首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
李术艺  冯旗  董依然 《微生物学报》2021,61(6):1632-1649
地质封存将工业和能源相关领域生产活动产生的二氧化碳(CO2)进行捕集并注入到深部地下岩石构造中,以实现长期储存的目标,是降低温室气体排放、实现CO2长期封存的重要可行性手段之一。向深部地下地质构造中注入大量CO2会导致深地环境发生显著变化,进而引起原生微生物活性及群落结构发生明显改变。因此,地质封存CO2能够直接或间接影响深地微生物驱动的生物地球化学过程。同时,微生物在短期和长期的超临界CO2(scCO2)胁迫作用下,也会通过不同的适应性进化方式影响CO2在地下环境中的迁移、转化和赋存形态。本文介绍了国内外二氧化碳捕获与封存发展现状以及地质封存CO2影响条件下的scCO2-水-微生物-矿物的相互作用领域的最新科研进展,并展望了利用深地微生物强化CO2固定以及将其转化为高附加值产物的潜力。  相似文献   

2.
Net O2 evolution, gross CO2 uptake and net HCO inf3 su– uptake during steady-state photosynthesis were investigated by a recently developed mass-spectrometric technique for disequilibrium flux analysis with cells of the marine cyanobacterium Synechococcus PCC7002 grown at different CO2 concentrations. Regardless of the CO2 concentration during growth, all cells had the capacity to transport both CO2 and HCO inf3 su– ; however, the activity of HCO inf3 su– transport was more than twofold higher than CO2 transport even in cyanobacteria grown at high concentration of inorganic carbon (Ci = CO2 + HCO inf3 su– ). In low-Ci cells, the affinities of CO2 and HCO inf3 su– transport for their substrates were about 5 (CO2 uptake) and 10 (HCO inf3 su– uptake) times higher than in high-Ci cells, while air-grown cells formed an intermediate state. For the same cells, the intracellular accumulated Ci pool reached 18, 32 and 55 mM in high-Ci, air-grown and low-Ci cells, respectively, when measured at 1 mM external Ci. Photosynthetic O2 evolution, maximal CO2 and HCO inf3 su– transport activities, and consequently their relative contribution to photosynthesis, were largely unaffected by the CO2 provided during growth. When the cells were adapted to freshwater medium, results similar to those for artificial seawater were obtained for all CO2 concentrations. Transport studies with high-Ci cells revealed that CO2 and HCO inf3 su– uptake were equally inhibited when CO2 fixation was reduced by the addition of glycolaldehyde. In contrast, in low-Ci cells steady-state CO2 transport was preferably reduced by the same inhibitor. The inhibitor of carbonic anhydrase ethoxyzolamide inhibited both CO2 and HCO inf3 su– uptake as well as O2 evolution in both cell types. In high-Ci cells, the degree of inhibition was similar for HCO inf3 su– transport and O2 evolution with 50% inhibition occurring at around 1 mM ethoxyzolamide. However, the uptake of CO2 was much more sensitive to the inhibitor than HCO inf3 su– transport, with an apparent I50 value of around 250 M ethoxyzolamide for CO2 uptake. The implications of our results are discussed with respect to Ci utilisation in the marine Synechococcus strain.Abbreviations Chl chlorophyll - Ci inorganic carbon (CO2 + HCO inf3 su– ) - CA carbonic anhydrase - CCM CO2-concentrating mechanism - EZA ethoxyzolamide - GA glycolaldehyde - K1/2 concentration required for half-maximal response - Rubisco ribulose-1,5,-bisphosphate carboxylase-oxygenase D.S. is a recipient of a research fellowship from the Deutsche Forschungsgemeinschaft (D.F.G.). In addition, we are grateful to Donald A. Bryant, Department of Molecular and Cell Biology and Center of Biomolecular Structure Function, Pennsylvania State University, USA, for sending us the wild-type strain of Synechococcus PCC7002.  相似文献   

3.
Wang X  Hao C  Zhang F  Feng C  Yang Y 《Bioresource technology》2011,102(10):5742-5748
The effect of pH adjusted by aeration with carbon dioxide (CO2) on the growth of two species of blue-green algae, Microcystis aeruginosa and Anabaena spiroides, was investigated. Three conditions (pH 5.5, 6.0 and 6.5) were found to have significant inhibitory effects on the growth of the two algae species when acidification treatment was conducted during the logarithmic phase. Differences in the inhibition effect of acidification existed between the two species algae. The tolerance of M. aeruginosa to these conditions was also investigated. The results indicated that M. aeruginosa was inhibited significantly, but not dead at pH 6.5, whereas death occurred at pH 5.5 and 6.0. The greatest inhibitory effect of acidification treatment conducted during the stable breeding phase of M. aeruginosa occurred at pH 5.5, while no inhibitory effect was found at pH 6.5.  相似文献   

4.
Ghost crabs Ocypode ceratophthalmus were exercised in air and water to measure CO2 and O2 exchange rates using the method of instantaneous measurements of oxygen consumption rate (MO2) where applicable. Average heart rate increased from 100 to nearly 400 pulses per minute after five minutes of exercise on a treadmill at a run rate of 0.133 m s?1. It took less than a minute for oxygen taken up through the lung epithelium from the air inside the branchial cavity to reach the maximal oxygen consumption rate of 26.1 mmol O2 kg?1 h?1. Resting MO2 was 4.06 mmol O2 kg?1 h?1 in air, but decreased to 3.37 mmol O2 kg?1 h?1 in seawater. Radioactive CO2 from injected l-lactate is released linearly by the lung. The percent accumulated 14-CO2 in exhaled air, plotted against time, intersects zero time on the x -axis, indicating rapid gas exchange at the lung surface. The P 50 values for native haemocyanin of 4.89 mm Hg before exercise, and 8.99 mm Hg after exercise, are typical of a high-affinity haemocyanin usually associated with terrestrial crabs. The current notion that Ocypode ceratophthalmus drown when submerged in seawater was not substantiated by our experiments. MO2 in seawater increased from 3.37 mmol O2 kg?1 h?1 for resting crabs to 5.72 mmol O2 kg?1 h?1 during exercise. When submerged by wave-seawater in the natural environment and during exercise in respirometer-seawater O. ceratophthalmus do not swim but, having a specific density of 1.044, float nearly weightless with a minimum of body movements.  相似文献   

5.
The capability to reassimilate CO2 originating from intracellular decarboxylating processes connected with the photorespiratory glycolate pathway and-or decarboxylation of C4 acids during C4 photosynthesis has been investigated with four species of the genus Flaveria (Asteraceae). The C3-C4 intermediate species F. pubescens and F. anomala reassimilated CO2 much more efficiently than the C3 species F. cronquistii and, with respect to this feature, behaved similarly to the C4 species F. trinervia. Therefore, under atmospheric conditions the intermediate species photorespired with rates only between 10–20% of that measured with F. cronquistii. At low oxygen concentrations (1,5%) the reassimilation potential of F. anomala approached that of F. trinervia and was distinct from that found with F. pubescens. The data are discussed with respect to a possible sequence of events during evolution of C4 photosynthesis. If compared with related data for C3-C4 intermediate species from other genera they support the hypothesis that, during evolution of C4 photosynthesis, an efficient capacity for CO2 reassimilation evolved prior to a CO2-concentrating mechanism.Abbreviations C3, C4 assimilated CO2 initially found in 3-phosphoglycerate (C3) or malate and aspartate (C4) - D reassimilation coefficient - R n , R t net, total CO2 evolution as measured with 0.03 and 3% CO2, respectively - RuBP ribulose-1,5-bisphosphate - TPS true photosynthesis  相似文献   

6.
K. -J. Dietz  U. Schreiber  U. Heber 《Planta》1985,166(2):219-226
The response of chlorophyll fluorescence elicited by a low-fluence-rate modulated measuring beam to actinic light and to superimposed 1-s pulses from a high-fluence-rate light source was used to measure the redox state of the primary acceptor Q A of photosystem II in leaves which were photosynthesizing under steady-state conditions. The leaves were exposed to various O2 and CO2 concentrations and to different energy fluence rates of actinic light to assess the relationship between rates of photosynthesis and the redox state of Q A. Both at low and high fluence rates, the redox state of Q A was little altered when the CO2 concentration was reduced from saturation to about 600 l·l-1 although photosynthesis was decreased particularly at high fluence rates. Upon further reduction in CO2 content the amount of reduced Q A increased appreciably even at low fluence rates where light limited CO2 reduction. Both in the presence and in the absence of CO2, a more reduced Q A was observed when the O2 concentration was below 2%. Q A was almost fully reduced when leaves were exposed to high fluence rates under nitrogen. Even at low fluence rates, Q A was more reduced in shade leaves of Asarum europaeum and Fagus sylvatica than in leaves of Helianthus annuus and Fagus sylvatica grown under high light. Also, in shade leaves the redox state of Q A changed more during a transition from air containing 350 l·l-1 CO2 to CO2-free air than in sun leaves. The results are discussed with respect to the energy status and the CO2-fixation rate of the leaves.Abbreviations and symbols L 1,2 first and second actinic light beam - Q A primary acceptor of photosystem II - q Q Q-quenching  相似文献   

7.
The maximum quantum yields (a,c) for CO2 uptake in low-oxygen atmospheres were determined for 11 species of C3 vascular plants of diverse taxa, habitat and life form using an Ulbricht-sphere leaf chamber. Comparisons were also made between tissues of varied age within species. The species examined were Psilotum nudum (L.) P. Beauv., Davallia bullata Wall. ex Hook., Cycas revoluta Thunb., Araucaria heterophylla (Salisb.) Franco, Picea abies (L.) Karst., Nerium oleander L., Ruellia humilis Nutt., Pilea microphylla (L.) Karst., Beaucarnea stricta Lem., Oplismenus hirtellus (L.) P. Beauv. and Poa annua L. Quantum yields were calculated from the initial slopes of the response of CO2 uptake to the quantity of photons absorbed in conditions of diffuse lighting. Regression analysis of variance of the initial slopes of the response of CO2 uptake to photon absorption failed to show any statistically significant differences between age classes within species or between the mature photosynthetic organs of different species. The constancy of a,c was apparent despite marked variation in the light-saturated rates of CO2 uptake within and between species. The mean a,c was 0.093±0.003 for 11 species. By contrast, surface absorptance varied markedly between species from 0.90 to 0.60, producing proportional variation in the quantum yield calculated on an incidentlight basis. The ratio of variable to maximum fluorescence emission at 695 nm for the same tissues also failed to show any statistically significant variation between species, with a mean of 0.838±0.008. Mean values of a,c reported here for C3 species, in the absence of photorespiration, are higher than reported in previous surveys of vascular plants, but consistent with recent estimates of the quantum yields of O2 evolution.Abbreviations and Symbols A rate of CO2 uptake per unit projected area (mol · m–2 · s–1) - Fm the maximum fluorescence emission at 695 nm in saturating excitation light when closure of PSII reaction centres is maximal (relative units) - Fo the ground fluorescence at 695 nm when all PSII reaction centres are assumed open (relative units) - Fv the difference between Fm and Fo - JQ rate of CO2 uptake by the sample (nmol · s–1) - JQ rate of photon absorption by the sample (nmol · s–1) - Q absorbed photon flux per unit of projected area (nmol · m–2 · s–1) - 1 the light absorptance of photosynthetic organs (dimensionless) - s1 and s'1 the total and projected surface areas of the photosynthetic organs examined (m2) - a,c and i,c the quantum yields for CO2 uptake on an absorbed- and incident-light basis, respectively (dimensionless) - a,o the quantum yield for O2 evolution on an absorbed-light basis (dimensionless) This work was supported by grant PI7179-BIO, FWF, Austria to H.B-N. and by a British Council travel award to S.P.L. This work was completed under the auspices of U.S. Department of Energy under Contract No. DE-AC02-76CH00016. We also thank Dr. K.J. Parkinson of PP Systems, Hitchin, UK for the loan of a prototype of a commercial integrating-sphere leaf chamber developed from our design.  相似文献   

8.
The 24 h O2 uptake and release together with the CO2 balance have been measured in two CAM plants, one a non-succulent Sempervivum grandifolium, the other a succulent Prenia sladeniana. The O2 uptake was estimated by the use of 18O2. It was found that the mean hourly O2 uptake in the light was 7 times that in the dark for Sempervivum and 5 times that for Prenia, after correction for the lightdark temperature difference. It was estimated that oxygen uptake in the light was 2.4 times greater than oxygen release (=net photosynthesis) in Sempervivum and 1.4 times greater in Prenia. In both plants there was a positive carbon balance over the 24 h period under the experimental conditions. It was estimated that malate formed during the night could, if completely oxidized to CO2 and water, account for 74% of the light phase O2 uptake in Sempervivum. In Prenia the O2 uptake was more than sufficient to account for a full oxidation of malate.Abbreviations CAM Crassulacean acid metabolism - PAR photosynthetically active radiation - PEP phosphoenolpyruvate - RrBP ribulose-1,5-bisphosphate - TCA tricarboxylic acid cycle  相似文献   

9.
S. B. Ku  G. E. Edwards 《Planta》1980,147(4):277-282
In the C4 plant, Amaranthus graecizans, increasing [O2] from 2% up to 100% inhibited photosynthesis, quantum yield, and the carboxylation efficiency, and increased the CO2 compensation point () from 2 to about 12 l/l. The O2 inhibition of photosynthesis was fully reversible. When changing from 2.5 to 40% O2 and vice versa, about 1 h was required for full equilibration with an O2 inhibition of 18%; whereas in wheat, a C3 species, inhibition of photosynthesis and its reversal occurs within minutes after changing [O2], resulting in 63% inhibition of photosynthesis by 45% O2. These differences in O2 inhibition between a C4 and C3 species can be explained by high diffusive resistance across bundle-sheath cells of C4 plants and the increased CO2/O2 ratio in bundle-sheath cells which is the consequence of the C4 cycle. In A. graecizans, increased with increasing [O2] but tended to reach a maximum at relatively high O2 levels. The lack of a linear increase in as previously observed for C3 species indicates that a considerable amount of photorespired CO2 may be re-fixed with increasing levels of O2. In comparison to previous reports with other C4 species, photosynthesis of A. graecizans shows greater sensitivity to O2, with a noticeable inhibition occurring with shifts from 2 to 21% O2. A. graecizans has characteristics of other C4 species with respect to Kranz anatomy, localization of PEP carboxylase in mesophyll cells and RuBP carboxylase in bundle-sheath cells, and little fractionation among carbon isotopes during CO2 fixation. The basis for the higher sensitivity of photosynthesis of A. graecizans to O2 may be based upon a lower diffusive resistance of gases across bundle-sheath cells than in some other C4 species.Abbreviations CE carboxylation efficiency - RuBP ribulose-1,5-bisphosphate - CO2 compensation point  相似文献   

10.
Atherosclerosis is a dynamic multifaceted disease which affects the aorta and its major branches, characterized by the presence of lesions called atheromatous plaques. The plaque is a focal thickening of the intima caused by proliferation of smooth muscle cells, and the deposition of cholesterol, other lipids, hydroxyapatite and fibrous connective tissue. It is proposed that the determinant step of the process which leads to the disease atherosclerosis is the calcium precipitation which traps cholesterol in the plaque precursor matrix which contains lipoproteins, calcium carbonate, hydroxyapapatite, triglycerides, albumin, calmodulin and other proteins. The bear, a species which does not contract the disease is used as an example in support of the hypothesis. The bear's ability to regulate calcium levels and the regulation of acid base balance via regulation of carbon dioxide levels permits the control of the determinant step of plaque formation, that is calcification of the plaque.  相似文献   

11.
Lee TD  Reich PB  Tjoelker MG 《Oecologia》2003,137(1):22-31
Legumes, with the ability to fix atmospheric nitrogen (N), may help alleviate the N limitations thought to constrain plant community response to elevated concentrations of atmospheric carbon dioxide (CO2). To address this issue we assessed: (1) the effects of the presence of the perennial grassland N2 fixer, Lupinus perennis, on biomass accumulation and plant N concentrations of nine-species plots of differing plant composition; (2) leaf-level physiology of co-occurring non-fixing species (Achillea millefolium, Agropyron repens, Koeleria cristata) in these assemblages with and without Lupinus; (3) the effects of elevated CO2 on Lupinus growth and symbiotic N2 fixation in both monoculture and the nine-species assemblages; and (4) whether assemblages containing Lupinus exhibit larger physiological and growth responses to elevated CO2 than those without. This study was part of a long-term grassland field experiment (BioCON) that controls atmospheric CO2 at current ambient and elevated (560 µmol mol–1) concentrations using free-air CO2 enrichment. Nine-species plots with Lupinus had 32% higher whole plot plant N concentrations and 26% higher total plant N pools than those without Lupinus, based on both above and belowground measurements. Co-occurring non-fixer leaf N concentrations increased 22% and mass-based net photosynthetic rates increased 41% in plots containing Lupinus compared to those without. With CO2 enrichment, Lupinus monocultures accumulated 32% more biomass and increased the proportion of N derived from fixation from 44% to 57%. In nine-species assemblages, Lupinus N derived from fixation increased similarly from 43% to 54%. Although Lupinus presence enhanced photosynthetic rates and leaf N concentrations of co-occurring non-fixers, and increased overall plant N pools, Lupinus presence did not facilitate stronger photosynthetic responses of non-fixing species or larger growth responses of overall plant communities to elevated CO2. Non-fixer leaf N concentrations declined similarly in response to elevated CO2 with and without Lupinus present and the relationship between net photosynthesis and leaf N was not affected by Lupinus presence. Regardless of the presence or absence of Lupinus, CO2 enrichment resulted in reduced leaf N concentrations and rates of net photosynthesis.  相似文献   

12.
13.
The rate of CO2 fixation (Fc) and 680 nm chlorophyll fluorescence emission (F680) were measured simultaneously during induction of photosynthesis in Zea mays L. leaves under varying experimental conditions in order to assess the validity of fluorescence as an indicator of in vivo photosynthetic carbon assimilation. Z. mays leaves showed typical Kautsky fluorescence induction curves consisting of a fast rise in emission (O to P) followed by a slow quenching via a major transient (S-M) to a steady-state (T). After an initial lag, net CO2 assimilation commenced at a point corresponding to the onset of the S-M transient on the F680 induction curve. Subsequently, Fc and F680 always arrived at a steady-state simultaneously. Decreasing the dark-adaption period increased the rate of induction of both parameters. Alteration of leaf temperature produced anti-parallel changes in induction characteristics of Fc and F680. Reducing the CO2 level to below that required for saturation of photosynthesis also produced anti-parallel changes during induction, however, at CO2 concentrations tenfold greater than the atmospheric level the rate of F680 quenching from P to T was appreciably reduced without a similar change in the induction of Fc. Removal of CO2 at steady-state produced only a small increase in F680 and a correspondingly small decrease in F680 occurred when CO2 was re-introduced. The complex relationship between chlorophyll fluorescence and carbon assimilation in vivo is discussed and the applicability of fluorescence as an indicator of carbon assimilation is considered.Abbreviations Fc rate of CO2 fixation - F680 fluorescence emission at 680 nm  相似文献   

14.
This paper is concerned with the definition of the standard conditions required for optimum operation of the bare platinum electrode with photosynthetic samples. Experimental evidence shows the following: 1) Polarization circuits should have zero resistance; 2) The electrolyte layer between the electrodes should have a conductance higher than 54×10–6 –1 per mm2 of platinum electrode area; 3) The electrodes should be polarized just before taking the measurements. All these facts can be interpreted in terms of phenomena occurring on the electrode: The adsorption of hydrogen on the electrode imposes the need for low resistances in the system, and oxygen consumption by the electrode is minimized by polarizing the electrodes as late as possible. This investigation increases the reliability of the bare platinum electrode and gives a basis for a comparison of the results from different experiments. Demonstrations of the pertinence of these conditions are made in our lab with the algae Dunaliella Tertiolecta.  相似文献   

15.
16.
17.
The influence of elevated CO2 concentrations on growth and photosynthesis ofGracilaria sp. andG. chilensis was investigated in order to procure information on the effective utilization of CO2. Growth of both was enhanced by CO2 enrichment (air + 650 ppm CO2, air + 1250 ppm CO2, the enhancement being greater inGracilaria sp. Both species increased uptake of NO3 with CO2 enrichment. Photosynthetic inorganic carbon uptake was depressed inG. chilensis by pre-culture (15 days) with CO2 enrichment, but little affected inGracilaria sp. Mass spectrometric analysis showed that O2 uptake was higher in the light than in the dark for both species and in both cases was higher inGracilaria sp. The higher growth enhancement inGracilaria sp. was attributed to greater depression of photorespiration by the enrichment of CO2 in culture.  相似文献   

18.
Experiments on short-term photosynthesis in H14CO3 - (2–5 s) using various species of different algal classes resulted in predominant 14C-labelling (>90% of total 14C-incorporation) of phosphorylated compounds. The percentage of malate and aspartate usually accounts for distinctly less than 10% of the total 14C-labelling. These findings are consistent with data from enzymatic analyses, since 97–100% of the carboxylation capacity is due to ribulose-1.5-biphosphate carboxylase (EC 4.1.1.39) in Rhodophyceae and Chlorophyceae. Phaeophyceae are generally characterized by considerable activity of phosphoenolpyruvate carboxykinase (EC 4.1.1.32): at least 10% of carboxylation is confined to this enzyme. Similar ratios are obtained when rates of photosynthesis and of light-independent CO2-fixation are compared. Activity of phosphoenolpyruvate carboxylase (EC 4.1.1.31) could not be detected in the species investigated. The results are discussed with emphasis on the pathway of photosynthetic carbon assimilation in marine algae.Abbreviations PEP-CK phosphoenolpyruvate carboxykinase (EC 4.1.1.32) - PEP-C phosphoenolpyruvate carboxylase (EC 4.1.1.31) - RubP-C ribulose-1.5-biphosphate carboxylase (EC 4.1.1.39) Dedicated to Professor H. Fischer, Bonn, on his 65th birthday  相似文献   

19.
Efflux of carbon dioxide from snow-covered forest floors   总被引:1,自引:0,他引:1  
The release of CO2 from the snow surface in winter and the soil surface in summer was directly or indirectly measured in four cool-temperate deciduous broadleaved and evergreen needle forests. The closed chamber method (CC-method) and Fick's diffusion model (DM-method) were used for the direct and indirect measurements, respectively. The winter soil temperatures from the soil surface to 10 cm depth were between 0 and 2°C. The concentration of CO2 within snowpack increased linearly with increasing snow depth. The average effluxes of CO2 calculated from the gradients of CO2 concentration in the snow using the DM-method ranged from 20 to 75 mg CO2 m−2 h−1, while the CC-method showed the average effluxes of 20 to 50 mg CO2m−2h−1. These results reveal that the snow thermally insulates the soil, allowing CO2 production to continue at soil temperatures a little above freezing throughout the winter. Carbon dioxide formed in the soil can move across snowpack up to the atmosphere. The winter/summer ratio of CO2 emission was estimated to be higher than 7%. Therefore, the snow-covered soil served as a source of CO2 in the winter and the effluxes represent an important part of the annual CO2 budget in snowy regions.  相似文献   

20.
A series of experiments is presented investigating short term and long term changes of the nature of the response of rate of CO2 assimilation to intercellular p(CO2). The relationships between CO2 assimilation rate and biochemical components of leaf photosynthesis, such as ribulose-bisphosphate (RuP2) carboxylase-oxygenase activity and electron transport capacity are examined and related to current theory of CO2 assimilation in leaves of C3 species. It was found that the response of the rate of CO2 assimilation to irradiance, partial pressure of O2, p(O2), and temperature was different at low and high intercellular p(CO2), suggesting that CO2 assimilation rate is governed by different processes at low and high intercellular p(CO2). In longer term changes in CO2 assimilation rate, induced by different growth conditions, the initial slope of the response of CO2 assimilation rate to intercellular p(CO2) could be correlated to in vitro measurements of RuP2 carboxylase activity. Also, CO2 assimilation rate at high p(CO2) could be correlated to in vitro measurements of electron transport rate. These results are consistent with the hypothesis that CO2 assimilation rate is limited by the RuP2 saturated rate of the RuP2 carboxylase-oxygenase at low intercellular p(CO2) and by the rate allowed by RuP2 regeneration capacity at high intercellular p(CO2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号