首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work was to compare the coldlability of phosphofructokinase (EC 2.7.1.11) from tubers of potato cultivars (cvs.) known to differ in their propensity to accumulate sugars at low temperature. When stored at 4°C for six weeks, the sugar content of tubers ofSolanum tuberosum L. cv. Record doubled whereas the amount of sugar in tubers of cv. Brodick and an advanced breeding clone (13676) decreased slightly. Tubers from each line contained four forms of phophofructokinase. Over the range 12°–16°C the temperature coefficients of the four forms of phosphofructokinase from cvs. Record and Brodick were similar. In cv. Record the temperature coefficients of three of the enzyme forms were significantly higher at 2°–6°C than at 12°–16°C, whereas those from cv. Brodick were unchanged. These results are consistent with the proposal that inactivation of phosphofructokinase at low temperature results in the accumulation of hexose phosphates leading to increased sucrose synthesis.  相似文献   

2.
Inorganic pyrophosphate (PPi) is an enzyme involved in sugar metabolism in potato tubers. In our previous study, we isolated an inorganic pyrophosphatase (PPase) gene from potato and obtained the transgenic potato plants transformed with the sense and antisense PPase genes respectively. In the present experiment, the physiological indexes, tuber dormancy, and sprouting characteristics of the transgenic potatoes were analyzed and evaluated. The result showed that the PPase activity and the inorganic phosphate content of tubers were lower in the antisense transgenic plant lines but were higher in the sense transgenic plant lines, compared with wild-type tubers. Soluble sugars, such as glucose, fructose and sucrose increased in transgenic plants that had overexpression of the sense PPase gene, but decreased in the antisense transgenic plant lines, compared with wild-type tubers. Tuber sprouting time of the antisense transgenic plants were delayed for 2 and 3 weeks and reached the 100 % sprouting rate only after 14 and 16 weeks storage compared with the wild-type when tubers are stored under 25 and 4 °C, respectively. In contrast, tuber sprouting time of the sense transgenic plants was earlier by approximately 2 weeks than that of wild-type tubers under these storage temperatures.  相似文献   

3.
To gain a better understanding of the mechanism of cold induced sweetening, sugar accumulation in potato, Solanum tuberosum cv Bintje, was compared to the maximum activity of inorganic pyrophosphate (PPi):fructose 6-phosphate 1-phosphotransferase (EC 2.7.1.90) and the concentration of two regulatory metabolites. Mature tubers accumulated reducing sugars and sucrose at an almost linear rate of 13.4 and 5.2 micromole per day per gram dry weight at 2°C and 4.5 and 1.3 micromole per day per gram dry weight, respectively, at 4°C. During storage at 8°C sugar accumulation was nil. Sugar accumulation was preceded by a lag phase of about 4 days. The accumulation of reducing sugars persisted for at least 4 weeks, whereas sucrose accumulation declined after 2 weeks of storage. The ratio of glucose:fructose changed concomitantly with sugar increase from 65:35 to equimolarity. The maximum activity of PPi:fructose 6-phosphate 1-phosphotransferase was 2.51 and 2.25 units per gram dry weight during storage at 2 and 8°C, respectively. The temperature coefficient of this enzyme from potatoes kept at 2 or 8°C was 2.12 and 2.48, respectively. The endogenous concentration of fructose 2,6-biphosphate increased from 0.15 to 1 nanomole per gram dry weight during storage at 2 and 4°C but remained the same throughout storage at 8°C. After exposure to 2°C an initial increase in the concentration of PPi was observed from 4.0 to 5.6 nanomoles per gram dry weight. Pyrophosphate concentration did not change during storage at 4°C but decreased slightly at 8°C. All observed changes became annulled after transfer of cold stored tubers to 18°C. These data strongly indicate that PPi:fructose 6-phosphate 1-phosphotransferase can be fully operational in cold stored potato tubers and the lack of increase in PPi concentration supports the functioning of this enzyme during sugar accumulation.  相似文献   

4.
《Phytochemistry》1986,25(5):1073-1076
The amounts of glucose and fructose in a range of harvested tubers of Solanum tuberosum were compared with the labelling of these hexoses by [U-14C]sucrose supplied to the tubers. Hexose content varied. Fructose was more heavily labelled than glucose. There was no correlation between the amounts of glucose and fructose in the tuber and their labelling. The maximum catalytic activities of α-glucan phosphorylase, acid invertase, alkaline invertase, sucrose synthase, α-amylase and β-amylase in tubers stored for 17 weeks at 5° and at 10° were estimated. The values showed no clear correlation with hexose content, but provided sound evidence that starch breakdown was phosphorolytic. It is suggested that the amounts of glucose and fructose in mature harvested tubers may be determined more by the partitioning of the translocated sucrose during the development of the tubers than by the metabolism of the harvested tuber.  相似文献   

5.
Changes in the sugar and amino acid contents of potato tubers during short-term storage and the effect on the acrylamide level in chips after frying were investigated. The acrylamide content in chips began to increase after 3 days of storage at 2 degrees C in response to the increase of glucose and fructose contents in the tubers. There was strong correlation between the reducing sugar content and acrylamide level, R(2)=0.873 for fructose and R(2)=0.836 for glucose. The sucrose content had less correlation with the acrylamide content because of its decrease after 4 weeks of storage at 2 degrees C, while the reducing sugar in potato tubers and the acrylamide in chips continued to increase. The contents of the four amino acids, i.e., asparatic acid, asparagine, glutamic acid and glutamine, showed no significant correlation with the acrylamide level. These results suggest that the content of reducing sugars in potato tubers determined the degree of acrylamide formation in chips. The chip color, as evaluated by L* (lightness), was correlated well with the acrylamide content.  相似文献   

6.
Zhu Q  Song B  Zhang C  Ou Y  Xie C  Liu J 《Plant cell reports》2008,27(1):47-55
The improvement of processing quality of potato products (fries and chips) demands less accumulation of reducing sugars (glucose and fructose) in cold-stored potato (Solanum tuberosum) tubers. Control of gene expression to achieve this requires promoters with specificity to tubers as well as inducible activity under low temperatures. Here we use overlapping extension PCR to construct two chimeric promoters, pCL and pLC, to control gene expression in a tuber-specific and cold-inducible pattern. This combined different combinations of the LTRE (low-temperature responsive element) from Arabidopsis thaliana cor15a promoter and the TSSR (tuber-specific and sucrose-responsive sequence) from potato class I patatin promoter. The cold-inducible and tuber-specific activities of the chimeric promoters were investigated by quantitative analysis of GUS activity in transgenic potato cultivar E3 plants. The results showed that the cis-elements, LTRE and TSSR, played responsive roles individually or in combination. pCL with the TSSR closer to the TATA-box showed substantially higher promoter activity than pLC with the LTRE closer to the TATA-box at either normal (20°C) or low temperature (2°C), suggesting that the promoter activity was closely associated with the position of the two elements. The chimeric promoter pCL with tuber-specific and cold-inducible features may provide valuable tool for controlling the expression of gene constructs designed to lower the formation of reducing sugars in tubers stored at low temperature and to improve the processing quality of potato products. The nucleotide sequence data reported will appear in the GenBank database under the accession numbers DQ494557 (pCL) and DQ494558 (pLC ).  相似文献   

7.
The response of carbohydrate metabolism in potato tubers to low temperature   总被引:2,自引:0,他引:2  
This work investigates the possible causes of cold-induced sweetening in potato by examining the impact of low temperature on carbohydrate metabolism in mature tubers. Metabolism in tuber discs was monitored by determining the redistribution of radiolabel following incubation in [U-(14)C]glucose. Estimates of flux based on the specific activity of hexose phosphates established that while incubation at 4 degrees C resulted in an immediate restriction in pathways of carbohydrate oxidation relative to activity at 25 degrees C, there was no corresponding increase in flux to soluble sugars. In contrast, prior storage at low temperature stimulated flux to sugars at both 4 and 25 degrees C. Comparison of (14)CO(2) release from specifically labeled glucose and gluconate fed to tuber discs at 4 and 25 degrees C indicated that flux through glycolysis was preferentially restricted relative to the oxidative pentose phosphate pathway at low temperature, irrespective of prior storage temperature. However, the degree of randomization of label between positions C1 and C6 in the fructosyl moiety of sucrose following metabolism of [1-(13)C]glucose established that there was no preferential inhibition of the recycling of triose phosphates to hexose phosphates at low temperature. These results indicate that sugar accumulation in tubers during storage in the cold is not a direct consequence of a constraint in carbohydrate oxidation, despite preferential restriction of glycolysis at low temperature. It is concluded that the cold lability of enzymes catalyzing the conversion of fructose 6-phosphate to fructose 1,6-bisphosphate is not a major factor in cold-induced sweetening in plants and that this widely held hypothesis should be abandoned.  相似文献   

8.
9.
Cold‐induced sweetening (CIS) is a serious post‐harvest problem for potato tubers, which need to be stored cold to prevent sprouting and pathogenesis in order to maintain supply throughout the year. During storage at cold temperatures (below 10 °C), many cultivars accumulate free reducing sugars derived from a breakdown of starch to sucrose that is ultimately cleaved by acid invertase to produce glucose and fructose. When affected tubers are processed by frying or roasting, these reducing sugars react with free asparagine by the Maillard reaction, resulting in unacceptably dark‐coloured and bitter‐tasting product and generating the probable carcinogen acrylamide as a by‐product. We have previously identified a vacuolar invertase inhibitor (INH2) whose expression correlates both with low acid invertase activity and with resistance to CIS. Here we show that, during cold storage, overexpression of the INH2 vacuolar invertase inhibitor gene in CIS‐susceptible potato tubers reduced acid invertase activity, the accumulation of reducing sugars and the generation of acrylamide in subsequent fry tests. Conversely, suppression of vacuolar invertase inhibitor expression in a CIS‐resistant line increased susceptibility to CIS. The results show that post‐translational regulation of acid invertase by the vacuolar invertase inhibitor is an important component of resistance to CIS.  相似文献   

10.
Acrylamide in potato chips made from tubers stored at 2 or 20°C for two weeks after harvest was analyzed by GC-MS. The acrylamide level in the former chips was higher than ten times of that in the latter, which was highly correlated with both glucose and fructose levels in the tubers.  相似文献   

11.
To clarify the effects of storage temperature on potato components and acrylamide in chips, tubers from five cultivars were stored at various temperatures (2, 6, 8, 10, and 18 degrees C) for 18 weeks, and the contents of sugars, free amino acids in tubers, and acrylamide in chips after frying were analyzed. At temperatures lower than 8 degrees C, the contents of reducing sugars increased markedly in all cultivars, with similar increases in the acrylamide level and dark brown chip color. Free amino acids showed little change at the storage temperatures tested and varied within certain ranges characteristic of each cultivar. The contents of reducing sugars correlated well with the acrylamide level when the fructose/asparagine molar ratio in the tubers was <2. When the fructose/asparagine ratio was >2 by low-temperature storage, the asparagine content, rather than the reducing sugar content, was found to be the limiting factor for acrylamide formation.  相似文献   

12.
[14C]Sucrose, [14C]glucose and [14C]fructose were introducedinto potato tubers held at 10 °C and the redistributionof label chased over a 65 d period in storage. Respiratory losseswere identical in all treatments, as was the partitioning of14C between soluble and insoluble forms. Sucrose was the predominantlabelled sugar in the tubers after 20 h, regardless of the original[14C]sugar introduced, and was loaded and distributed throughoutthe tubers by the internal phloem system. After 20 h the proportionsof labelled sugars bore no relationship to those of the unlabelledendogenous sugars. However, with time the percentage of 14Cin sucrose fell while that in glucose increased and by 65 dthe proportions of the labelled sugars more closely resembledthe endogenous pools. Fructose represented a consistently lowproportion of both the labelled and unlabelled sugars. By 21d a considerable proportion of the soluble 14C had been convertedto starch (approx. 25% of the total tuber 14C), this value remainingrelatively constant for the remainder of the storage period.Sprouts which formed on the tubers contained up to 6% of thetotal tuber 14C but less than 0.2% of the tuber dry matter.It is suggested that the bulk of the translocated [14C]sucroseentered the symplast and exchanged slowly with the bulk of thesugars in the storage cell vacuoles. [14C]sugars, phloem loading, starch, potato tuber, Solunum tuberosum, cold storage  相似文献   

13.
Factors affecting acid hydrolysis of sweet potato powder (SSP) to fermentable sugars were examined. These include HCl concentration, temperature, time, and levels of SPP. Maximum reducing sugar, reported as dextrose equivalent (DE), was detected after 24 min hydrolysis (1% SPP) in 0.034N HCl heated at 154°C. These samples also had 3.43% droxymethylfurfural (HMF) based on dry weight. A high level of HMF (9.2%) was detected in 1% SPP heated at 154° in 0.10N HCl for 18 min. The lowest concentration of HMF formed (1.8%), at maximal DE of 61%, was established in samples containing 5% SPP and heated at 154° in 0.034N HCl for 48 min. Aqueous extracts of uncured SPP, examined by HPLC, contained glucose, fructose and sucrose, but degraded SPP had only glucose and fructose. Products of degraded SPP, under appropriate conditions, could be used for alcohol fermentation.  相似文献   

14.
These experiments investigate events involved in triggering sugar accumulation in the cold in tubers of Solanum tuberosum L. cv. Desirée. Sugar content, 14C-glucose metabolism, metabolite levels and activities of sucrose phosphate synthase (SPS) and starch-degrading enzymes were followed after transfer to 4°C. (i) Net sucrose accumulation began between 2 and 4 d. By 10 d, reducing sugars were also increasing. From 20 d onwards, sugar accumulation slowed. Sucrose fell, but reducing sugars continued to increase. (ii) To measure unidirectional sucrose synthesis, U-[14C]glucose was injected into tubers after various times at 4°C. The tubers were then incubated for 6 h. After 1 d at 4°C, both the absolute and the relative (expressed as a percentage of the metabolized label) rates of sucrose synthesis decreased compared to those at 20°C. Between 2 and 4 d at 4°C, labelling of sucrose increased 3-fold, to over 60% of the metabolized label. This high rate was maintained for up to 50 d in cold storage. When tissue slices were incubated with 2.5 mol m?3 U-[14C]glucose, the rate of labelling of sucrose in slices from 6 d cold-stored material was higher than in slices from warm-stored material, irrespective of whether the incubation occurred at 4°C or at 20°C. (iii) Hexose-phosphates increased during the first day after transfer to 4°C. Their levels fell during the next 3 d, as sucrose synthesis increased. They then rose (until 20 d) and fell, in parallel with the rise and decline of sucrose levels. UDPglucose remained unaltered during the first 4 d, and then increased and decreased in parallel with sucrose. (iv) SPS activity assayed in optimal conditions and the total amount of SPS protein did not change. However, when assayed in the presence of phosphate and limiting substrate concentrations, activity rose 3–5-fold between 2 and 4 d. (v) Amylases and phosphorylases were investigated using zymograms to separate isoforms. Phosphorylases did not change. Between 2 and 4 d at 4°C, a new amylolytic activity appeared. (vi) Estimates of the specific activity of the phosphorylated intermediates and the absolute rate of sucrose synthesis (calculated from the 14C-labelling data and metabolite analysis) showed that changed kinetic properties of SPS and decreased levels of hexose-phosphate are accompanied by a 6–8-fold stimulation of sucrose synthesis. They also show that the final level of sugar is partly determined by a cycle of sugar synthesis and degradation. (vii) It is concluded that the onset of sugar accumulation in cold-stored tubers is initiated by a change in the kinetic properties of SPS and the appearance of a new amylolytic activity. It is discussed how other factors, including hexose-phosphate levels and subcellular compartmentalization, could also influence the final levels of sugars by altering the balance of sugar synthesis and remobilization.  相似文献   

15.
16.
I型H+-PPase参与糖异生和蔗糖分解代谢,利用不同的糖(蔗糖、葡萄糖和果糖)饲喂拟南芥(Arabidopsis thaliana)Ⅰ型H+-PPase基因不同类型的突变体,产生的表型不一致,因此,推测Ⅰ型H+-PPase可能存在其它影响糖代谢的机制。为进一步明确该酶对糖代谢的影响,以过表达MtVP1的马铃薯(Solanum tuberosum)渭薯4号为研究对象,观察不同培养条件下的表型,监测糖含量变化,并利用转录组测序分析转录谱。结果表明,过表达MtVP1马铃薯表现出红色茎、紫色花和表皮毛更发达,单株块茎数减少,块茎变大,块茎皱缩速度加快;转基因马铃薯块茎中淀粉、葡萄糖和果糖含量显著下降,芽中葡萄糖和果糖含量也显著下降。果糖饲喂导致转基因马铃薯花青素含量显著降低;转基因马铃薯体内果糖-1,6-二磷酸酶和果糖-2,6-二磷酸酶基因表达上调3–7倍。研究结果为进一步从糖代谢角度探究Ⅰ型H+-PPase的生理功能提供参考。  相似文献   

17.
The changes in glucose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate, dihydroxyacetone phosphate, 3-phosphoglycerate, 2-phospho-glycerate, phosphoenol-pyruvate, pyruvate, adenosine mono-, di- and tri-phosphates, NAD and NADH, sugars and respiration of mature potato tubers (variety King Edward) caused by transfer from + 10° to + 2° and back to + 10° were followed throughout 4–8 weeks of storage. The results obtained showed a characteristic two phase pattern. In the case of the transfer from + 10° to + 2° a number of the phosphate esters showed wide individual variations in concentration during the first phase but only slow changes during the second phase when most of the phosphate esters tended to follow a common pattern. In the first phase the sugar concentration remained roughly constant, but in the second a considerable increase in both sucrose and respiration occurred. In the case of potatoes transferred from + 2° to + 10° the two phase character of the results was not so marked. In the case of potatoes transferred from + 10° to + 2° the changes in the phosphate esters in the first phase did not appear to be related to the conversion of starch to sucrose which only occurred to a significant extent in the second phase. Electron micrographs of potato tubers which had been stored at + 2° for 38 days (sugar content 2.4%) showed that the starch grains were still enclosed in a double membrane (amyloplast membrane). Analysis of starch grains prepared by a non-aqueous method from potato tubers stored at + 10° and + 2° indicated that a large part of the K, Na, Cl, citrate and glucose-6-phosphate was inside the amyloplast but that the sugar (storage at + 2°) was outside; sweetening therefore involved the transport of metabolites through the amyloplast membrane. Comparison with other treatments (anaerobiosis, cyanide, ethylene chlorhydrin) which cause sweetening suggested that the regulation of the starch-sugar interconversion was effected at the amyloplast membrane and possibly involved electron transfer. In the case of potatoes which sweetened due to senescence, electron micrographs showed that the amyloplast membranes were disintegrating.  相似文献   

18.
The yeast Kluyveromyces marxianus has been pointed out as a promising microorganism for a variety of industrial bioprocesses. Although genetic tools have been developed for this yeast and different potential applications have been investigated, quantitative physiological studies have rarely been reported. Here, we report and discuss the growth, substrate consumption, metabolite formation, and respiratory parameters of K. marxianus CBS 6556 during aerobic batch bioreactor cultivations, using a defined medium with different sugars as sole carbon and energy source, at 30 and 37 °C. Cultivations were carried out both on single sugars and on binary sugar mixtures. Carbon balances closed within 95 to 101 % in all experiments. Biomass and CO2 were the main products of cell metabolism, whereas by-products were always present in very low proportion (<3 % of the carbon consumed), as long as full aerobiosis was guaranteed. On all sugars tested as sole carbon and energy source (glucose, fructose, sucrose, lactose, and galactose), the maximum specific growth rate remained between 0.39 and 0.49 h?1, except for galactose at 37 °C, which only supported growth at 0.31 h?1. Different growth behaviors were observed on the binary sugar mixtures investigated (glucose and lactose, glucose and galactose, lactose and galactose, glucose and fructose, galactose and fructose, fructose and lactose), and the observations were in agreement with previously published data on the sugar transport systems in K. marxianus. We conclude that K. marxianus CBS 6556 does not present any special nutritional requirements; grows well in the range of 30 to 37 °C on different sugars; is capable of growing on sugar mixtures in a shorter period of time than Saccharomyces cerevisiae, which is interesting from an industrial point of view; and deviates tiny amounts of carbon towards metabolite formation, as long as full aerobiosis is maintained.  相似文献   

19.
Free amino acids and reducing sugars participate in the Maillard reaction during high‐temperature cooking and processing. This results not only in the formation of colour, aroma and flavour compounds, but also undesirable contaminants, including acrylamide, which forms when the amino acid that participates in the reaction is asparagine. In this study, tubers of 13 varieties of potato (Solanum tuberosum), which had been produced in a field trial in 2010 and sampled immediately after harvest or after storage for 6 months, were analysed to show the relationship between the concentrations of free asparagine, other free amino acids, sugars and acrylamide‐forming potential. The varieties comprised five that are normally used for crisping, seven that are used for French fry production and one that is used for boiling. Acrylamide formation was measured in heated flour, and correlated with glucose and fructose concentration. In French fry varieties, which contain higher concentrations of sugars, acrylamide formation also correlated with free asparagine concentration, demonstrating the complex relationship between precursor concentration and acrylamide‐forming potential in potato. Storage of the potatoes for 6 months at 9°C had a significant, variety‐dependent impact on sugar and amino acid concentrations and acrylamide‐forming potential.  相似文献   

20.
A candidate gene approach has been used as a first step to identify the molecular basis of quantitative trait variation in potato. Sugar content of tubers upon cold storage was the model trait chosen because the metabolic pathways involved in starch and sugar metabolism are well known and many of the genes have been cloned. Tubers of two F(1) populations of diploid potato grown in six environments were evaluated for sugar content after cold storage. The populations were genotyped with RFLP, AFLP, and candidate gene markers. QTL analysis revealed that QTL for glucose, fructose, and sucrose content were located on all potato chromosomes. Most QTL for glucose content mapped to the same positions as QTL for fructose content. QTL explaining >10% of the variability for reducing sugars were located on linkage groups I, III, VII, VIII, IX, and XI. QTL consistent across populations and/or environments were identified. QTL were linked to genes encoding invertase, sucrose synthase 3, sucrose phosphate synthase, ADP-glucose pyrophosphorylase, sucrose transporter 1, and a putative sucrose sensor. The results suggest that allelic variants of enzymes operating in carbohydrate metabolic pathways contribute to the genetic variation in cold sweetening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号