首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The homogeneity of Aspergillus dipeptidase prepared according to the standard method established by us was ascertained by ultracentrifugation and some characteristic properties of the enzyme was further investigated.

Hydrolysis of various dipeptides by the purified dipetidase was tested in the presence of divalent metal ions such as Co++ or Zn++, and the characteristics of greatest interest may be enumerated as follows:
  1. The homogeneous dipeptidase requires Zn++ for activation in the case of the hydrolysis of leucylglycine, leucylalanine leucylleucine, etc.

  2. The homogeneous dipeptidase requires Co++ for activation in the case of the hydrolysis of glycylleucine, glycylleucine, glycylglycine, glycylphenylalanine, etc.

  3. In the case of the hydrolysis of alanylglycine, alanylleucine, valylglycine, etc., this enzyme does not require any metal ions.

  相似文献   

2.
Screening experiments for dipeptidase and aminopolypeptidase from 40 strains of molds were conducted using Leu-Gly, Gly-Leu, Ala-Gly and Gly-Gly-Leu as substrates.

The strains of Aspergillus oryzae RO-0129 A-2, IAM-2600 and IAM-2616 showed strong activities of both dipeptidase and aminopolypeptidase.

Further, optimal conditions for making culture as well as those for the extractions of the peptidases from the mycerial mats were investigated.  相似文献   

3.
An alkaline proteinase of Aspergillus sydowi (Bainier et Sartory) Thom et Church has been purified approximately 4.5-fold from a culture filtrate by fractionation with ammonium sulfate, treatment with acrynol and Alumina gel Cγ, and DEAE-Sephadex column chromatography. The purified proteinase obtained as needle crystals was monodisperse in both the ultracentrifuge and the electrophoresis on polyacrylamide gel.

The optimum pH and temperature for the activity were 8.0 and 40°C, respectively. Fifty per cent of the activity was lost at 45°C within ten minutes and 95% at 50°C. At 5°C, the enzyme was highly stable at the range of pH 6 to 9. None of metallic salts tested promoted the activity, but Zn++, Ni++ and Hg++ were found to be inhibitory. Sulfhydryl reagent, reducing and oxidizing reagents tested except iodine had no effect on the activity, but potato inhibitor, DFP and NBS caused a marked inhibition.

The alkaline proteinase from Aspergillus sydowi was markedly protected from inactivation by the presence of Ca++ in the enzyme solution. The protective effect of Ca++ was influenced remarkably by the pH values of the enzyme solution, i.e., optimum concentrations of Ca++ for the protective effect at pH 7.1, 7.5 and 7.8 were 10?2, 10?3 and 10?4 M, respectively. Conversely, at higher pH values such as 9.0, Ca++ accelerated the rate of inactivation. There was a parallelism between the loss in activity and the increase in ninhydrin-positive material in the enzyme solution.

The proteinase acted on various denaturated proteins, but not on native proteins. In digestion of casein by the proteinase, 92% of nitrogen was turned into soluble form in 0.2 m trichloroacetic acid solution, with 14~17% of peptide bonds being hydrolyzed. Casein hydrolyzed with the Asp. sydowi proteinase was further hydrolyzed by Pen. chrysogenum, B. subtilis or St. griseus proteinases, which further increased the free amino residues in the reaction mixtures. On the contrary, the Asp. sydowi proteinase reacted only slightly on casein hydrolyzed by the above-mentioned proteinases.  相似文献   

4.
The alkaline proteinases of Gliocladium roseum (Link) Bainier were purified in crystalline forms by procedures of alcoholic precipitation, fuller’s earth- and acrinol-treatment, and isolated in two types. (Proteinases I and II). Both of these proteinases were homogeneous on zone electrophoresis with polyacrylamide gel (Gyanogum 41), and had the optimal pH values of 11 (Proteinase I) and 10 (Proteinase II), and the optimal temperature of 45°C.

The enzymatic reaction of proteinase I was remarkably promoted by Fe++ and Co++, and that of proteinase II was promoted by Fe++, Go++ and Ca++, and both proteinases were protected from heat-inactivation by Ca++ Proteinase II was activated remarkably by Cl? under the existence of Fe++, but proteinase I was unaffected by the anion.

The order of strength of proteolytic power of these proteinases and chymotrypsin on casein was as follows; proteinase I> proteinase II> chymotrypsin.  相似文献   

5.
The final step in the conversion of protein to amino acids by the common Gram-negative rumen bacterium, Prevotella (formerly Bacteroides) ruminicola , is the cleavage of di- and tripeptides. Dipeptidase and tripeptidase activities were predominantly cytoplasmic, and toluene treatment increased the rate of Ala2 and Ala3 hydrolysis by whole cells, suggesting that transport limited the rate of hydrolysis of extracellular di- and tripeptides. The hydrolysis of Ala2 and Ala3 by whole cells was not affected by protonophores, ionophores or dicyclohexylcarbodiimide, but Ala2 hydrolysis by EDTA-treated cells was inhibited by the Ca2+/H+ ionophore, tetronasin. Ala3 hydrolysis was not affected by protonophores or ionophores in EDTA-treated cells. The dipeptidase of strain M384 was inhibited > 99% by 1,10-phenanthroline and 39% by EDTA but not other protease inhibitors, consistent with the enzyme being a metalloprotease. Tripeptidase was insensitive to protease inhibitors, except for a 33% inhibition by EDTA. Cleavage of tripeptides occurred at the bond adjacent to the N-terminal amino acid. Distinct di-, tri- and oligopeptidase peaks were obtained by anion-exchange liquid chromatography of disrupted cells. Banding patterns on native PAGE using activity staining also indicated that P. ruminicola M384 had separate single dipeptidase and tripeptidase enzymes which hydrolysed a range of peptides. The dipeptidase of strain M384 was different from other strains of P. ruminicola: strains GA33 and B14 had activities which ran at the same Rf; strain GA33 had another band of lower activity; strain 23 had two bands different from those of the other strains. The tripeptidases ran at the same Rf for the different strains. Dipeptidase activity of all strains was inhibited by 1,10-phenanthroline on gels. Gel permeation chromatography indicated that the Mr of the dipeptidases from strains M384 and B14 were 115 000 and 114 500 respectively, and 112 500 and 121 500 for the corresponding tripeptidases. Thus the metabolism of small peptides by P. ruminicola involves separate permeases and intracellular peptidases for di- and tripeptides.  相似文献   

6.
The properties of brewer’s yeast α-glucosidase have been investigated. The enzyme was capable of hydrolyzing various α-glucosides and was active especially on aryl-α-glucosides in comparison with other α-glucosides and sugars. The rate of hydrolysis decreased in following order: phenyl-α-glucosides, sucrose, matlose and isomaltose.

The range of opt. temp, was 40~45°C and opt. pH, 6.5~7.0.

Cu++ and Hg++ inhibited strongly the enzyme activity and Zn++, moderately. The enzyme was suggested to be a sulfhydryl enzyme from the inhibition experiments by SH-reagents and the effects of glutathione on the activity.

The enzyme synthesized some oligosaccharides from maltose. As the transglucosidation products, nigerose, isomaltose, kojibiose and maltotriose were detected by paperchromatography.

Pure nigerose was separated by splitting maltose with amyloglucosidase from the mixture of maltose and nigerose and by use of successive carbon column chromatography.  相似文献   

7.
The 8-kDa subunit c of theE. coli F0 ATP-synthase proton channel was tested for Ca++ binding activity using a45Ca++ ligand blot assay after transferring the protein from SDS-PAGE gels onto polyvinyl difluoride membranes. The purified subunit c binds45Ca++ strongly with Ca++ binding properties very similar to those of the 8-kDa CF0 subunit III of choloroplast thylakoid membranes. The N-terminal f-Met carbonyl group seems necessary for Ca++ binding capacity, shown by loss of Ca++ binding following removal of the formyl group by mild acid treatment. The dicyclohexylcarbodiimide-reactive Asp-61 is not involved in the Ca++ binding, shown by Ca++ binding being retained in twoE. coli mutants, Asp61Asn and Asp61Gly. The Ca++ binding is pH dependent in both theE. coli and thylakoid 8-kDa proteins, being absent at pH 5.0 and rising to a maximum near pH 9.0. A treatment predicted to increase the Ca++ binding affinity to its F0 binding site (chlorpromazine photoaffinity attachment) caused an inhibition of ATP formation driven by a base-to-acid pH jump in whole cells. Inhibition was not observed when the Ca++ chelator EGTA was present with the cells during the chlorpromazine photoaffinity treatment. An apparent Ca++ binding constant on the site responsible for the UV plus chlorpromazine effect of near 80–100 nM was obtained using an EGTA-Ca++ buffer system to control free Ca++ concentration during the UV plus chlorpromazine treatment. The data are consistent with the notion that Ca++ bound to the periplasimic side of theE. coli F0 proton channel can block H+ entry into the channel. A similar effect occurs in thylakoid membranes, but the Ca++ binding site is on the lumen side of the thylakoid, where Ca++ binding can modulate acid-base jump ATP formation. The Ca++ binding to the F0 and CF0 complexes is consistent with a pH-dependent gating mechanism for control of H+ ion flux across the opening of the H+ channel.This work was supported in part by grants from the Department of Energy and the U.S. Department of Agriculture.On leave from the Institute of Soil Science and Photosynthesis, Russian Academy of Science, Pushchino, Russia.  相似文献   

8.
Quantitative studies on yeast 5′-nucIeotidase are presented.

Km values for purine 5′-nucleotides were generally smaller than those for pyrimidine 5′-nucleotides and, among purine series, Km value for 5′-AMP was the smallest, while their V values were almost same.

The enzyme activity was inhibited in the competitive type by bases, nucleosides, 3′- or 2′-nucleotides, and NMN and in the mixed type by NAD and NADP.

Base-, ribose-, 3′- or 5′-phosphate moiety of nucleoside and nucleotide had some effects on binding with enzyme; especially the structure of base moiety characterizes the Km or Ki value.

The enzyme activity was accelerated by Ni++ or Co++, which increases V value but never affects Km value.

The relationship between the structure of substrate and its affinity towards enzyme is discussed.  相似文献   

9.
The gene encoding Lentinula edodes glucoamylase (GLA) was cloned into Saccharomyces cerevisiae, expressed constitutively and secreted in an active form. The enzyme was purified to homogeneity by (NH4)2SO4 fractionation, anion exchange and affinity chromatography. The protein had a correct N-terminal sequence of WAQSSVIDAYVAS, indicating that the signal peptide was efficiently cleaved. The recombinant enzyme was glycosylated with a 2.4% carbohydrate content. It had a pH optimum of 4.6 and a pH 3.4–6.4 stability range. The temperature optimum was 50°C with stability ≤50°C. The enzyme showed considerable loss of activity when incubated with glucose (44%), glucosamine (68%), galactose (22%), and xylose (64%). The addition of Mn++ activated the enzyme by 45%, while Li+, Zn++, Mg++, Cu+, Ca++, and EDTA had no effect. The enzyme hydrolyzed amylopectin at rates 1.5 and 8.0 times that of soluble starch and amylose, respectively. Soluble starch was hydrolyzed 16 and 29 times faster than wheat and corn starch granules, respectively, with the hydrolysis of starch granules using 10× the amount of GLA. Apparent Km and Vmax for soluble starch were estimated to be 3.0 mg/ml and 0.13 mg/ml/min (40°C, pH 5.3), with an apparent kcat of 2.9×105 min−1.  相似文献   

10.
Summary Internal perfusion ofHelix neurons with a solution containing potassium aspartate, MgCl2, ATP, and HEPES causes the calcium-activated potassium current (I K(Ca)) evoked by depolarizing voltage steps to decrease with time. When internal free Ca++ is strongly buffered to 10–7 m by including 0.5mm EGTA and 0.225mm CaCl2 in the internal solution,I K(Ca) remains constant for up to 3 hours of perfusion. In cells whereI K(Ca) is small at the start of perfusion, perfusion with the strongly buffered 10–7 m free Ca++ solution produces increases inI K(Ca) which ultimately saturate. In cells perfused with solutions buffered to 10–6 m free Ca++,I K(Ca) is low and does not change with perfusion. These results lead us to conclude thatI K(Ca) is stable in perfusedHelix neurons and that the apparent loss ofI K(Ca) seen initially with perfusion is due to accumulation of cytoplasmic calcium. Since the calcium current (I Ca) provides the Ca++ which activatesI K(Ca) during a depolarizing pulse,I Ca is also stable in perfused cells when free intracellular Ca++ is buffered.Perfusion with 1 m calmodulin (CaM) produces no effect onI K(Ca) with either 10–7 or 10–6 m free internal calcium. Inhibiting endogenous CaM by including 50 m trifluoperazine (TFP) in both the bath and the internal perfusion solution also produces no effect onI K(Ca) with 10–7 m free internal calciu. It is concluded that CaM plays no role inI K(Ca) activation.  相似文献   

11.
A detergent extract of dog or beef heart sarcolemmal vesicles was prepared and found to have a stimulatory effect on the Ca++-ATPase of plasma membranes from human erythrocyte and cardiac sarcolemma. A procedure is described which enriches the activating fraction. The protein nature of the preparation is illustrated by its sensitivity to boiling and to the proteolytic enzyme(s) trypsin and chymotrypsin. SDS polyacrylamide gels indicate that the protein(s) involved have a molecular weight of 56 and 60 kDa. The sarcolemmal activator can stimulate the Ca++-ATPase activity of the isolated enzyme more than 100% in the presence of saturating amounts of calmodulin. The activation is calcium dependent, being greatest at approximately 10µm Ca++, free, but does not change theK m for Ca++. A possible physiological role for the activator is discussed.  相似文献   

12.
Summary A study of the physiological significance of EPR signal was undertaken in the developing apical organs as well as in the top most leaf of a determinate type of plant,Triticum aestivum Cv. S 227 at various stages of vegetative and reproductive differentiation. Pour types of signals are reported: (a) a weak asymmetrical signal having 700 Gauss of width and g=2, the origin of which, is not clear; (b) a broad six peak signal also having g=2 which, as available evidence suggests, may be due to Mn++; (c) in association with Mn++ signal there are also other signals caused either by paramagnetic metals or by organic free radicals (FR); (d) at the centre of Mn++ signal there appears a free radical signal with g=2.0023. It is observed that the amplitude of Mn++ and free radical signal increases sharply in the shoot apex during its transformation from vegetative to reproductive state. The leaf also consistently records higher Mn++ and FR contents at all stages of reproductive differentiation. Synchronously with the above mentioned enhanced paramagnetic behaviour of the apex and of the leaf there is an upsurge in metabolic activity of the plant. The possible role of free radicals and Mn++ in energy transfer is discussed in relation to ascorbic acid turnover.  相似文献   

13.
H Krakauer 《Biopolymers》1971,10(12):2459-2490
The binding of Mg ++ to polyadenylate (poly A), Polyuridylate(poly U), and their complexes, poly (A + U) and poly (A + 2U), was studied by means of a technique in which the dye eriochrome black T is used to measure the concentration of free Mg?. The apparent binding constant KX = [MgN]/[Mg++][N], N = site for Mg++ binding (the phosphate group of the nucleotide), was found to decrease rapidly as the extent of binding increased and, at low extents of binding, as the concentration of Na? increased in poly A, poly (A + U), and poly (A + 2U), and somewhat less so in poly U. Kx is generally in the range 104 > KX > 102. The cause of these dependences is apparently, primarily, the displacement of Na+ by Mg++ in poly U and poly (A + U) on the basis of the similarity of extents of displacement measured in this work and those measured potentiometrically. was calculated and was found to approach zero as the concentration of Na+ increased. In poly U, poly (A + U), and poly (A + 2U) at low ΔH′ v.H. > 0, about + 2 kcal/“mole.” In poly A, also at low salt, ΔH′ v.H. ≈ ?4 kcal/“mol” for the initial binding of Mg++, and increases to +2 kcal/“mol” at saturation. This enthalpic variation probably accounts for the anticooperativity in the binding of Mg++ not ascribable to the displacement of Na++.  相似文献   

14.
A novel aminopeptidase from Clostridium histolyticum   总被引:1,自引:0,他引:1  
An aminopeptidase was found in the culture filtrate of Cl. histolyticum and purified to homogeneity (130 times) in a two-step procedure. All types of N-terminal amino acids, including proline and hydroxyproline are cleaved by the enzyme from small peptides and from polypeptides. A low rate of hydrolysis was observed for β-naphthylamides and for alanine amide; p-nitroanilides were not hydrolyzed. Kinetic parameters (Km and Vmax) for several tripeptides and the tetrapeptide Pro-Gly-Pro-Pro were determined. The enzyme has a pH optimum at 8.6. The presence of either Mn++ or Co++ is essential for its activity. Only slight activation was observed with Ni++ and Cd++, while Zn++ and Cu++ were inhibitory. The molecular weight of the native enzyme is about 340,000, and a molecular weight of about 60,000 was determined for the reduced and denatured enzyme by gel electrophoresis in sodium dodecyl sulfate (SDS).The culture filtrate of Cl. histolyticum has been shown to contain various proteolytic enzymes, in addition to collagenase1–5. In a search for enzymes acting on proline-rich peptides, we tested the crude filtrate with (Pro-Gly-Pro)n, (Pro-Gly-Pro)n-OMe, α,DNP-(Pro-Gly-Pro)n and poly-L-proline as substrates. Proline was formed only from (Pro-Gly-Pro)n and its methyl ester. This showed the presence in Cl. histolyticum filtrate of an aminopeptidase which cleaves N-terminal proline from polypeptides but not from polyproline. The purification and some of the properties of this clostridial aminopeptidase (CAP) are described in this communication.  相似文献   

15.
Abstract

An extracellular alkaline phosphatase from Penidllium chrysogenum was purified to homogeneity using DEAE ion-exchange chromatography and size exclusion chromatography. SDS-PAGE of the purified enzyme indicated a molecular weight of 58,000. The mobility of the native enzyme on a Superose 12 column suggests that the active form of the enzyme is a monomer. The enzyme catalyzes the hydrolysis of phosphate from a variety of substrates including p-Miitrophenyl phosphate, α-naphthyl phosphate and the anti-tumor compound etoposide phosphate. The apparent Km for the substrate p-nitrophenyl phosphate is 1.3 mM and the enzyme is inhibited by inorganic phosphate. The pH optimum of the enzyme is 9.0 with a broad optimal temperature range between 40 and 50 °C. The isoelectric point of the enzyme is approximately 5.5. The enzyme is a glycoprotein; digestion with endoglycosidase H indicates that the protein consists primarily of N-inked carbohydrates. Enzymatic activity is enhanced by the addition of divalent cations such as Mg++ and Mn++ and inhibited by addition of a chelator such as EDTA suggesting a metal ion requirement. The enzyme was found to be an inexpensive catalyst for the conversion of etoposide phosphate to etoposide in the manufacture of this anti-tumor compound.  相似文献   

16.
The properties of crude phosphodiesterase forming 5′-mononucleotide of Pellicularia H-II were investigated on its metal requirement, pH response for activity and so on. The dialyzate of crude PDase against distilled water became partly inactive, but was recovered with Zn++, Mn++ and Mg++, whereas completely inactivated dialyzate against EDTA was restored specifically with only Zn++

The optimum pH of PDase activity was 5.0 and that of ribonuclease 4.0. The crude PDase was partially purified by acetone fractionation and Amberlite IRC-50 (XE-64) or CM-cellulose column chromatography. Two PDase and a RNase activities were recognized.

Pellicularia PDase was found to be of new type according to its Zn++ dependency and non-activity towards bis-p-nitrophenyl phosphate.  相似文献   

17.
This study focuses, in A6 cell monolayers, on the role of protein kinases in the dynamics of tight junction (TJ) opening and closing. The early events of TJ dynamics were evaluated by the fast Ca++-switch assay (FCSA), which consisted of opening the TJs by removing basolateral Ca++ (Ca++ bl), and closing them by returning Ca++ bl to normal values. Changes in TJ permeability can be reliably gauged through changes of transepithelial electrical conductance (G) determined in the absence of apical Na+. The FCSA allows the evaluation of the effects of drugs and procedures acting upon the mechanism controlling the TJs. The time courses of TJ opening and closing in response to the FCSA followed single-exponential time courses. A rise of apical Ca++ (Ca++ ap) causes a reduction of TJ opening rate in an FCSA or even a partial recuperation of G, an effect that is interpreted as mediated by Ca++ ap entering the open TJs. Protein kinase C (PKC) inhibition by H7 at low concentrations caused a reduction of the rate of junction opening in response to Ca++ bl removal, without affecting junction closing, indicating that PKC in this preparation is a key element in the control of TJ opening dynamics. H7 at 100 μm completely inhibits TJ opening in response to Ca++ bl withdrawal. Subsequent H7 removal caused a prompt inhibition release characterized by a sharp G increase, a process that can be halted again by H7 reintroduction into the bathing solution. Differently from the condition in which Ca++ is absent from the apical solution, in which H7 halts the process of G increase in response to a FCSA, when Ca++ is present in the apical solution, addition of H7 during G increase in an FCSA not only induces a halt of the G increase but causes a marked recuperation of the TJ seal, indicated by a drop of G, suggesting a cooperative effect of Ca++ and H7 on the TJ sealing process. Staurosporine, another PKC inhibitor, differently from H7, slowed both G increase and G decrease in an FCSA. Even at high concentrations (400 nm) staurosporine did not completely block the effect of Ca++ withdrawal. These discrepancies between H7 and staurosporine might result from distinct PKC isoforms participating in different steps of TJ dynamics, which might be differently affected by these inhibitors. Immunolocalizations of TJ proteins, carried out in conditions similar to the electrophysiological experiments, show a very nice correlation between ZO-1 and claudin-1 localizations and G alterations induced by Ca++ removal from the basolateral solution, both in the absence and presence of H7. Received: 18 April 2001/Revised: 16 July 2001  相似文献   

18.
Barley α-amylase 1 mutant (AMY) and Lentinula edodes glucoamylase (GLA) were cloned and expressed in Saccharomyces cerevisiae. The purified recombinant AMY hydrolyzed corn and wheat starch granules, respectively, at rates 1.7 and 2.5 times that of GLA under the same reaction conditions. AMY and GLA synergistically enhanced the rate of hydrolysis by ∼3× for corn and wheat starch granules, compared to the sum of the individual activities. The exo-endo synergism did not change by varying the ratio of the two enzymes when the total concentration was kept constant. A yield of 4% conversion was obtained after 25 min 37°C incubation (1 unit total enzyme, 15 mg raw starch granules, pH 5.3). The temperature stability of the enzyme mixtures was ≤50°C, but the initial rate of hydrolysis continued to increase with higher temperatures. Ca++ enhanced the stability of the free enzymes at 50°C incubation. Inhibition was observed with the addition of 10 mM Fe++ or Cu++, while Mg++ and EDTA had lesser effect. Reference to a company and/or products is only for purposes of information and does not imply approval of recommendation of the product to the exclusion of others that may also be suitable. All programs and services of the U.S. Department of Agriculture are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, age, marital status, or handicap.  相似文献   

19.
The effect of temperature, O2 and Mg++ on the kinetic characteristics of the slow inactivation (fallover) of Rubisco isolated from spinach (Spinacia oleracea L.) was determined. Comparing 25 and 45 °C, the rate of activity decline of Rubisco increased by 20-fold, but the final ratio of steady state to initial activity increased from 0.38 to 0.62, respectively. Low CO2 increased the extent of fallover but only caused a marginal increase in fallover rate in agreement with results reported previously. In contrast, increased O2 during catalysis significantly increased only the fallover rate. Low Mg++ greatly increased the fallover of Rubisco both in rate and extent. Rubisco carbamylation was assayed using a new separation technique and it revealed that a loss of carbamylation largely accounted for the increased fallover observed with low Mg++. In conclusion, Rubisco fallover is facilitated by high temperature, low concentration of CO2 or Mg++, and high O2. The physiological importance of these factors in affecting Rubisco fallover and contributing to photosynthetic inhibition at high temperatures in planta are discussed.*Mention of a trademark, proprietary product or vendor does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable.  相似文献   

20.
An alkaline serine proteinase was purfied from the culture broth of an alkalophilicBacillus sp. NKS-21. The molecular weight was estimated to be 22,000 by a gel filtration method and 31,000 by SDS-polyacrylamide gel electrophoresis. The isoelectric point was determined to be 8.2. The amino acid composition and CD spectrum were determined. The alkaline proteinase had a pH optimum at 10–11 for milk casein digestion. The specific activity of the alkaline proteinase was 0.35 katal/kg of protein at pH 10.0 for milk casein hydrolysis.The substrate specificity of the alkaline proteinase was studied by using the oxidized, insulin B-chain and angiotensin. An initial cleavage site was observed at Leu15-Tyr16, secondary site at Leu11-Val12, and additional sites at Gln4-His5, Tyr26-Thr27, and Asn3-Gln4 in the oxidized insulin B-chain at pH 10.0. In comparison with the subtilisins Carlsberg and Novo, the alkaline proteinase fromBacillus sp. showed a unique specificity toward the oxidized insulin B-chain. Hydrolysis of angiotensin at pH 10.0 with the alkaline proteinase was observed at Tyr4-Ile5. The proteinase has aK m of 0.1 mM andk cat of 3.3 s–1 with angiotensin as substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号