首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Research into root system morphology over the last two centuries has developed a diverse set of terminologies that are difficult to apply consistently across species and research specialties. In response to a need for better communication, a workshop held by the International Society for Root Research established some nomenclature standards for root research. These standards and their justification are presented in this study. A framework for a root system architectural taxonomy is created by defining four main classes of root: the tap root, that is, the first root to emerge from the seed; lateral roots, which are branches of other roots; shoot‐borne roots, which arise from shoot tissues; and basal roots, which develop from the hypocotyl, that is, the organ which is between the base of the shoot and the base of the tap root. It is concluded that adherence to the presented taxonomy will reduce confusion and eliminate some of the current confounding of results.  相似文献   

2.
Background and AimsRhizosheaths are defined as the soil adhering to the root system after it is extracted from the ground. Root hairs and mucilage (root exudates) are key root traits involved in rhizosheath formation, but to better understand the mechanisms involved their relative contributions should be distinguished.MethodsThe ability of three species [barley (Hordeum vulgare), maize (Zea mays) and Lotus japonicus (Gifu)] to form a rhizosheath in a sandy loam soil was compared with that of their root-hairless mutants [bald root barley (brb), maize root hairless 3 (rth3) and root hairless 1 (Ljrhl1)]. Root hair traits (length and density) of wild-type (WT) barley and maize were compared along with exudate adhesiveness of both barley and maize genotypes. Furthermore, root hair traits and exudate adhesiveness from different root types (axile versus lateral) were compared within the cereal species.Key ResultsPer unit root length, rhizosheath size diminished in the order of barley > L. japonicus > maize in WT plants. Root hairs significantly increased rhizosheath formation of all species (3.9-, 3.2- and 1.8-fold for barley, L. japonicus and maize, respectively) but there was no consistent genotypic effect on exudate adhesiveness in the cereals. While brb exudates were more and rth3 exudates were less adhesive than their respective WTs, maize rth3 bound more soil than barley brb. Although both maize genotypes produced significantly more adhesive exudate than the barley genotypes, root hair development of WT barley was more extensive than that of WT maize. Thus, the greater density of longer root hairs in WT barley bound more soil than WT maize. Root type did not seem to affect rhizosheath formation, unless these types differed in root length.ConclusionsWhen root hairs were present, greater root hair development better facilitated rhizosheath formation than root exudate adhesiveness. However, when root hairs were absent root exudate adhesiveness was a more dominant trait.  相似文献   

3.
Abstract

Exposure of Zea mays seedlings to a continuous electromagnetic field (EMF) for 30 h induced a 30% stimulation in the rate of root elongation compared with the controls. It also resulted in a significant increase of cell expansion, in both the acropetal (metaxylem cell lineage) and basipetal (root cap cells) direction. In addition, in EMF-exposed roots a precocious structural disorder was observed both in differentiating metaxylem cells and root cap cells. All these features may be consistent with an advanced differentiation of root cells that are programmed to die. EMF treatment also resulted in a significant reduction in the size of the quiescent centre in the root apical meristem. The extent to which these responses are causally linked is discussed.  相似文献   

4.
Background and AimsKnowledge of plant resource acquisition strategies is crucial for understanding the mechanisms mediating the responses of ecosystems to external nitrogen (N) input. However, few studies have considered the joint effects of above-ground (light) and below-ground (nutrient) resource acquisition strategies in regulating plant species responses to N enrichment. Here, we quantified the effects of light and non-N nutrient acquisition capacities on species relative abundance in the case of extra N input.MethodsBased on an N-manipulation experiment in a Tibetan alpine steppe, we determined the responses of species relative abundances and light and nutrient acquisition capacities to N enrichment for two species with different resource acquisition strategies (the taller Stipa purpurea, which is colonized by arbuscular mycorrhizal fungi, and the shorter Carex stenophylloides, which has cluster roots). Structural equation models were developed to explore the relative effects of light and nutrient acquisition on species relative abundance along the N addition gradient.Key ResultsWe found that the relative abundance of taller S. purpurea increased with the improved light acquisition along the N addition gradient. In contrast, the shorter C. stenophylloides, with cluster roots, excelled in acquiring phosphorus (P) so as to elevate its leaf P concentration under N enrichment by producing large amounts of carboxylate exudates that mobilized moderately labile and recalcitrant soil P forms. The increased leaf P concentration of C. stenophylloides enhanced its light use efficiency and promoted its relative abundance even in the shade of taller competitors.ConclusionsOur findings highlight that the combined effects of above-ground (light) and below-ground (nutrient) resources rather than light alone (the prevailing perspective) determine the responses of grassland community structure to N enrichment.  相似文献   

5.
Background and AimsLessons from above-ground trait ecology and resource economics theory may not be directly translatable to below-ground traits due to differences in function, trade-offs and environmental constraints. Here we examine root functional traits within and across species along a fine-scale hydrological gradient. We ask two related questions: (1) What is the relative magnitude of trait variation across the gradient for within- versus among-species variation? (2) Do correlations among below-ground plant traits conform with predictions from resource-economic spectrum theory?MethodsWe sampled four below-ground fine-root traits (specific root length, branching intensity, root tissue density and root dry matter content) and four above-ground traits (specific leaf area, leaf size, plant height and leaf dry matter content) in vascular plants along a fine-scale hydrological gradient within a wet heathland community in south-eastern Australia. Below-ground and above-ground traits were sampled both within and among species.Key ResultsRoot traits shifted both within and among species across the hydrological gradient. Within- and among-species patterns for root tissue density showed similar declines towards the wetter end of the gradient. Other root traits showed a variety of patterns with respect to within- and among-species variation. Filtering of species has a stronger effect compared with the average within-species shift: the slopes of the relationships between soil moisture and traits were steeper across species than slopes of within species. Between species, below-ground traits were only weakly linked to each other and to above-ground traits, but these weak links did in some cases correspond with predictions from economic theory.ConclusionsOne of the challenges of research on root traits has been considerable intraspecific variation. Here we show that part of intraspecific root trait variation is structured by a fine-scale hydrological gradient, and that the variation aligns with among-species trends in some cases. Patterns in root tissue density are especially intriguing and may play an important role in species and individual response to moisture conditions. Given the importance of roots in the uptake of resources, and in carbon and nutrient turnover, it is vital that we establish patterns of root trait variation across environmental gradients.  相似文献   

6.
Background and AimsRoot proliferation is a response to a heterogeneous nutrient distribution. However, the growth of root hairs in response to heterogeneous nutrients and the relationship between root hairs and lateral roots remain unclear. This study aims to understand the effects of heterogeneous nutrients on root hair growth and the trade-off between root hairs and lateral roots in phosphorus (P) acquisition.MethodsNear-isogenic maize lines, the B73 wild type (WT) and the rth3 root hairless mutant, were grown in rhizoboxes with uniform or localized supply of 40 (low) or 140 (high) mg P kg−1 soil.ResultsBoth WT and rth3 had nearly two-fold greater shoot biomass and P content under local than uniform treatment at low P. Significant root proliferation was observed in both WT and rth3 in the nutrient patch, with the WT accompanied by an obvious increase (from 0.7 to 1.2 mm) in root hair length. The root response ratio of rth3 was greater than that of WT at low P, but could not completely compensate for the loss of root hairs. This suggests that plants enhanced P acquisition through complementarity between lateral roots and root hairs, and thus regulated nutrient foraging and shoot growth. The disappearance of WT and rth3 root response differences at high P indicated that the P application reduced the dependence of the plants on specific root traits to obtain nutrients.ConclusionsIn addition to root proliferation, the root response to a nutrient-rich patch was also accompanied by root hair elongation. The genotypes without root hairs increased their investment in lateral roots in a nutrient-rich patch to compensate for the absence of root hairs, suggesting that plants enhanced nutrient acquisition by regulating the trade-off of complementary root traits.  相似文献   

7.
Abstract

The objective of this study was to evaluate the physico-chemical and antimicrobial properties of a dual polymerization experimental endodontic sealer (E) and experimental sealers containing dibutyltin methacrylate (Sn2+) (ETs) or calcium methacrylate (Ca2+) (ECs). The pH and ion release levels of the sealers were measured. The dimensional stability was evaluated in accordance with ISO 6876. Biofilm growth inhibition was evaluated using confocal laser scanning microscopy (CLSM). Biofilm viability analysis was performed using the SYTO 9 technique. The shelf life was evaluated through the degree of conversion and film thickness tests after the sealers had been stored for different periods of time. For statistical analysis, ANOVA and Tukey’s post hoc test were used, with a significance level of 5%. ETs revealed better anti-biofilm potential after 15?days than that of the controls. The degree of conversion was reduced after the shelf-life period. The addition of calcium and dibutyltin methacrylate improved the anti-biofilm properties of the experimental endodontic sealer without impairing their physico-chemical properties.  相似文献   

8.
《Plant Ecology & Diversity》2013,6(2-3):265-268
Background: Theory predicts that plants can reduce their fitness in the presence of neighbours by allocating resources to root growth, in order to pre-empt resource capture. A number of studies that have tested this idea have done so by using experiments where neighbour presence is confounded with soil volume.

Aims : To avoid confounding effects of neighbour presence and soil volume we adjusted these variables independently from one another.

Methods: We grew Andropogon gerardii with and without neighbours, holding soil volume available to each plant constant, and compared plant performance with a treatment where both neighbour presence and soil volume were varied. We also grew plants with a quarter of the soil volume but four times the nutrient concentration to determine if changes in plant growth in response to soil volume are caused by access different levels of soil resources.

Results: We found no evidence that plants adjust root growth to the presence of neighbour roots alone. We did, however, find a significant reduction in plant growth when soil volume was reduced. The reduction was overcome by increasing nutrient concentrations in the growth media.

Conclusions: Our results suggest the effects of soil volume on plant growth are mainly due to changes in nutrient availability.  相似文献   

9.
【目的】根寄生植物持续掠夺禾草体内营养物质成为禾草生长过程中的生物逆境,禾草内生真菌提高冷季型禾草对生物和非生物逆境耐受能力。然而,有关禾草内生真菌对根寄生逆境下禾草生理过程调控作用的研究鲜有报道。【方法】开展温室盆栽试验,以带菌(E+)和不带菌(E-)紫花针茅为研究对象,研究甘肃马先蒿不同寄生密度对紫花针茅抗氧化酶活性、渗透调节物质和根系活力影响的动态变化规律。【结果】甘肃马先蒿寄生显著增加紫花针茅抗氧化酶活性、丙二醛和脯氨酸含量,而根系活力却快速降低;高密度寄生紫花针茅植株生理特性指标显著高于低密度寄生或自然生长植株;同时,E+紫花针茅抗氧化酶活性、脯氨酸含量和根系活力显著高于E-植株,而E-植株丙二醛含量显著高于E+植株。【结论】禾草内生真菌通过增强抗氧化酶活性、调节细胞膜透性和增强根系生长能力的途径提高紫花针茅对根寄生逆境的耐受能力,利用植物替代方法带菌紫花针茅可以作为一种生物防治手段用于防控根寄生杂草。  相似文献   

10.
[目的]为探究建兰Cymbidium ensifolium根系共生真菌群落结构及生物学功能.[方法]利用高通量测序技术和FunGulid数据库,对来自湖南省(HN)、福建省(FJ)、贵州省(GZ)和云南省(YN)的4个样品的野生建兰根围土壤、根表和根内3个生态位的共生真菌种群结构与功能进行鉴定和预测.[结果]建兰根系共...  相似文献   

11.
Summary

Data are summarised that support the secondary contact-balanced hybridity of polyploid evolution in plants. This states that polyploids are most likely to arise and achieve initial success in regions where alternate isolation plus differentiation followed by reunion and hybridisation, in the broadest sense of the word, are most likely to occur. The initial polyploids vary greatly in their evolutionary success. With the passage of time, a small proportion of the original neopolyploids evolve into mesopolyploids, that are widespread, aggressive colonisers, and become abundant over a broad geographical and ecological range. Even later, some of these become diploidised. The resulting paleopolyploids are more like diploids than their original polyploid ancestors with respect to gene pools, geographical distribution and different ecological situations occupied in any region. These conclusions are well supported by a preliminary analysis of polyploidy in the flora of Alaskan Beringia, but more extensive and thorough analyses are needed. Additional data support the hypothesis that chromosome doubling by itself does not adapt plants to withstand severe ecological conditions, such as cold and drought. Finally, high chromosome numbers in some species of angiosperms, plus even higher numbers in a few groups of spore bearing vascular plants, indicate that there is no generally valid ceiling to chromosome numbers. Polyploidisation occurs in cycles. If favourable adjustments of gene dosage occur between cycles, later cycles can include multiplication of base numbers that are already polyploid with reference to the original number of the genus or family.  相似文献   

12.
Abstract

Setophoma terrestris is a fungus that produces a disease named “pink root” in onion. It is a biotrophic organism that causes losses, decreasing the onion’s weight and diameter. It is difficult to have a pure culture because it is slow growth. In this study, it was improved a protocol to isolate the pathogen from infected roots, which were obtained from farms in Costa Rica. The principal isolate was characterised through microscopic and molecular tests and confirmed as S. terrestris. The Koch’s postulates also were confirmed. Additionally, it was evaluated the antagonism of Trichoderma virens, Trichoderma harzianum and Bacillus licheniformis in vitro dual culture assays. After 6 and 8?days, T. virens showed the greatest value of growth inhibition. For 12?days T. virens had the most important effect. The results are promissory for evaluation of these microorganisms as part of an integrated management program to reduce the use of agrochemicals in onion production.  相似文献   

13.
Abstract

Plant roots are responsible for the acquisition of nutrients and water from the soil and have an important role in plant response to soil stress conditions. The direction of root growth is gravitropic in general. Gravitropic responses have been widely studied; however, studies about other root tropisms are scarce. Soil salinity is a major environmental response factor for plants, sensed by the roots and affecting the whole plant. Our observations on root architecture of Kochia (Bassia indica) indicated that salinity may cue tropism of part of the roots toward increasing salt concentrations. We termed this phenomenon “positive halotropism”. It was observed that Kochia individuals in the field developed horizontal roots, originating from the main tap root, which was growing toward saline regions in the soil. Under controlled conditions in greenhouse experiments, Kochia plants were grown in pots with artificial soil salinity gradients, achieved by irrigation with saline and fresh water. It was shown that plants grown in low‐salt areas developed a major horizontal root toward the higher salt concentration region in the gradient. In regions of high salinity and in the absence of a salinity gradient, roots grew vertically without a major horizontal root. The novel finding of “positive halotropism” is discussed.  相似文献   

14.
【目的】明确印度梨形孢(Piriformospora indica)诱导小麦对根腐病产生抗性的作用机制。【方法】用印度梨形孢悬液浸种,以无菌培养液为对照,用病原菌禾谷镰孢菌(Fusarium graminearum)侵染小麦,对其相关生理生化指标及转录组变化进行分析。【结果】禾谷镰孢菌能诱导小麦产生过氧化氢,降低细胞内水含量,破坏细胞膜的稳定性;根部定殖印度梨形孢的小麦细胞内抗氧化酶活性增强,活性氧自由基含量降低,胞内水含量提高,细胞膜稳定性增强;印度梨形孢定殖能改变由于病原菌引起的mRNA转录组变化,抗性相关基因的表达增强。综合表明印度梨形孢定殖能有效地提高小麦对禾谷镰孢菌的抗性。【结论】研究结果为深入理解植物与微生物互作、开发新型高效环保抗根腐病生物制剂提供理论和实验依据。  相似文献   

15.
Abstract

In two field experiments, growth of white cabbage in pure stands was compared with that of cabbage grown in living mulch systems to reduce pest attacks. The roots of the living mulch were pruned early in the season, with the aim of reducing competition and increasing growth of the white cabbage. Root pruning was shown to increase the above-ground biomass of white cabbage, with two prunings giving higher cabbage yields than one, but there were clear differences between the living mulch species tested (red clover, birdsfoot trefoil, salad burnet, winter rye). Below-ground growth and competition were examined by measuring root distribution in minirhizotrons and uptake of 15N placed at different soil depths. These studies showed that the ability of mulch species to compete for resources at depth was restricted by pruning, and that this was crucial for the development of the white cabbage crop.  相似文献   

16.
Twenty-eight Cl-substituted diphenylurea derivatives differing in either the number and the position of the substituents, or in the type of substitution, that is, symmetric or asymmetric, were synthesized. Their hypothetical enhancement of rooting activity was assayed using the mung bean shoot bioassay; their possible cytokinin-like activity was assessed using the betacyanin (so-called amaranthin) accumulation test and the tomato regeneration test. Seven Cl-substituted diphenylurea derivatives (2E, 4A, 4B, 4E, 4G, 6A, 6B) having two substituted phenyl rings showed the capacity to enhance adventitious root formation in mung bean shoots. Furthermore the presence of a halogen substituent was not sufficient to reach the adventitious rooting activities shown by the N,N -bis-(2,3-methylenedioxyphenylurea) and the N,N -bis-(3,4-methylenedioxyphenylurea), two diphenylurea derivatives for which an interaction with auxin was the first reported in enhancing adventitious root formation. Seven compounds (1B, 3E, 3D, 4B, 4E, 4F, 6B) showed cytokinin-like activity and three of them (4B, 4E, 6B) also evidenced rooting activity, once more demonstrating the wide action spectrum of diphenylurea derivatives.  相似文献   

17.
[背景]根腐病在青稞生产中的危害日趋严重,阻碍了青稞根腐病的有效防控及青海省青稞产业的发展。然而人们对青稞根腐病的研究甚少且病原菌不详。[目的]明确青稞根腐病发生的危害、病原及致病性,为青稞根腐病的防控提供理论依据。[方法]采用常规的组织分离法分离青稞根腐病病原,通过形态鉴定与分子鉴定结合的方法对病原进行鉴定,并采用烧杯水琼脂法测定其致病性。[结果]共分离得到4株青稞根腐病病原菌,鉴定为Clonostachys rosea,有较强的致病性且致病性差异显著,经柯赫氏法则验证为青稞根腐病病原菌,并且是一种新的青稞根腐病病原,该类根腐病也是一种新的根腐类病害,在国内外属首次发现。[结论]Clonostachys rosea可引起青稞根腐病且致病性强。  相似文献   

18.
Abstract

We applied environmental stresses, namely dehydration, pruning and bending, to woody taproots of Fraxinus ornus L. in order to: (i) identify a method that could be applied in routine studies of lateral root development from a secondary structure; and (ii) carry out anatomical investigations to identify the tissue involved in the recruitment of lateral root mother cells (LRMC). We found that all three methods induce the formation of new lateral roots from a woody parental root. However, bending stress considerably reduced the zone of the woody parental root (the curvature) for analysis when studying the process of emission of a new lateral root. The trace left by a new lateral root in the taproot secondary xylem forms a V-shaped insertion zone that starts in contact with a growth ring and enlarges toward the periphery. This type of insertion zone suggests that the vascular cambium is the tissue-source of initials that produce the root primordium of a new lateral root. In the case of root bending, the emission of a new lateral root occurs also in the convex side of the curvature and is preceded by the formation, at the same site, of a small amount of reaction wood. Thus, reaction wood and lateral root emission are two aspects of the same response mechanism to bending. Consequently, anatomical and cytological studies of lateral root formation should focus on this part of the woody taproot. By peeling off the bark at this site, one has direct access to the underlying living tissues and can thus investigate lateral root formation also at a biochemical and molecular level.  相似文献   

19.
M. Sobotik  D. Haas 《Plant biosystems》2013,147(2):484-489
Abstract

Besides being species‐specific, the inner structure of the root is influenced by the place and time of origin during the growth period. From the root tip up to the base of a particular root, the zones of cell division, cell elongation, formation of root hairs and root branching can be distinguished. The root tip that is covered by a root cap and mucilage is protected against evaporation and water contact. From the end of the lateral parts of the root cap, the cells become exposed to the surrounding environment. The cells can elongate by water uptake or can shrink by water loss. All processes of geotropic growth take place there. In this study, some differences are illustrated using Zea mays plants. Radicle and roots emerging from several nodes of the shoot as well as lateral roots are compared. The distances from the tip and from the base of the root are also very important for characterization of particular root functions. Distinctive features such as root diameter, size of the stele and of the cortex, ratio of cortex to stele, number and width of the xylem vessels, size of cells, special thickenings and stage of lignification as well as symptoms of maturation are observed.  相似文献   

20.
Abstract

Although Rhizoctonia solani is a cosmopolitan soilborne pathogen, the genus includes isolates with different pathogenicity ranging from high virulence to avirulence. The biocontrol strain Pseudomonas fluorescens P190r and the arbuscular mycorrhizal (AM) fungus Glomus mosseae BEG12 were inoculated alone or in combination in tomato plants infested by the mildly virulent pathogen R. solani #235. Plant growth as well as root morphometric and topological parameters were evaluated. The infection of R. solani was significantly reduced by all the combinations of the beneficial microorganisms. Root systems of R. solani‐infected plants were weakly developed but highly branched with a herring‐bone pattern, while those inoculated with the AM fungus, alone or in combination with the bacterial strain, were longer and more developed, and displayed a dichotomous pattern. The interactions among these three microorganisms affected plant growth and root architecture of tomato plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号