary between species. Depending on the species, density increases only in the lower or only in the higher range of pH, is not related to pH, or decreases with increasing pH. Furthermore, these patterns vary within the same species depending on the region. This became evident from comparisons with other studies, particularly between sites in SW Germany and southern Scandinavia. From cluster analyses, subgroups of snail assemblages of high quantitative similarity were identified. Group formation is explained by soil pH to some extent, and one subgroup showed a connection with coniferous woodland sites on acidic soils. No further environmental factors available from our data could explain the clustering of snail assemblages more detailed. Main conclusions Soil moisture is the strongest determinant of snail density and species richness at undisturbed woodland sites, but effects of soil moisture and soil pH on these patterns are closely interrelated on intermediate moisture soils and wet soils. However, the quantitative species composition of the land snail assemblages is related to soil properties to a lower degree than snail density and species richness, and other habitat characteristics such as vegetation or litter quality, can be important for species dominance in addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号