首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Plant roots generate electrical currents and associated electrical fields as a consequence of electrogenic ion transport at the root surface. Here we demonstrate that the attraction of swimming zoospores of oomycete plant pathogens to plant roots is mediated in part by electrotaxis in natural root-generated electric fields. The zones of accumulation of anode- or cathode-seeking zoospores adjacent to intact and wounded root surfaces correlated with their in vitro electrotactic behavior. Manipulation of the root electrical field was reflected in changes in the pattern of zoospore accumulation and imposed focal electrical fields were capable of overriding endogenous signals at the root surface. The overall pattern of zoospore accumulation around roots was not affected by the presence of amino acids at concentrations expected within the rhizosphere, although higher concentrations induced encystment and reduced root targeting. The data suggest that electrical signals can augment or override chemical ones in mediating short-range tactic responses of oomycete zoospores at root surfaces.  相似文献   

2.
Based on patch clamp data on the ionic currents of rat taste receptor cells, a mathematical model of mammalian taste receptor cells was constructed to simulate the action potentials of taste receptor cells and their corresponding ionic components, including voltage-gated Na+ currents and outward delayed rectifier K+ currents. Our simulations reproduced the action potentials of taste receptor cells in response to electrical stimuli or sour tastants. The kinetics of ion channels and their roles in action potentials of taste receptor cells were also analyzed. Our prototype model of single taste receptor cell and simulation results presented in this paper provide the basis for the further study of taste information processing in the gustatory system.  相似文献   

3.
Sensing and responding to endogenous electrical fields are important abilities for cells engaged in processes such as embryogenesis, regeneration and wound healing. Many types of cultured cells have been induced to migrate directionally within electrical fields in vitro using a process known as galvanotaxis. The underlying mechanism by which cells sense electrical fields is unknown. In this study, we assembled a polydimethylsiloxane (PDMS) galvanotaxis system and found that mouse fibroblasts and human prostate cancer PC3 cells migrated to the cathode. By comparing the effects of a pulsed direct current, a constant direct current and an anion-exchange membrane on the directed migration of mouse fibroblasts, we found that these cells responded to the ionic flow in the electrical fields. Taken together, the observed effects of the calcium content of the medium, the function of the store-operated calcium channels (SOCs) and the intracellular calcium content on galvanotaxis indicated that calcium ionic flow from the anode to the cathode within the culture medium permeated the cells through SOCs at the drift velocity, promoting migration toward the cathode. The RTK-PI3K pathway was involved in this process, but the ROCK and MAPK pathways were not. PC3 cells and mouse fibroblasts utilized the same mechanism of galvanotaxis. Together, these results indicated that the signaling pathway responsible for cathode-directed cellular galvanotaxis involved calcium ionic flow from the anode to the cathode within the culture medium, which permeated the cells through SOCs, causing cytoskeletal reorganization via PI3K signaling.  相似文献   

4.
Using a low-noise 49-channel dc-SQUID system spinal somatosensory evoked fields (SEF) were recorded which were generated by compound action currents evoked upon posterior tibial nerve stimulation. The SEF mapping showed the action current propagation along the sciatic nerve, lumbosacral plexus and cauda equina in parallel to simultaneously recorded electrical potentials (SEP). For a reliable intraindividual side-to-side comparison of spinal SEFs the right and left tibial nerves were stimulated in alternating order; this procedure minimizes artifactual inter-nerve SEF map differences due to eventual patient-to-sensor displacements which might occur in serial measurements. These large-area lumbar SEF mappings open up several clinical perspectives for magnetoneurography, in particular with respect to the 3D-localization of proximal conduction blocks.  相似文献   

5.
Eukaryotic cells from fungal hyphae to neurites that grow by polarized extension must coordinate cell growth and cell orientation to enable them to exhibit growth tropisms and to respond to relevant environmental cues. Such cells generally maintain a tip-high Ca(2+) cytoplasmic gradient, which is correlated with their ability to exhibit polarized tip growth and to respond to growth-directing extracellular signals. In yeast and other fungi, the polarisome, exocyst, Arp2/3, and Spitzenk?rper protein complexes collectively orchestrate tip growth and cell polarity, but it is not clear whether these molecular complexes also regulate cell orientation or whether they are influenced by cytoplasmic Ca(2+) gradients. Hyphae of the human pathogenic fungus Candida albicans reorient their growth axis in response to underlying surface topography (thigmotropism) and imposed electric fields (galvanotropism). The establishment and maintenance of directional growth in relation to these environmental cues was Ca(2+) dependent. Tropisms were attenuated in media containing low Ca(2+), or calcium-channel blockers, and in mutants where calcium channels or elements of the calcium signaling pathway were deleted. Therefore galvanotropism and thigmotropism may both be mediated by localized Ca(2+) influx at sites of polarized growth via Ca(2+) channels that are activated by appropriate environmental signals.  相似文献   

6.
Postsynaptic potentials (PSPs) recorded from leech Retzius cells in response to stimulation of interganglionic connective could not be reversed by soma depolarization or abolished by 40 mM Mg ion, nor could input resistance changes be detected during them. Alteration of external Cl and K over a tenfold range provided no clear evidence that the PSPs involved a conductance change to either ion. The method of extrapolation yielded an apparent PSP equilibrium potential of about ?20 mV. The steep portion of the relationship between Retzius cell action potential amplitude and membrane potential extrapolated to an apparent reversal potential of ?13 mV. It is likely that the connective-to-Retzius cell PSPs were principally electrical events. Their apparent reversal potentials could have been in the range associated with chemical synapses because they traversed an electrical synapse with a variable coupling resistance, or because the polarizing currents, passing “backwards” across electrical synapses, changed the amplitude of the presynaptic action potentials.  相似文献   

7.
We used the single-microelectrode voltage-clamp technique to record ionic currents from pancreatic beta-cells within intact mouse islets of Langerhans at 37 degrees C, the typical preparation for studies of glucose-induced "bursting" electrical activity. Cells were impaled with intracellular microelectrodes, and voltage pulses were applied in the presence of tetraethylammonium. Under these conditions, a voltage-dependent Ca2+ current (I(Cav)), containing L-type and non-L-type components, was observed. The current measured in situ was larger than that measured in single cells with whole-cell patch clamping, particularly at membrane potentials corresponding to the action potentials of beta-cell electrical activity. The temperature dependence of I(Cav) was not sufficient to account for the difference in size of the currents recorded with the two methods. During prolonged pulses, the voltage-dependent Ca2+ current measured in situ displayed both rapid and slow components of inactivation. The rapid component was Ca2+-dependent and was inhibited by the membrane-permeable Ca2+ chelator, BAPTA-AM. The effect of BAPTA-AM on beta-cell electrical activity then demonstrated that Ca2+-dependent inactivation of I(Cav) contributes to action potential repolarization and to control of burst frequency. Our results demonstrate the utility of voltage clamping beta-cells in situ for determining the roles of ion channels in electrical activity and insulin secretion.  相似文献   

8.
The physiologic mechanisms that determine directionality of lateral migration are a subject of intense research. Galvanotropism in a direct current (DC) electric field represents a natural model of cell re-orientation toward the direction of future migration. Keratinocyte migration is regulated through both the nicotinic and muscarinic classes of acetylcholine (ACh) receptors. We sought to identify the signaling pathway mediating the cholinergic regulation of chemotaxis and galvanotropism. The pharmacologic and molecular modifiers of the Ras/Raf-1/MEK1/ERK signaling pathway altered both chemotaxis toward choline and galvanotropism toward the cathode in a similar way, indicating that the same signaling steps were involved. The galvanotropism was abrogated due to inhibition of ACh production by hemicholinium-3 and restored by exogenously added carbachol. The concentration gradients of ACh and choline toward the cathode in a DC field were established by high-performance liquid chromatographic measurements. This suggested that keratinocyte galvanotaxis is, in effect, chemotaxis toward the concentration gradient of ACh, which it creates in a DC field due to its highly positive charge. A time-course immunofluorescence study of the membrane redistribution of ACh receptors in keratinocytes exposed to a DC field revealed rapid relocation to and clustering at the leading edge of alpha7 nicotinic and M(1) muscarinic receptors. Their inactivation with selective antagonists or small interfering RNAs inhibited galvanotropism, which could be prevented by transfecting the cells with constitutively active MEK1. The end-point effect of the cooperative signaling downstream from alpha7 and M(1) through the MEK1/ERK was an up-regulated expression of alpha(2) and alpha(3) integrins, as judged from the results of real-time PCR and quantitative immunoblotting. Thus, alpha7 works together with M(1) to orient a keratinocyte toward direction of its future migration. Both alpha7 and M(1) apparently engage the Ras/Raf/MEK/ERK pathway to up-regulate expression of the "sedentary" integrins required for stabilization of the lamellipodium at the keratinocyte leading edge.  相似文献   

9.
A possible application of cryotechnique might be a selective block of nerve fiber activity during sacral anterior root stimulation to achieve selective block of urethral sphincter and reversible deafferentation. In 13 foxhounds, electrical stimulation of sacral anterior roots S2 was performed while the accompanying spinal nerves were simultaneously cooled down from +25 degrees C in a stepwise fashion until a block of urethral sphincter activity was observed. The effects of cold block on the urethral sphincter and bladder were monitored by urodynamic investigation. In 2 additional dogs sacral posterior roots S2 were cooled down to +3 degrees C while accompanying anterior and posterior roots were stimulated distal to the cryothermode. Compound action potentials (APs) were registered proximal to the cryothermode before, during and after cooling and recovery time of cold blocked nerves was evaluated. Complete cold block of the urethral sphincter during spinal nerve cooling was achieved in all cases. Block temperature averaged +12 degrees C. Detrusor pressure was a mean 5,2 cm water. Recovery time was on average 5 min. The cold block was always reversible. In both dogs of the second series the compound action potentials disappeared nearly completely at +3 degrees C. Three min after the end of the cooling period the appearance of the compound action potentials was back to normal. In this study, cryotechnique proved to be effective for selective and reversible block of nerve fibers during sacral anterior root stimulation. In functional electrical stimulation this technique may lead to an improvement of quality of life in para- or tetraplegic patients resulting in optimization of voiding, standing, walking and grasping and does so without the necessity of surgical dorsal root rhizotomy.  相似文献   

10.
Membrane proteins possess certain features that make them susceptible to the electric fields generated at the level of the plasma membrane. A reappraisal of cell signalling, taking into account the protein interactions with the membrane electrostatic profile, suggests that an electrical dimension is deeply involved in this fundamental aspect of cell biology. At least three types of potentials can contribute to this dimension: (1) the potential across the compact layer of water adherent to membrane surfaces; this potential is affected by classical inducers of cell differentiation, like dimethylsulfoxide and hexamethylenebisacetamide; (2) the potential across the Gouy-Chapman double layer, which accounts for the effects of extracellular cations in the modulation of differentiation; and (3) the resting potential. This last potential and its governing ion currents can be exploited in localised mechanisms of cell signalling centred on the functional association of integrin receptors with ion channels.  相似文献   

11.
Efficient foraging by plant roots relies on the ability to sense multiple physical and chemical cues in soil and to reorient growth accordingly (tropism). Root tropisms range from sensing gravity (gravitropism), light (phototropism), water (hydrotropism), touch (thigmotropism), and more. Electrotropism, also known as galvanotropism, is the phenomenon of aligning growth with external electric fields and currents. Although root electrotropism has been observed in a few species since the end of the 19th century, its molecular and physical mechanisms remain elusive, limiting its comparison with the more well-defined sensing pathways in plants. Here, we provide a quantitative and molecular characterization of root electrotropism in the model system Arabidopsis (Arabidopsis thaliana), showing that it does not depend on an asymmetric distribution of the plant hormone auxin, but instead requires the biosynthesis of a second hormone, cytokinin. We also show that the dose–response kinetics of the early steps of root electrotropism follows a power law analogous to the one observed in some physiological reactions in animals. Future studies involving more extensive molecular and quantitative characterization of root electrotropism would represent a step toward a better understanding of signal integration in plants and would also serve as an independent outgroup for comparative analysis of electroreception in animals and fungi.  相似文献   

12.
Postsynaptic potentials (PSPs) recorded from leech Retzius cells in response to stimulation of interganglionic connective could not be reversed by soma depolarization or abolished by 40 mM Mg ion, nor could input resistance changes be detected during them. Alteration of external Cl and K over a tenfold range provided no clear evidence that the PSPs involved a conductance change to either ion. The method of extrapolation yielded an apparent PSP equilibrium potential of about -20 mV. The steep portion of the relationship between Retzius cell action potential amplitude and membrane potential extrapolated to an apparent reversal potential of -13 mV. It is likely that the connective-to-Retzius cell PSPs were principally electrical events. Their apparent reversal potentials could have been in the range associated with chemical synapses because they traversed an electrical synapse with a variable coupling resistance, or because the polarizing currents, passing "backwards" across electrical synapses, changed the amplitude of the presynaptic action potentials.  相似文献   

13.
The acoustic near field of quietly moving underwater objects and the bio-electric field of aquatic animals exhibit great similarity, as both are predominantly governed by Laplace's equation. The acoustic and electrical sensory modalities thus may, in directing fishes to their prey, employ analogous processing algorithms, suggesting a common evolutionary design, founded on the salient physical features shared by the respective stimulus fields. Sharks and rays are capable of orientating to the earth's magnetic field and, hence, have a magnetic sense. The electromagnetic theory of orientation offers strong arguments for the animals using the electric fields induced by ocean currents and by their own motions in the earth's magnetic field. In the animal's frame of reference, in which the sense organs are at rest, the classical concept of motional electricity must be interpreted in relativistic terms. In the ampullae of Lorenzini, weak electric fields cause the ciliated apical receptor-cell membranes to produce graded, negative receptor currents opposite in direction to the fields applied. The observed currents form part of a positive-feedback mechanism, supporting the generation of receptor potentials much larger than the input signal. Acting across the basal cell membranes, the receptor potentials control the process of synaptic transmission.  相似文献   

14.
The Antiarrhythmic and Anticonvulsant Effects of Dietary N-3 Fatty Acids   总被引:5,自引:0,他引:5  
It has been shown in animals and probably in humans, that n-3 polyunsaturated fatty acids (PUFAs) are antiarrhythmic. We report recent studies on the antiarrhythmic actions of PUFAs. The PUFAs stabilize the electrical activity of isolated cardiac myocytes by modulating sarcolemmal ion channels, so that a stronger electrical stimulus is required to elicit an action potential and the refractory period is markedly prolonged. Inhibition of voltage-dependent sodium currents, which initiate action potentials in excitable tissues, and of the L-type calcium currents, which initiate release of sarcoplasmic calcium stores that increase cytosolic free calcium concentrations and activate the contractile proteins in myocytes, appear at present to be the probable major antiarrhythmic mechanism of the PUFAs. Received: 27 May 1999/Revised: 20 July 1999  相似文献   

15.
Plant roots generate electrical fields in the rhizosphere as a consequence of their ion transport activities. We show here that zoospores of the plant pathogen Phytophthora palmivora exhibit anodal electrotaxis in electrical fields ≥0.5 V m−1 comparable in size to the physiological fields around roots. An experimental protocol for applying weak electrical fields and quantifying electrotaxis is described. In this system, zoospore suspensions are isolated from the electrodes and their products using agarose bridges. Therefore, electrotaxis was not due to movement or trapping of zoospores in chemical, oxygen, pH or inhibitor gradients established by electrolysis. The electrophoretic and electroosmotic mobilities of encysted zoospores were measured. These forces did not influence the distribution of zoospores in electrotactic experiments at physiological field strengths. The electrotactic response saturated at fields above 10 V m−1 was inhibited in media of osmotic strength below 400 Osmol m−3, was maximal at pH 7.5 and increased at high zoospore densities. These data suggest that electrotaxis may be a useful adjunct to chemotaxis in root targeting by zoospores.  相似文献   

16.
The evidence that calcium (Ca) plays an important role in electrical activity and an essential role in excitation--contraction (E--C) coupling in crustacean muscles is reviewed. These muscles produce graded electrical and mechanical responses to applied depolarizations. Removal of Ca from the bath solution eliminates both responses. Addition of Ba2+ or Sr2+ to Ca-free saline restores membrane electrogenesis, and all-or-none action potentials can be induced. With Sr2+ vigorous contractions are produced, whereas Ba action potentials evoke minimal or no tension, showing that rapid depolarization of the membrane potential is not sufficient per se for E--C coupling in crab and barnacle muscle. Several inorganic (e.g., multivalent cations) and organic (e.g., aminoglycoside antibiotics) which block membrane Ca channels block electrogenesis and contraction. However, the "Ca antagonists" verapamil and D600 also block Ca uptake at intracellular storage sites, resulting in spontaneous contractions and the delayed relaxation of small contractions associated with residual Ca currents. The evidence that the Ca which enters the fibres needs to release Ca from intracellular storage sites to produce contractions is detailed and discussed. Finally, a model for E--C coupling is discussed. This model includes the sites and mechanisms of action for several chemicals which modify E--C coupling in crustacean muscle fibres.  相似文献   

17.
Abstract

Colonization of plant roots by arbuscular mycorrhizal fungi can greatly increase the plant uptake of phosphorus and nitrogen. The most prominent contribution of arbuscular mycorrhizal fungi to plant growth is due to uptake of nutrients by extraradical mycorrhizal hyphae. Quantification of hyphal nutrient uptake has become possible by the use of soil boxes with separated growing zones for roots and hyphae. Many (but not all) tested fungal isolates increased phosphorus and nitrogen uptake of the plant by absorbing phosphate, ammonium, and nitrate from soil. However, compared with the nutrient demand of the plant for growth, the contribution of arbuscular mycorrhizal fungi to plant phosphorus uptake is usually much larger than the contribution to plant nitrogen uptake. The utilization of soil nutrients may depend more on efficient uptake of phosphate, nitrate, and ammonium from the soil solution even at low supply concentrations than on mobilization processes in the hyphosphere. In contrast to ectomycorrhizal fungi, nonsoluble nutrient sources in soil are used only to a limited extent by hyphae of arbuscular mycorrhizal fungi. Side effects of mycorrhizal colonization on, for example, plant health or root activity may also influence plant nutrient uptake.  相似文献   

18.
The present study introduces a new preparation of a spider vibration receptor that allows intracellular recording of responses to natural mechanical or electrical stimulation of the associated mechanoreceptor cells. The spider vibration receptor is a lyriform slit sense organ made up of 21 cuticular slits located on the distal end of the metatarsus of each walking leg. The organ is stimulated when the tarsus receives substrate vibrations, which it transmits to the organ’s cuticular structures, reducing the displacement to about one tenth due to geometrical reasons. Current clamp recording was used to record action potentials generated by electrical or mechanical stimuli. Square pulse stimulation identified two groups of sensory cells, the first being single-spike cells which generated only one or two action potentials and the second being multi-spike cells which produced bursts of action potentials. When the more natural mechanical sinusoidal stimulation was applied, differences in adaptation rate between the two cell types remained. In agreement with prior extracellular recordings, both cell types showed a decrease in the threshold tarsus deflection with increasing stimulus frequency. Off-responses to mechanical stimuli have also been seen in the metatarsal organ for the first time.  相似文献   

19.
Experiments on anesthetized spinal cats showed that ammonium acetate, injected intravenously (2–4 mmoles/kg) inhibits the depolarization of the central endings of primary afferent fibers activated by stimulation of afferent nerves. Inhibition of primary afferent depolarization is transient in character and develops parallel with depression of postsynaptic inhibition of monosynaptic reflexes. The depression produced by the action of ammonium was not due to blocking of negative postsynaptic potentials of the dorsal surface of the spinal cord or blocking of reflex electrical discharges in the ventral spinal roots. It is suggested that depression of primary afferent depolarization is due to a decrease in the emf for synaptic ion currents producing depolarization.Allergologic Research Laboratory, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 9, No. 1, pp. 52–60, January–February, 1977.  相似文献   

20.
Recent advances in the technology of recording magnetic fields associated with electric current flow in biological tissues have provided a means of examining action currents that is more direct and possibly more accurate than conventional electrical recording. Magnetic recordings are relatively insensitive to muscle movement, and, because the recording probes are not directly connected to the tissue, distortions of the data due to changes in the electrochemical interface between the probes and the tissue are eliminated. In vivo magnetic recordings of action currents of rat common peroneal nerve and extensor digitorum longus (EDL) muscle were obtained by a new magnetic probe and amplifier system that operates within the physiological temperature range. The magnetically recorded waveforms were compared with those obtained simultaneously by conventional, extracellular recording techniques. We used the amplitude of EDL twitch force (an index of stimulus strength) generated in response to graded stimulation of the common peroneal nerve to enable us to compare the amplitudes of magnetically recorded nerve and muscle compound action currents (NCACs and MCACs, respectively) with the amplitudes of electrically recorded nerve compound action potentials (NCAPs). High, positive correlations to stimulus strength were found for NCACs (r = 0.998), MCACs (r = 0.974), and NCAPs (r = 0.998). We also computed the correlations of EDL single motor unit twitch force with magnetically recorded single motor unit compound action currents (SMUCACs) and electrically recorded single motor unit compound action potentials (SMUCAPs) obtained with both a ring electrode and a straight wire serving as a point electrode. Only the SMUCACs had a relatively strong positive correlation (r = 0.768) with EDL twitch force. Correlations for ring and wire electrode-recorded SMUCAPs were 0.565 and -0.366, respectively. This study adds a relatively direct examination of action currents to the characterization of the normal biophysical properties of peripheral nerve, muscle, and muscle single motor units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号