首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
It has been proposed that gluten sensitive enteropathy (GSE) results from the interaction of two loci: one locus linked to HLA and associated with dominant inheritance, and the other, a non-HLA-linked GSE-associated B-cell alloantigen, exhibiting recessive inheritance. We have shown in previous analyses that a two-locus, dominant-recessive model is less compatible with the existing population prevalence and observed familial segregation data than is a recessive-recessive two-locus model. Here we present additional analyses of reported population and familial HLA data that support the recessive mode of inheritance for the HLA-linked disease locus. Reported data from HLA typing of affected sib pairs, the association of GSE with DR3 and DR7 in different populations, and the proportions of different HLA phenotypes and genotypes were compared with expected data derived by three different methods. The HLA data analyses consistently reject a dominant mode of inheritance for the presumed HLA-linked disease allele but do not reject a recessive model. The affected sib-pair data also support a recessive model. These analyses are consistent with our previous prediction that the HLA-"linked" disease allele in GSE is recessive inherited.  相似文献   

2.
Using exact expected likelihoods, we have computed the average number of phase-unknown nuclear families needed to detect linkage and heterogeneity. We have examined the case of both dominant and recessive inheritance with reduced penetrance and phenocopies. Most of our calculations have been carried out under the assumption that 50% of families are linked to a marker locus. We have varied both the number of offspring per family and the sampling scheme. We have also investigated the increased power when the disease locus is midway between two marker loci 10 cM apart. For recessive inheritance, both linkage and heterogeneity can be detected in clinically feasible sample sizes. For dominant inheritance, linkage can be detected but heterogeneity cannot be detected unless larger sibships (four offspring) are sampled or two linked markers are available. As expected, if penetrance is reduced, sampling families with all sibs affected is most efficient. Our results provide a basis for estimating the amount of resources needed to find genes for complex disorders under conditions of heterogeneity.  相似文献   

3.
Todd JJ  Vodkin LO 《The Plant cell》1996,8(4):687-699
Seed coat color in soybean is determined by four alleles of the classically defined / (inhibitor) locus that controls the presence or absence as well as the spatial distribution of anthocyanin pigments in the seed coat. By analyzing spontaneous mutations of the / locus, we demonstrated that the / locus is a region of chalcone synthase (CHS) gene duplications. Paradoxically, deletions of CHS gene sequences allow higher levels of CHS mRNAs and restore pigmentation to the seed coat. The unusual nature of the / locus suggests that its dominant alleles may represent naturally occurring examples of homology-dependent gene silencing and that the spontaneous deletions erase the gene-silencing phenomena. Specifically, mutations from the dominant ii allele (yellow seed coats with pigmented hila) to the recessive i allele (fully pigmented) can be associated with the absence of a 2.3-kb Hindlll fragment that carries CHS4, a member of the multigene CHS family. Seven independent mutations exhibit deletions in the CHS4 promoter region. The dominant / allele (yellow seed coats) exhibits an extra 12.1-kb Hindlll fragment that hybridizes with both the CHS coding region and CHS1 promoter-specific probes. Mutations of the dominant / allele to the recessive i allele (pigmented seed coats) give rise to 10.4- or 9.6-kb Hindlll CHS fragments that have lost the duplicated CHS1 promoter. Finally, gene expression analysis demonstrated that heterozygous plants (I/i) with yellow seed coats have reduced mRNA levels, indicating that the 12.1-kb Hindlll CHS fragment associated with the dominant / allele inhibits pigmentation in a trans-dominant manner. Moreover, CHS gene-specific expression in seed coats shows that multiple CHS genes are expressed in seed coats.  相似文献   

4.
Fox colors in relation to colors in mice and sheep   总被引:4,自引:0,他引:4  
Color inheritance in foxes is explained in terms of homology between color loci in foxes, mice, and sheep. The hypothesis presented suggests that the loci A (agouti), B (black/chocolate brown pigment) and E (extension of eumelanin vs. phaeomelanin) all occur in foxes, both the red fox, Vulpes vulpes, and the arctic fox, Alopex lagopus. Two alleles are postulated at each locus in each species. At the A locus, the (top) dominant allele in the red fox, Ar, produces red color and the corresponding allele in the arctic fox, Aw, produces the winter-white color. The bottom recessive allele in both species is a, which results in the black color of the silver fox and a rare black color in the Icelandic arctic fox when homozygous. The B alleles are assumed to be similar in both species: B, dominant, producing black eumelanin, and b, recessive, producing chocolate brown eumelanin when homozygous. The recessive E allele at the E locus in homozygous form has no effect on the phenotype determined by alleles at the A locus, while Ed, the dominant allele is epistatic to the A alleles and results in Alaska black in the red fox and the dark phase in the arctic fox. Genetic formulae of various color forms of red and arctic fox and their hybrids are presented.  相似文献   

5.
Autosomal recessive and dominant inheritance of proximal spinal muscular atrophy (SMA) are well documented. Several genetic studies found a significant deviation from the assumption of recessive inheritance in SMA, with affected children in one generation. The existence of new autosomal dominant mutations has been assumed as the most suitable explantation, which is supported by three observations of this study: (1) The segregation ratio calculated in 333 families showed a significant deviation from autosomal recessive inheritance in the milder forms of SMA (P = .09 +/- .06 for onset at 10-36 mo and .13 +/- .07 for onset at > 36 mo; and P = .09 +/- .07 for SMA IIIa and .12 +/- .07 for SMA IIIb). (2) Three families with affected subjects in two generations are reported, in whom the disease could have started as an autosomal dominant mutation. (3) Linkage studies with chromosome 5q markers showed that in 5 (5.4%) of 93 informative families the patient shared identical haplotypes with at least one healthy sib. Other mechanisms, such as the existence of phenocopies, pseudodominance, or a second autosomal recessive gene locus, cannot be excluded in single families. The postulation of spontaneous mutations, however, is a suitable explanation for all three observations. Estimated risk figures for genetic counseling are given.  相似文献   

6.
Cataracts are the leading cause of blindness in most countries. Although most hereditary cases appear to follow an autosomal dominant pattern of inheritance, autosomal recessive inheritance has been clearly documented and is probably underrecognized. We studied a large family-from a relatively isolated geographic region-whose members were affected by autosomal recessive adult-onset pulverulent cataracts. We mapped the disease locus to a 14-cM interval at a novel disease locus, 9q13-q22 (between markers D9S1123 and D9S257), with a LOD score of 4.7. The study of this progressive and age-related cataract phenotype may provide insight into the cause of the more common sporadic form of age-related cataracts.  相似文献   

7.
The risk of Parkinson's disease (PD) is higher among relatives of affected individuals than among other members of the population, and most family studies have suggested autosomal dominant inheritance, although both autosomal dominant and recessive susceptibility genes have recently been identified. We carried out a complex segregation analysis with POINTER to assess the mode of inheritance of PD in the population of northern Finland. Nuclear families (n=265) were identified through a proband with idiopathic PD. The analysis was first carried out for the total data set, and then the heterogeneity between early-onset (proband under 55 years at onset) and late-onset families was examined. Finally, families with more than one affected individual were analyzed separately. The sporadic model was rejected (P<0.0001). Significant heterogeneity was found between the early-onset and late-onset families, suggesting that major genes have a greater role in early-onset PD than in late-onset PD and that the etiology of idiopathic PD is heterogeneous, even in the Finnish population, which has evolved from a small group of founders. The analysis of familial PD supported the hypothesis that a major locus was present in this subset, but it was not possible to distinguish between a recessive model with a high penetrance and a dominant model with lower penetrance.  相似文献   

8.
A simple mendelian model, with two alleles at an autosomal locus, is suggested for the inheritance of the two colour phenotypes of Cichlasoma nigrofasciatum-the dominant (wild type) allele causes a dark grey colouration, while the recessive phenotype is pink.  相似文献   

9.
张京 《遗传学报》1999,26(6):695-702
了24份中国大麦矮秆种质资源的株高遗传,在它们的矮秆基因之间且与已矮秆基因uz、sdw、br和enso进行遗传等位性测验。结果表明,这些矮秆种在多隐性单基因遗传,少数受隐性基因控制,只有1份携带1对隐性和1对不完全显性筹秆基因。  相似文献   

10.
Linkage analysis in separately ascertained families of probands with juvenile myoclonic epilepsy (JME) has previously provided evidence both for and against the existence of a locus (designated "EJM1"), on chromosome 6p, predisposing to a trait defined as either clinical JME, its associated electroencephalographic abnormality, or idiopathic generalized epilepsy. Linkage analysis was performed in 19 families in which a proband and at least one first- or two second-degree relatives have clinical JME. Family members were typed for seven highly polymorphic microsatellite markers on chromosome 6p: D6S260, D6S276, D6S291, D6S271, D6S465, D6S257, and D6S254. Pairwise and multipoint linkage analysis was carried out under the assumptions of autosomal dominant inheritance at 70% and 50% penetrance and autosomal recessive inheritance at 70% and 50% penetrance. No significant evidence in favor of linkage to the clinical trait of JME was obtained for any locus. The region formally excluded (LOD score < -2) by using multipoint analysis varies depending on the assumptions made concerning inheritance parameters and the proportion of linked families, alpha-that is, the degree of locus heterogeneity. Further analysis either classifying all unaffected individuals as unknown or excluding a subset of four families in which pyknoleptic absence seizures were present in one or more individuals did not alter these conclusions.  相似文献   

11.
Male mice were X-irradiated with 3.0 + 3.0 Gy or 5.1 + 5.1 Gy (fractionation interval 24 h). The offspring were screened for dominant cataract and recessive specific locus mutations. In the 3.0 + 3.0-Gy spermatogonial treatment group, 3 dominant cataract mutations were confirmed in 15 551 offspring examined and 29 specific locus mutations were recovered in 18 139 offspring. In the post-spermatogonial treatment group, 1 dominant cataract mutation was obtained in 1120 offspring and 1 recessive specific locus mutation was recovered in 1127 offspring. The induced mutation rate per locus, per gamete, per Gy calculated for recessive specific locus mutations is 2.0 X 10(-5) in post-spermatogonial stages and 3.7 X 10(-5) in spermatogonia. For dominant cataract mutations, assuming 30 loci, the induced mutation rate is 5.0 X 10(-6) in the post-spermatogonial stages and 1.1 X 10(-6) in spermatogonia. In the 5.1 + 5.1-Gy spermatogonial treatment group, 3 dominant cataract mutations were obtained in 11 205 offspring, whereas in 13 201 offspring 27 recessive specific locus mutations were detected in the spermatogonial group. In the post-spermatogonial treatment group no dominant cataract mutation was observed in 425 offspring and 2 recessive specific locus mutations were detected in 445 offspring. The induced mutation rate per locus, gamete and Gy in spermatogonia for recessive specific locus mutations is 2.8 X 10(-5) and for dominant cataract mutations 0.9 X 10(-6). In post-spermatogonial stages, the mutation rate for recessive specific locus alleles is 6.2 X 10(-5). In the concurrent untreated control group, in 11 036 offspring no dominant cataract mutation and in 23 518 offspring no recessive specific locus mutation was observed. Litter size and the number of carriers at weaning have been determined in the confirmation crosses of the obtained dominant cataract mutants as indicators of viability and penetrance effects. Two mutants had a statistically significantly reduced litter size and one mutant had a statistically significantly reduced penetrance.  相似文献   

12.
病理性近视的家系研究   总被引:1,自引:0,他引:1  
为了探讨我国病理性近视的遗传模式,对90个病理性近视大家系进行了分离分析。简单分离分析采用先验法和SEGRAN-B软件,进行拟合优度卡方检验,比较实际分离比与理论分离比的符合程度;复合分离分析运用SAGE-REGD软件进行孟德尔遗传模型(主基因、显性、隐性、共显性)和非孟德尔遗传模型(非传递、环境、一般)的拟合。结果显示,婚配类型为A*N的家系符合常染色体显性遗传,散发概率为13.8%,婚配类型为N*N的家系符合常染色体隐性遗传,散发概率为16.3%,但常染色体显性遗传不能除外,复合分离分析接受孟德尔遗传的显性、隐性、共显性和主基因模型,共显性模型的可能性最大,基因频率为0.21442999。因此,我国病理性近视存在常染色体显性和隐性遗传模式,并有一定比例的散发病例,具有遗传异质性。  相似文献   

13.
Heterogeneity, both inter- and intrafamilial, represents a serious problem in linkage studies of common complex diseases. In this study we simulated different scenarios with families who phenotypically have identical diseases but who genotypically have two different forms of the disease (both forms genetic). We examined the proportion of families displaying intrafamilial heterogeneity, as a function of mode of inheritance, gene frequency, penetrance, and sampling strategies. Furthermore, we compared two different ways of analyzing linkage in these data sets: a two-locus (2L) analysis versus a one-locus (SL) analysis combined with an admixture test. Data were simulated with tight linkage between one disease locus and a marker locus; the other disease locus was not linked to a marker. Our findings are as follows: (1) In contrast to what has been proposed elsewhere to minimize heterogeneity, sampling only "high-density" pedigrees will increase the proportion of families with intrafamilial heterogeneity, especially when the two forms are relatively close in frequency. (2) When one form is dominant and one is recessive, this sampling strategy will greatly decrease the proportions of families with a recessive form and may therefore make it more difficult to detect linkage to the recessive form. (3) An SL analysis combined with an admixture test achieves about the same lod scores and estimate of the recombination fraction as does a 2L analysis. Also, a 2L analysis of a sample of families with intrafamilial heterogeneity does not perform significantly better than an SL analysis. (4) Bilineal pedigrees have little effect on the mean maximum lod score and mean maximum recombination fraction, and therefore there is little danger that including these families will lead to a false exclusion of linkage.  相似文献   

14.
Genetic models have been used to examine the evolution of insecticide resistance in pest species subject to data and assumptions regarding genetic, biological, and operational parameters. We used time-series data on pyrethroid tolerance and simple genetic models to estimate underlying genetic and biological parameters associated with resistance evolution in tobacco budworm, Heliothis virescens (F.), and bollworm, Helicoverpa zea (Boddie), Louisiana field populations. Assuming pyrethroid resistance is conferred by one gene at one locus in both species, inheritance of pyrethroid resistance was partially dominant in the tobacco budworm and partially recessive in the bollworm. Relative fitness estimates indicated that fitness costs associated with resistance selected against resistance alleles in the absence of selection pressure in the tobacco budworm, but not in the bollworm. In addition, relative fitness estimates obtained using the indirect method outlined in this study were similar in magnitude to estimates obtained using traditional direct approaches.  相似文献   

15.
Amelogenesis imperfecta: a genetic study   总被引:3,自引:0,他引:3  
The mode of inheritance and the clinical manifestations of amelogenesis imperfecta (AI) were studied in 51 families from the county of V?sterbotten, northern Sweden. Autosomal dominant (AD) was the most probable mode of inheritance in 33 families, but X-linked dominant (XD) inheritance was a possible alternative in one family. Autosomal recessive (AR) inheritance was found likely in 6 and X-linked recessive inheritance in 2 families. Ten probands were sporadic cases. In the families with AD inheritance, a sex difference was observed between affected and non-affected cases, with an excess of females in the affected group (p less than 0.05). In addition to the 78 index cases, 107 new cases were diagnosed. The clinical manifestations of AI observed could be divided into 2 forms, the hypoplastic form in 72% and the hypomineralization form in 28% of the individuals. AD inheritance was seen in 89% of the cases with the hypoplastic form, and in 44% of the cases with the hypomineralization form. In most families with AD or AR inheritance, each family displayed a characteristic manifestation of either hypoplastic or hypomineralization defects. In 3 families, both hypoplastic and hypomineralization forms of AI were seen. In families with X-linked inheritance, the clinical manifestation differed between females and males with males more seriously affected.  相似文献   

16.
The affected sib method. III. Selection and recombination.   总被引:3,自引:0,他引:3       下载免费PDF全文
The affected sib-pair method has been used to investigate the mode of inheritance, and to estimate the "disease" allele frequency, for a number of HLA-associated diseases. One of the assumptions of the original sib-pair method is that the disease confers no selective disadvantage on affected individuals. This is obviously not the situation for most diseases. We have determined the expected HLA haplotype-sharing distribution among affected sib-pairs when selection against individuals with the disease is taken into account. We have shown that if the mode of inheritance of the selectively disadvantageous disease is recessive or additive, the original affected sib-pair analysis, ignoring selection, still estimates the true mode of inheritance, but usually yields an underestimate of the "disease" allele frequency. For intermediate and dominant models of disease predisposition, both the estimates of the degree of penetrance of the "disease" genotypes, and the "disease" allele frequency, are altered if selection is ignored in the analysis. Similarly, allowing for recombination between the "disease" locus and the HLA region does not affect the determination of the mode of inheritance of the disease if it is recessive or additive; in other cases, however, the estimate of the mode of inheritance is affected. The "disease" allele frequency is overestimated when nonzero recombination is ignored for all the modes of inheritance that have been studied.  相似文献   

17.
Situs inversus viscerum in the mouse has been shown to be inherited as an autosomal recessive trait (gene symbol iv) with reduced penetrance. It is hypothesized that the normal allele at the iv locus exhibits complete dominance and controls normal visceral asymmetry. Absence of this control allows the situs of visceral asymmetry to be determined in a random fashion. This hypothesis also appears to apply to the inheritance of situs inversus in man and to the experimental production of situs inversus.  相似文献   

18.
J Murray  B Clarke 《Heredity》1976,37(2):271-282
The colour and banding of the shell of Partula suturalis are controlled by a single locus (M) with a series of at least six alleles. MX, giving apex as a homozygote, is dominant to MF1, giving frenata, which is dominant to the other alleles. MF2 is similar to MF1 except in its relation with MA. MF2MA produces bisecta and provides a striking example of a heterozygote that is qualitatively different from both homozygotes for the alleles producing it. MA gives atra as a homozygote and is dominant to MC and MS. MC, giving cestata as a homozygote, is recessive to all except MS. MS, giving strigata, is the universal recessive. It is suggested that the locus may be complex. The direction of coiling of the shell is determined by the H locus with HS (sinistrality) dominant to HD (dextrality). The expression of coiling is delayed by one generation, the maternal genotype determining the phenotype of the offspring. M and H are not linked. Self-fertilisation occurs infrequently and non-randomly.  相似文献   

19.
We have studied a four-generation family with features of Weyers acrofacial dysostosis, in which the proband has a more severe phenotype, resembling Ellis-van Creveld syndrome. Weyers acrofacial dysostosis is an autosomal dominant condition with dental anomalies, nail dystrophy, postaxial polydactyly, and mild short stature. Ellis-van Creveld syndrome is a similar condition, with autosomal recessive inheritance and the additional features of disproportionate dwarfism, thoracic dysplasia, and congenital heart disease. Linkage and haplotype analysis determined that the disease locus in this pedigree resides on chromosome 4p16, distal to the genetic marker D4S3007 and within a 17-cM region flanking the genetic locus D4S2366. This region includes the Ellis-van Creveld syndrome locus, which previously was reported to map within a 3-cM region between genetic markers D4S2957 and D4S827. Either the genes for the condition in our family and for Ellis-van Creveld syndrome are near one another or these two conditions are allelic with mutations in the same gene. These data also raise the possibility that Weyers acrofacial dysostosis is the heterozygous expression of a mutation that, in homozygous form, causes the autosomal recessive disorder Ellis-van Creveld syndrome.  相似文献   

20.
Four rules of judgement, each involving one child and its parents, can rule out one common mode of inheritance each, namely dominance, or recessiveness, autosomal or sex-linkage. A large pedigree usually provides three different groups of ? particular child and its parents. Each such trio may rule out one particular mode of inhe itance. When both parents show a trait but one daughter does not, the trait cannot be recessive. When no parent shows the trait but one son or daughter does, the trait cannot be dominant. Again, if a father shows a trait but his daughter and her mother do not show it, the trait cannot be sex-linked dominant. And when a mother shows a trait, but her son and his father do not, the trait cannot be sex-linked recessive. A pedigree having three of these four different sets of “parents-and-child” groups, rules out three modes of inheritance for the trait in question, and thereby confirms that the mode of inheritance for the trait is, as a rule, the single remaining mode of the four.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号