首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recently, use of the cardiolipin (CL)-specific fluorescent dye 10-N-nonyl-acridine orange (NAO) revealed CL-rich domains in the Escherichia coli membrane (E. Mileykovskaya and W. Dowhan, J. Bacteriol. 182: 1172-1175, 2000). Staining of Bacillus subtilis cells with NAO showed that there were green fluorescence domains in the septal regions and at the poles. These fluorescence domains were scarcely detectable in exponentially growing cells of the clsA-disrupted mutant lacking detectable CL. In sporulating cells with a wild-type lipid composition, fluorescence domains were observed in the polar septa and on the engulfment and forespore membranes. Both in the clsA-disrupted mutant and in a mutant with disruptions in all three of the paralogous genes (clsA, ywjE, and ywiE) for CL synthase, these domains did not vanish but appeared later, after sporulation initiation. A red shift in the fluorescence due to stacking of two dye molecules and the lipid composition suggested that a small amount of CL was present in sporulating cells of the mutants. Mass spectrometry analyses revealed the presence of CL in these mutant cells. At a later stage during sporulation of the mutants the frequency of heat-resistant cells that could form colonies after heat treatment was lower. The frequency of sporulation of these cells at 24 h after sporulation initiation was 30 to 50% of the frequency of the wild type. These results indicate that CL-rich domains are present in the polar septal membrane and in the engulfment and forespore membranes during the sporulation phase even in a B. subtilis mutant with disruptions in all three paralogous genes, as well as in the membranes of the medial septa and at the poles during the exponential growth phase of wild-type cells. The results further suggest that the CL-rich domains in the polar septal membrane and engulfment and forespore membranes are involved in sporulation.  相似文献   

2.
Developing forespores were isolated from Bacillus subtilis at different stages of sporulation and protein synthesis in the forespore compartment was examined. Pulse-labeling experiments indicated that [14C]phenylalanine was continuously incorporated into the sporangium throughout sporulation, and at t5 (early stage V of sporulation) 58% of the radioactivity was located in the forespore compartment. Significantly high incorporation of [14C]phenylalanine was observed when the isolated forespores at t5 were incubated with the corresponding mother-cell cytoplasmic fraction or an amino acid mixture. About 73% of the radioactivity incorporated into the isolated forespore at t5 was found in the cytoplasmic fraction and 26% in the membranous fraction. Analysis by sodium dodecyl sulfate-gel electrophoresis showed that the 14C-labeled cytoplasmic protein had a molecular weight of about 20,000, and that a protein having the same molecular weight was present in the t5 forespore as a slight protein band and also in the mature spore as a clear protein band. Gel electrophoresis also revealed that the 14C-labeled membranous-soluble protein (prepared by solubilization with detergents) had broad peaks with molecular weights of about 74,000, 33,000, 20,000, and 12,000.  相似文献   

3.
In order to investigate the formation of the parasporal crystal of B. thuringiensis with special reference to the spore, sequential ultrastructural analysis of sporulation was performed using a sporeless mutant strain (sp?) as well as its parent wild strain (sp+). From the logarithmic growth to the end of forespore formation, the same sequential process of sporulation proceeded in both strains and a forespore with double membranes appeared. Thereafter, subsequent sporulation in the sp strain was either partly or completely arrested and finally spore (mainly the forespore) became deformed. On the other hand, crystal formation took place throughout by the same processes both in sp+ and sp? strains. During the forespore formation, a primordial crystal and an ovoid inclusion appeared and after this stage, the crystal displayed a characteristic diamond-shaped body with lattice fringes increasing its size. No regularity was found in the position of the crystal with respect to the spore. As far as the present ultrastructural observations were concerned, the crystal developed without any special association with the membranes of the spore. However, without the formation of the forespore (including the incipient forespore), no crystal formation was observed.  相似文献   

4.
Sporulation of the fission yeast Schizosaccharomyces pombe is a developmental process that generates gametes and that includes the formation of spore envelope precursors called the forespore membranes. Assembly and development of forespore membranes require vesicular trafficking from other intracellular membrane compartments. We have shown that phosphatidylinositol 3-kinase (PtdIns 3-kinase) is required for efficient and proper development of forespore membranes. The role of a FYVE domain protein, Sst4p, a homolog of Vps27p/Hrs, as a downstream factor for PtdIns 3-kinase in sporulation was investigated. sst4Δ asci formed spores with oval-shaped morphology and with reduced viability compared to that of the wild-type spores. The extension of forespore membranes was inefficient, and bubble-like structures emerged from the leading edges of the forespore membranes. Sst4p localization was examined using fluorescent protein fusions and was found to be adjacent to the forespore membranes during sporulation. The localization and function of Sst4p were dependent on its FYVE domain and on PtdIns 3-kinase. Sst4p colocalized and interacted with Hse1p, a homolog of Saccharomyces cerevisiae Hse1p and of mammalian STAM. Mutations in all three UIM domains of the Sst4p/Hse1p complex resulted in formation of spores with abnormal morphology. These results suggest that Sst4p is a downstream factor of PtdIns 3-kinase and functions in forespore membrane formation.  相似文献   

5.
The Schizosaccharomyces pombe spo14-B221 mutant was originally isolated as a sporulation-deficient mutant. However, the spo14(+) gene is essential for cell viability and growth. spo14(+) is identical to the previously characterized stl1(+) gene encoding a putative homologue of Saccharomyces cerevisiae Sec12, which is essential for protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus. In the spo14 mutant cells, ER-like membranes were accumulated beneath the plasma membrane and the ER/Golgi shuttling protein Rer1 remained in the ER. Sec12 is a guanine nucleotide exchange factor for the Sar1 GTPase. Overproduction of psr1(+) coding for an S. pombe Sar1 homologue suppressed both the sporulation defect of spo14-B221 and cold-sensitive growth of newly isolated spo14-6 and spo14-7 mutants. These results indicate that Spo14 is involved in early steps of the protein secretory pathway. The spo14-B221 allele carries a single nucleotide change in the branch point consensus of the fifth intron, which reduces the abundance of the spo14 mRNA. During meiosis II, the forespore membrane was initiated near spindle pole bodies; however, subsequent extension of the membrane was arrested before its closure into a sac. We conclude that Spo14 is responsible for the assembly of the forespore membrane by supplying membrane vesicles.  相似文献   

6.
The distribution of penicillin-binding proteins (PBPs) within different membranes of sporulating cells of Bacillus subtilis was examined in an effort to correlate the location of individual PBPs with their proposed involvement in either cortical or vegetative peptidoglycan synthesis. The PBP composition of forespores was determined by two methods: examination of isolated forespore membranes and assay of the in vivo accessibility of the PBPs to penicillin. In both cases, it was apparent that PBP 5*, the major PBP synthesized during sporulation, was present primarily, but not exclusively, in the forespore. The membranes from mature dormant spores were prepared by either chemically stripping the integument layers of the spores, followed by lysozyme digestion, or lysozyme digestion alone of coat-defective gerE spores. PBP 5* was detected in membranes from unstripped spores but was never found in stripped ones, which suggests that the primary location of this PBP is the outer forespore membrane. This is consistent with a role for PBP 5* exclusively in cortex synthesis. In contrast, vegetative PBPs 1 and 2A were only observed in stripped spore preparations that were greatly enriched for the inner forespore membrane, which supports the proposed requirement for these PBPs early in germination. The apparent presence of PBP 3 in both membranes of the spore reinforces the suggestion that it catalyzes a step common to both cortical and vegetative peptidoglycan synthesis.  相似文献   

7.
A key step in the Bacillus subtilis spore formation pathway is the engulfment of the forespore by the mother cell, a phagocytosis-like process normally accompanied by the loss of peptidoglycan within the sporulation septum. We have reinvestigated the role of SpoIIB in engulfment by using the fluorescent membrane stain FM 4-64 and deconvolution microscopy. We have found that spoIIB mutant sporangia display a transient engulfment defect in which the forespore pushes through the septum and bulges into the mother cell, similar to the situation in spoIID, spoIIM, and spoIIP mutants. However, unlike the sporangia of those three mutants, spoIIB mutant sporangia are able to complete engulfment; indeed, by time-lapse microscopy, sporangia with prominent bulges were found to complete engulfment. Electron micrographs showed that in spoIIB mutant sporangia the dissolution of septal peptidoglycan is delayed and spatially unregulated and that the engulfing membranes migrate around the remaining septal peptidoglycan. These results demonstrate that mother cell membranes will move around septal peptidoglycan that has not been completely degraded and suggest that SpoIIB facilitates the rapid and spatially regulated dissolution of septal peptidoglycan. In keeping with this proposal, a SpoIIB-myc fusion protein localized to the sporulation septum during its biogenesis, discriminating between the site of active septal biogenesis and the unused potential division site within the same cell.  相似文献   

8.
Many bacterial proteins involved in fundamental processes such as cell shape maintenance, cell cycle regulation, differentiation, division and motility localize dynamically to specific subcellular regions. However, the mechanisms underlying dynamic protein localization are incompletely understood. Using the SpoIIQ protein in Bacillus subtilis as a case study, two reports present important novel insights into how a protein finds its right place at the right time and remains stably bound. During sporulation, SpoIIQ localizes in clusters in the forespore membrane at the interface that separates the forespore and mother cell and functions as a landmark protein for SpoIIIAH in the mother cell membrane. The extracellular domains of SpoIIQ and SpoIIIAH interact directly effectively bridging the gap between the two membranes. Here, SpoIIQ localization is shown to depend on two pathways, one involves SpoIIIAH, the second involves two peptidoglycan‐degrading enzymes SpoIIP and SpoIID; and, SpoIIQ is only delocalized in the absence of all three proteins. Importantly, in the absence of SpoIIIAH, SpoIIQ apparently localizes normally. However, FRAP experiments demonstrated that SpoIIQ is not stably maintained in the clusters in this mutant. Thus, a second targeting pathway can mask significant changes in the localization of a protein.  相似文献   

9.
The changes during growth and sporulation in activities of cells of Bacillus subtilis to incorporate various amino acids were investigated with wild-type strain and its asporogenous mutant. In the case of wild type strain the uptake of valine, phenylalanine, and proline was largest during the logarithmic growth period. The uptake of these amino acids decreased rapidly during the early stationary phase. The uptake of valine and cysteine increased again to some extent just prior to the forespore stage. The uptake of glycine and serine, however, was largest at the forespore stage at which the formation of spore coat took place. From these observed phenomena it was assumed that the remarkable incorporation of glycine and serine into the wild type strain during sporulation was closely related to the formation of spore coat.  相似文献   

10.
11.
Sporulating Bacillus subtilis cells assemble a multimeric membrane complex connecting the mother cell and developing spore that is required to maintain forespore differentiation. An early step in the assembly of this transenvelope complex (called the A–Q complex) is an interaction between the extracellular domains of the forespore membrane protein SpoIIQ and the mother cell membrane protein SpoIIIAH. This interaction provides a platform onto which the remaining components of the complex assemble and also functions as an anchor for cell–cell signalling and morphogenetic proteins involved in spore development. SpoIIQ is required to recruit SpoIIIAH to the sporulation septum on the mother cell side; however, the mechanism by which SpoIIQ specifically localizes to the septal membranes on the forespore side has remained enigmatic. Here, we identify GerM, a lipoprotein previously implicated in spore germination, as the missing factor required for SpoIIQ localization. Our data indicate that GerM and SpoIIIAH, derived from the mother cell, and SpoIIQ, from the forespore, have reciprocal localization dependencies suggesting they constitute a tripartite platform for the assembly of the A–Q complex and a hub for the localization of mother cell and forespore proteins.  相似文献   

12.
During the process of spore formation in Bacillus subtilis, many membrane proteins localize to the polar septum where they participate in morphogenesis and signal transduction. The forespore membrane protein SpoIIQ plays a central role in anchoring several mother-cell membrane proteins in the septal membrane. Here, we report that SpoIIQ is also responsible for anchoring a membrane protein on the forespore side of the sporulation septum. Co-immunoprecipitation experiments reveal that SpoIIQ resides in a complex with the polytopic membrane protein SpoIIE. During the early stages of sporulation, SpoIIE participates in the switch from medial to polar division and co-localizes with FtsZ at the polar septum. We show that after cytokinesis, SpoIIE is released from the septum and transiently localizes to all membranes in the forespore compartment. Upon the initiation of engulfment, it specifically re-localizes to the septal membrane on the forespore side. Importantly, the re-localization of SpoIIE to the engulfing septum requires SpoIIQ. These results indicate that SpoIIQ is required to anchor membrane proteins on both sides of the division septum. Moreover, our data suggest that forespore membrane proteins can localize to the septal membrane by diffusion-and-capture as has been described for membrane proteins in the mother cell. Finally, our results raise the intriguing possibility that SpoIIE has an uncharacterized function at a late stage of sporulation.  相似文献   

13.
14.
15.
It is well known that the ykvU-ykvV operon is under the regulation of the sigma(E)-associated RNA polymerase (Esigma(E)). In our study, we observed that ykvV is transcribed together with the upstream ykvU gene by Esigma(E) in the mother cell and monocistronically under Esigma(G) control in the forespore. Interestingly, alternatively expressed ykvV in either the forespore or the mother cell increased the sporulation efficiency in the ykvV background. Studies show that the YkvV protein is a member of the thioredoxin superfamily and also contains a putative Sec-type secretion signal at the N terminus. We observed efficient sporulation in a mutant strain obtained by replacing the putative signal peptide of YkvV with the secretion signal sequence of SleB, indicating that the putative signal sequence is essential for spore formation. These results suggest that YkvV is capable of being transported by the putative Sec-type signal sequence into the space between the double membranes surrounding the forespore. The ability of ykvV expression in either compartment to complement is indeed intriguing and further introduces a new dimension to the genetics of B. subtilis spore formation. Furthermore, electron microscopic observation revealed a defective cortex in the ykvV disruptant. In addition, the expression levels of sigma(K)-directed genes significantly decreased despite normal sigma(G) activity in the ykvV mutant. However, immunoblotting with the anti-sigma(K) antibody showed that pro-sigma(K) was normally processed in the ykvV mutant, indicating that YkvV plays an important role in cortex formation, consistent with recent reports. We therefore propose that ykvV should be renamed spoIVH.  相似文献   

16.
17.
The predicted amino acid sequence of Bacillus subtilis ybaN (renamed pdaB) exhibits high similarity to those of several polysaccharide deacetylases. Northern hybridization analysis with sporulation sigma mutants indicated that the pdaB gene is transcribed by EsigmaE RNA polymerase and negatively regulated by SpoIIID. The pdaB mutant was deficient in spore formation. Phase- and electron microscopic observation showed morphological changes of spores in late sporulation periods. The pdaB spores that had lost their viability were empty. Moreover, GFP driven by the promoter of the sspE gene was localized in the forespore compartment for the wild type, but was localized in both the mother cell and forespore compartments for phase-gray/dark forespores of the pdaB mutant. This indicates that GFP expressed in the forespores of the mutant leaks into the mother cells. Therefore, PdaB is necessary to maintain spores after the late stage of sporulation.  相似文献   

18.
The sigmaK checkpoint coordinates gene expression in the mother cell with signaling from the forespore during Bacillus subtilis sporulation. The signaling pathway involves SpoIVB, a serine peptidase produced in the forespore, which is believed to cross the innermost membrane surrounding the forespore and activate a complex of proteins, including BofA, SpoIVFA, and SpoIVFB, located in the outermost membrane surrounding the forespore. Activation of the complex allows proteolytic processing of pro-sigmaK, and the resulting sigmaK RNA polymerase transcribes genes in the mother cell. To investigate activation of the pro-sigmaK processing complex, the level of SpoIVFA in extracts of sporulating cells was examined by Western blot analysis. The SpoIVFA level decreased when pro-sigmaK processing began during sporulation. In extracts of a spoIVB mutant defective in forespore signaling, the SpoIVFA level failed to decrease normally and no processing of pro-sigmaK was observed. Although these results are consistent with a model in which SpoIVFA inhibits processing until the SpoIVB-mediated signal is received from the forespore, we discovered that loss of SpoIVFA was insufficient to allow processing under certain conditions, including static incubation of the culture and continued shaking after the addition of inhibitors of oxidative phosphorylation or translation. Under these conditions, loss of SpoIVFA was independent of spoIVB. The inability to process pro-sigmaK under these conditions was not due to loss of SpoIVFB, the putative processing enzyme, or to a requirement for ongoing synthesis of pro-sigmaK. Rather, it was found that the requirements for shaking of the culture, for oxidative phosphorylation, and for translation could be bypassed by mutations that uncouple processing from dependence on forespore signaling. This suggests that ongoing translation is normally required for efficient pro-sigmaK processing because synthesis of the SpoIVB signal protein is needed to activate the processing complex. When translation is blocked, synthesis of SpoIVB ceases, and the processing complex remains inactive despite the loss of SpoIVFA. Taken together, the results suggest that SpoIVB signaling activates the processing complex by performing another function in addition to causing loss of SpoIVFA or by causing loss of SpoIVFA in a different way than when translation is blocked. The results also demonstrate that the processing machinery can function in the absence of translation or an electrochemical gradient across membranes.  相似文献   

19.
20.
A novel sporulation-deficient mutant, sev4-L5, was isolated in a genetic screen of a collection of temperature-sensitive mutants of Schizosaccharomyces pombe. The wild-type sev4 gene was identified as cta4+, which encodes a putative cation-transporting P-type ATPase. The sev4-L5 allele harbored a single missense mutation that caused replacement of Gly615 with a glutamate at the putative ATP-binding site. Similar to cta4-null mutants, sev4-L5 exhibited defects in growth at high and low temperatures, and sensitivity to high and extremely low concentrations of Ca2+. The cta4+ mRNA level was considerably enhanced during meiosis. When sev4-L5 cells were incubated in sporulation medium at the permissive temperature, meiotic nuclear divisions proceeded with normal kinetics, but spores were not formed. Structural alteration of the spindle pole body, which is prerequisite to construction of the forespore membrane in wild type, was incomplete. Consequently, formation of the forespore membrane was severely impaired. These observations show that perturbation of Ca2+ homeostasis by mutation of cta4/sev4 blocks sporulation mainly by interfering with forespore membrane assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号