首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Invertase was entrapped in cellulose triacetate fibers and the properties of the insoluble derivative were studied. Fiber-entrapped invertase was found very stable under operating conditions. For some insoluble preparations a half-life value of 5,300 days was calculated; a sample of invertase fibers, continuously hydrolyzing sucrose, maintained unchanged its activity for five years. The activity displayed by invertase fibers was 15–65% of that of the free enzyme, depending on the amount of entrapped enzyme and on the porosity of the fibers. At very high substrate concentrations the activity of the entrapped invertase approximated to that of the free enzyme. The pH optimum for activity was around 4.5 for the free and entrapped invertase. The native and entrapped enzyme was unstable at temperatures higher than 35°C. The continuous hydrolysis of sucrose using invertase fiber was studied and the potential industrial application of entrapped enzyme is discussed.  相似文献   

2.
Saccharomyces cerevisiae invertase was chemically modified with chitosan and further immobilized on sodium alginate-coated chitin support. The yield of immobilized protein was determined as 85% and the enzyme retained 97% of the initial chitosan-invertase activity. The optimum temperature for invertase was increased by 10 °C and its thermostability was enhanced by about 9 °C after immobilization. The immobilized enzyme was stable against incubation in high ionic strength solutions and was four-fold more resistant to thermal treatment at 65 °C than the native counterpart. The biocatalyst prepared retained 80% of the original catalytic activity after 50 h under continuous operational regime in a packed bed reactor.  相似文献   

3.
Studies were made of invertase adsorption on Amberlite ion exchange resins. Up to 4000 units of adsorbed enzymatic activity (aea) were obtainedper g of IRA 93 resin; for an aea of 1600 units, the maximum ratio of aea over units of soluble enzyme used for adsorption was close to 50%. Nodesorption occurred during extensive washing at 30°C with 0.01M sodiumacetate buffer at pH 5. Progressive desorption of aea from the invertase–IRA 93 complex occurred when buffer molarity and temperature were increased. Desorption differed only slightly when the buffer pH was 3 or 5. Theoptimum pH of aea was 3.2 with IRA 93 resin, and varied between 3.2 and 5.1with other resins, depending on their anionic or cationic nature. Batch hydrolysis of sucrose by IRA 93–adsorbed invertase followed 1st order kinetics with respect to the substrate concentration, as in the case of soluble invertase. Continuous sucrose hydrolysis with IRA 93–adsorbed invertase was performed in a tubular reactor, and the percent conversion was experimentally determined as a function of the flow rate. The reaction was experimentally determined 50% (w/v) sucrose solution, at pH4 and 30°C; at the selected flow rate, the ratio of sucrose hydrolysis remained constant and close to 76%. This shows that invertase was not desorbed from the tubular reactor. Some continuous hydrolyses were performed with an industrial sucrose solution: enzymatic activity seemed to be stable for anextended period for time (1 month) at 30°C and pH 3 or 4.  相似文献   

4.
The fungus Sclerotinia sclerotiorum produces invertase activity during cultivation on many agroindustrial residues. The molasses induced invertase was purified by DEAE-cellulose chromatography. The molecular mass of the purified enzyme was estimated at 48 kDa. Optimal temperature was determined at 60 °C and thermal stability up to 65 °C. The enzyme was stable between pH 2.0 and 8.0; optimum pH was about 5.5. Apparent Km and Vmax for sucrose were estimated to be respectively 5.8 mM and 0.11 μmol/min. The invertase was activated by β-mercaptoethanol. Free enzyme exhibited 80 % of its original activity after two month’s storage at 4 °C and 50 % after 1 week at 25 °C. In order to investigate an industrial application, the enzyme was immobilized on alginate and examined for invert sugar production by molasses hydrolysis in a continuous bioreactor. The yield of immobilized invertase was about 78 % and the activity yield was 59 %. Interestingly the immobilized enzyme hydrolyzed beet molasses consuming nearly all sucrose. It retained all of its initial activity after being used for 4 cycles and about 65 % at the sixth cycle. Regarding productivity; 20 g/l of molasses by-product gave the best invert sugar production 46.21 g/day/100 g substrate related to optimal sucrose conversion of 41.6 %.  相似文献   

5.
The present study investigates the efficiency of Aspergillus niger to produce invertase, an industrially important enzyme by using powdered stem of Cympopogan caecius (Lemon grass) as sole substrate and sole carbon source for the microorganism. The molecular weight of invertase was estimated to be 66–70 kDa by sodium do decyl sulphate poly acrylamide gel electrophoresis (SDS PAGE). The production of the enzyme was studied at different pH scales ranging from pH 4.0 to 7.0 at a constant temperature of 30°C and 2% substrate concentration. The maximum production of invertase (specific activity −0.0516 μk/mg protein) was obtained at pH 5.5 at 30°C temperature, and incubation for 48 h. The activity was found to be stable at pH 5.5 for 30 min. The enzyme was found to be stable in the temperature range of 20–55°C. The effect of divalent metal ions Cu2+, Fe2+, Co2+ on the activity of the enzyme invertase showed that these ions affected the activity by a certain factor. The study can be further industrially exploited in a country-like India where lemon grass is found in plenty and can be used as substrate for enzyme production. Moreover, the preparation of the substrate is also a simple process.  相似文献   

6.
Extracellular phytase from Aspergillus ficuum, a glycoprotein, was purified to homogeneity in 3 column chromatographic steps using ion exchange and chromatofocusing. Results of gel filtration chromatography and SDS-polyacrylamide gel electrophoresis indicated the approximate molecular weight of the native protein to be 85–100-KDa. On the basis of a molecular weight of 85–KDa, the molar extinction coefficient of the enzyme at 280 nm was estimated to be 1.2 × 104 M-l cm-1. The isoelectric point of the enzyme, as deduced by chromatofocusing, was about 4.5. The purified enzyme is remarkably stable at 0°C. Thermal inactivation studies have shown that the enzyme retained 40% of its activity after being subjected to 68°C for 10 minutes, and the enzyme exhibited a broad temperature optimum with maximum catalytic activity at 58°C. The Km of the enzyme for phytate and p-nitrophenylphosphate is about 40 uM and 265 uM, respectively, with an estimated turnover number of the enzyme for phytate of 220 per sec. Enzymatic deglycosylation of phytase by Endoglycosidase H lowered the molecular weight of native enzyme from 85–100-KDa to about 76–KDa; the digested phytase still retained some carbohydrate as judged by positive periodic acid-Schiff reagent staining of the electrophoresed protein. Immunoblotting of the phytase with monoclonal antibody 7H10 raised against purified native enzyme recognized not only native but also partially deglycosylated protein.  相似文献   

7.
Saccharomyces cerevisiae invertase, chemically modified with chitosan, was immobilized on a carboxymethylcellulose-coated chitin support via polyelectrolyte complex formation. The yield of immobilized protein was determined to be 72% and the enzyme retained 68% of the initial invertase activity. The optimum temperature for invertase was increased by 5 degrees C and its thermostability was enhanced by about 9 degrees C after immobilization. The immobilized enzyme was stable against incubation in high ionic strength solutions and was 12.6-fold more resistant to thermal treatment at 65 degrees C than the native counterpart. The prepared biocatalyst retained 98% and 100% of the original catalytic activity after 10 cycles of reuse and 70 h of continuous operational regime in a packed bed reactor, respectively. The immobilized enzyme retained 95% of its activity after 50 days of storage at 37 degrees C.  相似文献   

8.
The covalent immobilization of yeast invertase with glutaraldehyde at activated carbon, modified preliminarily by urea and dimethyl formamide treatment, has been established. Some physicochemical properties of the immobilized and native enzyme in water and water-organic solutions have been studied. Hydrolytic, as well as transferase enzyme characteristics have changed after immobilization. The optimal conditions for hydrolytic and transferase activity of immobilized invertase are pH 6.0 and 7.0, respectively. The optimum temperature for the immobilized enzyme is 30°C. The conversion degree of isoamyl alcohol depends on the substrate and enzyme concentrations in medium, holdup time and organic phase quantity in the reaction medium.  相似文献   

9.
Saccharomyces cerevisiae invertase, chemically modified with chitosan, was immobilized on pectin-coated chitin support via polyelectrolyte complex formation. The yield of immobilized enzyme protein was determined as 85% and the immobilized biocatalyst retained 97% of the initial chitosan-invertase activity. The optimum temperature for invertase was increased by 10 °C and its thermostability was enhanced by about 10 °C after immobilization. The immobilized enzyme was stable against incubation in high ionic strength solutions and was 4-fold more resistant to thermal treatment at 65 °C than the native counterpart. The biocatalyst prepared retained 96 and 95% of the original catalytic activity after ten cycles of reuse and 74 h of continuous operational regime in a packed bed reactor, respectively.  相似文献   

10.
High activity alkaline protease was obtained when the enzyme was immobilized on Dowex MWA-1 (mesh 20–50) with 10% glutaraldehyde in chilled phosphate buffer (M/15, pH 6.5). Activity yields of the protease and rennet were 27 and 29, respectively. The highest activities appeared at 60°C, pH 10 for alkaline protease and 50°C, pH 4.0 for rennet. The properties of both proteases were not essentially changed by the immobilization except that the Km values of both enzymes were increased about tenfold as a result of immobilization. Both proteases in the immobilized state were more stable than those in the free state at 60°C. Other peptide hydrolases, β-galactosidase, invertase, and glucoamylase, were successfully immobilized with high activities, but lipase, hexokinase, glucose-6-phosphate dehydrogenase, and xanthine oxidase became inactive.  相似文献   

11.
Yeast Saccharomyces cerevisiae is the most significant source of enzyme invertase. It is mainly used in the food industry as a soluble or immobilized enzyme. The greatest amount of invertase is located in the periplasmic space in yeast. In this work, it was isolated into two forms of enzyme from yeast S. cerevisiae cell, soluble and cell wall invertase (CWI). Both forms of enzyme showed same temperature optimum (60°C), similar pH optimum, and kinetic parameters. The significant difference between these biocatalysts was observed in their thermal stability, stability in urea and methanol solution. At 60°C, CWI had 1.7 times longer half-life than soluble enzyme, while at 70°C CWI showed 8.7 times longer half-life than soluble enzyme. After 2-hr of incubation in 8?M urea solution, soluble invertase and CWI retained 10 and 60% of its initial activity, respectively. During 22?hr of incubation of both enzymes in 30 and 40% methanol, soluble invertase was completely inactivated, while CWI changed its activity within the experimental error. Therefore, soluble invertase and CWI have not shown any substantial difference, but CWI showed better thermal stability and stability in some of the typical protein-denaturing agents.  相似文献   

12.
The effect of temperature, pH, different inhibitors and additives on activity and stability of crude laccase obtained from repeated-batch culture of white rot fungus Funalia trogii ATCC 200800 was studied. The crude enzyme showed high activity at 55–90°C, which was maximal at 80–95°C. It was highly stable within the temperature intervals 20–50°C. The half life of the enzyme was about 2 h and 5 min at 60°C and 70°C, respectively. pH optimum of fungal laccase activity was revealed at pH 2.5. The enzyme from F. trogii ATCC 200800 was very stable between pH values of 3.0–9.0. NaN3 and KCN were detected as the most effective potent enzyme inhibitors among different compounds tested. The fungal enzyme was highly resistant to the various metal ions, inorganic salts, and organic solvents except propanol, at least for 5 min. Because of its high stability and efficient decolorization activity, the use of the crude F. trogii ATCC 200800 laccase instead of pure enzyme form may be a considerably cheaper solution for biotechnological applications.  相似文献   

13.
Glucoamylase from four different companies was studied: three had similar stability (half-life at 50°C about 140 hr); the fourth was less stable (half-life at 50°C about 20 hr). The immobilized enzymes were all less stable than their soluble counterparts: immobilized enzyme stability depended on the soluble enzyme used, the support, and method of immobilization. Thus enzyme bound to Enzacryl-TIO was less stable than enzyme bound to hornblende (metal-link method); this, in turn, was less stable than enzyme bound to hornblende by a silane–glutaraldehyde process. Bound enzyme stability was also improved by the presence of substrate or product (starch maltose or glucose). After 110 hr at 50°C in the presence of maltose (10% (w/v)) one preparation (a more stable soluble enzyme boul1d to hornblende by a silane–glutaraldehyde process) retained over 95% of its activity: activity loss was too low to permit the estimation of a half-life.  相似文献   

14.
Stabilization of invertase by modification of sugar chains with chitosan   总被引:5,自引:0,他引:5  
Chitosan was linked to invertase by covalent conjugation to periodate-activated carbohydrate moieties of the enzyme. The thermostability of modified enzyme was enhanced by about 10?°C. The half-life at 65?°C was increased from 5 min to 5 h. The enzyme stability was enhanced by 20% at pH below 3.0. The half-life of denaturation by 6 M urea was increased by 2 h.  相似文献   

15.
Random mutagenesis was performed on β-agarase, AgaB, from Zobellia galactanivorans to improve its catalytic activity and thermostability. The activities of three mutants E99K, T307I and E99K–T307I were approx. 140, 190 and 200%, respectively, of wild type β-agarase (661 U/mg) at 40°C. All three mutant enzymes were stable up to 50°C and E99K–T307I had the highest thermostability. The melting temperature (T m) of E99K–T307I, determined by CD spectra, was increased by 5.2°C over that of the wild-type enzyme (54.6°C). Activities of both the wild-type and E99K–T307I enzymes, as well as their overall thermostabilities, increased in 1 mM CaCl2. The E99K–T307I enzyme was stable at 55°C with 1 mM CaCl2, reaching 260% of the activity the wild-type enzyme held at 40°C without CaCl2.  相似文献   

16.
We have previously described two forms of an endo-β-1,4-xylanase (XynSW2A and XynSW2B) synthesized by thermotolerant Streptomyces sp. SWU10. Here, we describe another xylanolytic enzyme, designated XynSW1. The enzyme was purified to homogeneity from 2 L of culture filtrate. Its apparent molecular mass was 24 kDa. The optimal pH and temperature were pH 5.0 and 40 °C, respectively. The enzyme was stable in a wide pH ranges (pH 1–11), more than 80 % of initial activity remained at pH 2–11 after 16 h of incubation at 4 °C and stable up to 50 °C for 1 h. Xylobiose and xylotriose were the major xylooligosaccharides released from oat spelt xylan by the action of XynSW1, indicating of endo-type xylanase. The complete xynSW1 gene contains 1,011 bp in length and encode a polypeptide of 336 with 41 amino acids of signal peptide. The amino acid sequence analysis revealed that it belongs to glycoside hydrolase family 11 (GH11). The mature xynSW1 gene without signal peptide sequence was overexpressed in Pichia pastoris KM71H. The recombinant XynSW1 protein showed higher molecular mass due to the differences in glycosylation levels at the six N-glycosylation sites in the amino acid sequence and exhibited better physicochemical properties than those of the native enzyme including higher optimal temperature (60 °C), and specific activity, but lower optimal pH (4.0). Because of their stability in a wide pH ranges, both of native and recombinant enzymes of XynSW1, may have potential application in several industries including food, textile, biofuel, and also waste treatment.  相似文献   

17.
Isotopic exchange kinetics at equilibrium for E. coli native aspartate transcarbamylase at pH 7.8, 30 °C, are consistent with an ordered BiBi substrate binding mechanism. Carbamyl phosphate binds before l-Asp, and carbamyl-aspartate is released before inorganic phosphate. The rate of [14C]Asp C-Asp exchange is much faster than [32P]carbamyl phosphate Pi exchange. Phosphate, and perhaps carbamyl phosphate, appears to bind at a separate modifier site and prevent dissociation of active-site bound Pi or carbamyl phosphate. Initial velocity studies in the range of 0–40 °C reveal a biphasic Arrhenius plot for native enzyme: Ea (>15 °C) = 6.3 kcal/ mole and Ea (<15 °C) = 22.1 kcal/mole. Catalytic subunits show a monophasic plot with Ea ? 20.2 kcal/mole. This, with other data, suggests that with native enzyme a conformational change accompanying aspartate association contributes significantly to rate limitation at t > 15 °C, but that catalytic steps become definitively slower below 15 °C. Model kinetics are derived to show that this change in mechanism at low temperature can force an ordered substrate binding system to produce exchange-rate patterns consistent with a random binding system with all exchange rates equal. The nonlinear Arrhenius plot also has important consequences for current theories of catalytic and regulatory mechanisms for this enzyme.  相似文献   

18.
Hen egg lysozyme–carboxymethyl dextran (HEL–CMD) conjugate was prepared by using water-soluble carbodiimide as a model protein-acidic polysaccharide conjugate for improving the protein function. An acid-amide bond between HEL and CMD was confirmed by SDS-PAGE, isoelectric focusing and IR spectra. The molar ratio of CMD to HEL in the conjugate was 1:1. The isoelectric point of the conjugate was 5.5–6.0, which is much lower than that of HEL. Spectroscopic studies suggested that the conformation around the Trp residue had not changed but the α-helix content had decreased to about 1/3 that for native HEL. The conjugate maintained about 60% of the enzymatic activity of native HEL at 40–60°C, while it was about 1.4 times as active as native HEL at 4°C and 80°C. The conjugate was more stable to proteolysis than native HEL. The denaturation temperature of the conjugate was about 73°C, which is almost the same as that of native HEL. However, the enthalpy for denaturation of the conjugate was about 1/3 that of native HEL, which corresponds to the decrease in α-helix content.  相似文献   

19.
Dissolution of α-chymotrypsin in nonpolar organic solvents can be achieved using hydrophobic ion pairing, whereby the polar counterions are replaced by a stoichiometric number of detergent molecules. Using Aerosol OT[AOT, sodium bis(2-octyl)sulfosuccinate], it is possible to partition significant amounts of the enzyme into alkanes and chlorocarbons. Apparent solubility in isooctane is greater than 1 mg/mL (80 μM). Necessary conditions for achieving effective partitioning of α-chymotrypsin into these solvents are described. Using CD spectroscopy, it can be shown that the AOT–α-chymotrypsin (CMT) complex retains its native secondary and tertiary structure when dissolved in alkanes, and that the globular structure is stable to more than 100°C. In contrast, α-chymotrypsin unfolds at 54°C in aqueous solution. The relative solubility of the AOT–CMT complex in a variety of alkanes and chlorocarbons is also reported. The native structure of α-chymotrypsin is maintained in carbon tetrachloride, but not in methylene chloride or chloroform. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
Sugar-cane invertase (β-d-fructofuranoside fructohydrolase, EC 3.2.1.26) immobilized on bentonite clay in 0.05 m acetate buffer, pH 4.5, has been shown to be capable of hydrolysing sucrose. The bentonite-invertase (BI) complex gave 55.5% retention of enzyme activity on the surface. A further 17 and 22% increase in retention of enzyme activity was obtained using the covalent linking agents, cyanuric chloride and thionyl chloride, giving bentonite-cyanuric chloride-invertase (BCCI) and bentonite-thionyl chloride-invertase (BTCI) complexes. Concentrations of acetate buffer >0.2 M disrupt the bentonite-invertase complexes. The immobilized invertase complexes showed high temperature optima (60–65°C) and high thermal stability compared to the free enzyme. The pH profiles of the free and immobilized enzyme were the same. The rate of hydrolysis of sucrose was increased using immobilized enzymes, which required a higher substrate concentration than the free enzyme. The insoluble enzyme conjugate-carrier complexes when used for sucrose hydrolysis in a batch process showed 53.1 (BI), 57.4 (BCCI) and 59.6% (BTCI) conversions, respectively, in 12 h, compared to 42.3% conversion in 24 h with the free enzyme. The immobilized invertase complexes can be used for sucrose inversion for about five cycles. The application of this immobilization procedure may help in the removal of invertase from cane juice to reduce sugar losses in industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号