首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Species of several unrelated families within the angiosperms are able to constitutively produce pyrrolizidine alkaloids as a defense against herbivores. In pyrrolizidine alkaloid (PA) biosynthesis, homospermidine synthase (HSS) catalyzes the first specific step. HSS was recruited during angiosperm evolution from deoxyhypusine synthase (DHS), an enzyme involved in the posttranslational activation of eukaryotic initiation factor 5A. Phylogenetic analysis of 23 cDNA sequences coding for HSS and DHS of various angiosperm species revealed at least four independent recruitments of HSS from DHS: one within the Boraginaceae, one within the monocots, and two within the Asteraceae family. Furthermore, sequence analyses indicated elevated substitution rates within HSS-coding sequences after each gene duplication, with an increased level of nonsynonymous mutations. However, the contradiction between the polyphyletic origin of the first enzyme in PA biosynthesis and the structural identity of the final biosynthetic PA products needs clarification.  相似文献   

2.
Nurhayati N  Ober D 《Phytochemistry》2005,66(11):1346-1357
Quinolizidine alkaloids are the most prominent group of alkaloids occurring in legumes, except for many members of the tribe Crotalarieae that accumulate pyrrolizidine alkaloids (PAs). To study the evolution of PA biosynthesis as a typical pathway of plant secondary metabolism in this tribe, we have searched for a cDNA coding for homospermidine synthase (HSS), the enzyme catalyzing the first specific step in this biosynthesis. HSS was shown to have been recruited from deoxyhypusine synthase (DHS) by independent gene duplication in several different angiosperm lineages during evolution. Except for a cDNA sequence coding for the DHS of Crotalaria retusa, no data is available concerning the origin of PA biosynthesis within this tribe of the Fabaceae. In addition to several pseudogenes, we have identified one functional DHS in C. scassellatii and two in C. juncea. Despite C. juncea plants under study being devoid of PAs, we have found that the two sequences of C. juncea are different with respect to their genomic organization, their tissue-specific expression, and their biochemical activities. Supported by the branching pattern of a maximum likelihood analysis of these sequences, they have been classified as "class 1" and "class 2" DHS. It remains open whether the duplicated DHS belonging to class 2 is involved in the biosynthesis of PAs.  相似文献   

3.
In order to study the evolution of pathways of plant secondary metabolism, we use the biosynthesis of pyrrolizidine alkaloids (PAs) as a model system. PAs are regarded as part of the plant’s constitutive defense against herbivores. Homospermidine synthase (HSS) is the first specific enzyme of PA biosynthesis. The gene encoding HSS has been recruited from the gene encoding deoxyhypusine synthase (DHS) from primary metabolism at least four times independently during angiosperm evolution. One of these recruitments occurred within the monocot lineage. We have used the PA-producing orchid Phalaenopsis to identify the cDNAs encoding HSS, DHS and the substrate protein for DHS, i.e., the precursor of the eukaryotic initiation factor 5A. A cDNA identified from maize was unequivocally characterized as DHS. From our study of Phalaenopsis, several pseudogenes emerged, of which one was shown to be a “processed pseudogene”, and others to be transcribed. Sequence comparison of the HSS- and DHS-encoding sequences from this investigation with those of monocot species taken from the databases suggest that HSS and probably the ability to produce PAs is an old feature within the monocot lineage. This result is discussed with respect to the recent discovery of structural related PAs within grasses.  相似文献   

4.
The evolution of pathways within plant secondary metabolism has been studied by using the pyrrolizidine alkaloids (PAs) as a model system. PAs are constitutively produced by plants as a defense against herbivores. The occurrence of PAs is restricted to certain unrelated families within the angiosperms. Homospermidine synthase (HSS), the first specific enzyme in the biosynthesis of the necine base moiety of PAs, was originally recruited from deoxyhypusine synthase, an enzyme involved in the posttranslational activation of the eukaryotic initiation factor 5A. Recently, this gene recruitment has been shown to have occurred several times independently within the angiosperms and even twice within the Asteraceae. Here, we demonstrate that, within these two PA-producing tribes of the Asteraceae, namely Senecioneae and Eupatorieae, HSS is expressed differently despite catalyzing the same step in PA biosynthesis. Within Eupatorium cannabinum, HSS is expressed uniformly in all cells of the root cortex parenchyma, but not within the endodermis and exodermis. Within Senecio vernalis, HSS expression has been previously identified in groups of specialized cells of the endodermis and the adjacent root cortex parenchyma. This expression pattern was confirmed for Senecio jacobaea as well. Furthermore, the expression of HSS in E. cannabinum is dependent on the development of the plant, suggesting a close linkage to plant growth.  相似文献   

5.
Pyrrolizidine alkaloids (PAs) are typical compounds of plant secondary metabolism and are believed to be part of the plant's chemical defense. Within the monocotyledonous plants, PAs have been described in only a few genera, mainly orchids, including Phalaenopsis. Because phylogenetic analyses suggest an independent origin of PA biosynthesis within the monocot lineage, we have analyzed the developmentally regulated expression of homospermidine synthase (HSS), the first pathway-specific enzyme of PA biosynthesis, at the cell level. HSS is expressed in the tips of aerial roots exclusively in mitotically active cells. Raphide crystal idioblasts present within the root apical meristem do not show HSS expression. In addition, young flower buds, but not mature flowers, express HSS and have been shown by tracer feeding experiments to be able to catalyze PAs. This second site of PA biosynthesis ensures high concentrations of PAs in the reproductive structures of the Phalaenopsis flower, even after the flower opens. Thus, in spite of its identical function in PA biosynthesis, HSS shows in Phalaenopsis a completely different spatial and developmental expression pattern in comparison to other PA-producing species. These results show that the proverbial diversity of plant secondary metabolism is not just a matter of structural diversity, but is also multifaceted in terms of pathway regulation and expression.  相似文献   

6.
Homospermidine synthase (HSS) is the first specific enzyme in pyrrolizidine alkaloid (PA) biosynthesis, a pathway involved in the plant's chemical defense. HSS has been shown to be recruited repeatedly by duplication of a gene involved in primary metabolism. Within the lineage of the Boraginales, only one gene duplication event gave rise to HSS. Here, we demonstrate that the tissue-specific expression of HSS in three boraginaceous species, Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale, is unique with respect to plant organ, tissue, and cell type. Within H. indicum, HSS is expressed exclusively in nonspecialized cells of the lower epidermis of young leaves and shoots. In S. officinale, HSS expression has been detected in the cells of the root endodermis and in leaves directly underneath developing inflorescences. In young roots of C. officinale, HSS is detected only in cells of the endodermis, but in a later developmental stage, additionally in the pericycle. The individual expression patterns are compared with those within the Senecioneae lineage (Asteraceae), where HSS expression is reproducibly found in specific cells of the endodermis and the adjacent cortex parenchyma of the roots. The individual expression patterns within the Boraginales species are discussed as being a requirement for the successful recruitment of HSS after gene duplication. The diversity of HSS expression within this lineage adds a further facet to the already diverse patterns of expression that have been observed for HSS in other PA-producing plant lineages, making this PA-specific enzyme one of the most diverse expressed proteins described in the literature.  相似文献   

7.
Recent studies have revealed high sequence similarity between homospermidine synthase (HSS), the first pathway-specific enzyme in the biosynthesis of pyrrolizidine alkaloids, a class of sporadically occurring plant defence compounds, and deoxyhypusine synthase (DHS), a ubiquitous enzyme involved in the post-translational activation of the eukaryotic initiation factor 5A (eIF5A). The recruitment of DHS during the evolution of the alkaloid pathway is discussed and interpreted as evolution by change of function.  相似文献   

8.
Alkylresorcinol moieties of cannabinoids are derived from olivetolic acid (OLA), a polyketide metabolite. However, the polyketide synthase (PKS) responsible for OLA biosynthesis has not been identified. In the present study, a cDNA encoding a novel PKS, olivetol synthase (OLS), was cloned from Cannabis sativa. Recombinant OLS did not produce OLA, but synthesized olivetol, the decarboxylated form of OLA, as the major reaction product. Interestingly, it was also confirmed that the crude enzyme extracts from flowers and rapidly expanding leaves, the cannabinoid-producing tissues of C. sativa, also exhibited olivetol-producing activity, suggesting that the native OLS is functionally expressed in these tissues. The possibility that OLS could be involved in OLA biosynthesis was discussed based on its catalytic properties and expression profile.  相似文献   

9.
Geranylgeranyl pyrophosphate synthase is a key enzyme in plant terpenoid biosynthesis. Using specific antibodies, a cDNA encoding geranylgeranyl pyrophosphate synthase has been isolated from bell pepper (Capsicum annuum) ripening fruit. The cloned cDNA codes for a high molecular weight precursor of 369 amino acids which contains a transit peptide of approximately 60 amino acids. In-situ immunolocalization experiments have demonstrated that geranylgeranyl pyrophosphate synthase is located exclusively in the plastids. Expression of the cloned cDNA in E. coli has unambiguously demonstrated that the encoded polypeptide catalyzes the synthesis of geranylgeranyl pyrophosphate by the addition of isopentenyl pyrophosphate to an allylic pyrophosphate. Peptide sequence comparisons revealed significant similarity between the sequences of the C. annuum geranylgeranyl pyrophosphate synthase and those deduced from carotenoid biosynthesis (crtE) genes from photosynthetic and non-photosynthetic bacteria. In addition, four highly conserved regions, which are found in various prenyltransferases, were identified. Furthermore, evidence is provided suggesting that conserved and exposed carboxylates are directly involved in the catalytic mechanism. Finally, the expression of the geranylgeranyl pyrophosphate synthase gene is demonstrated to be strongly induced during the chloroplast to chromoplast transition which occurs in ripening fruits, and is correlated with an increase in enzyme activity.  相似文献   

10.
11.
12.

Background  

Plasmodium vivax is the most widespread human malaria parasite. However, genetic information about its pathogenesis is limited at present, due to the lack of a reproducible in vitro cultivation method. Sequencing of the Plasmodium vivax genome suggested the presence of a homolog of deoxyhypusine synthase (DHS) from P. falciparum, the key regulatory enzyme in the first committed step of hypusine biosynthesis. DHS is involved in cell proliferation, and thus a valuable drug target for the human malaria parasite P. falciparum. A comparison of the enzymatic properties of the DHS enzymes between the benign and severe Plasmodium species should contribute to our understanding of the differences in pathogenicity and phylogeny of both malaria parasites.  相似文献   

13.
The plant tryptophan (Trp) biosynthetic pathway produces many secondary metabolites with diverse functions.Indole-3-acetic acid (IAA),proposed as a derivative from Trp or its precursors,plays an essential role in plant growth and development.Although the Trp-dependant and Trp-independent IAA biosynthetic pathways have been proposed,the enzymes,reactions and regulatory mechanisms are largely unknown.In Arabidopsis,indole-3-glycerol phosphate (IGP) is suggested to serve as a branchpoint component in the Trp-independent IAA biosynthesis.To address whether other enzymes in addition to Trp synthase α(TSA1) catalyze IGP cleavage,we identified and characterized an indole synthase (INS) gene,a homolog of TSA1 in Arabidopsis.INS exhibits different subcellular localization from TSA1 owing to the lack of chloroplast transit peptide (cTP).In silico data show that the expression levels of INS and TSA1 in all examined organs are quite different.Histochemical staining of INS promoter-GUS transgenic lines indicates that INS is expressed in vascular tissue of cotyledons,hypocotyls,roots and rosette leaves as well as in flowers and siliques.INS is capable of complementing the Trp auxotrophy of Escherichia coil △trpA strain,which is defective in Trp synthesis due to the deletion of TSA.This implies that INS catalyzes the conversion of IGP to indole and may be involved in the biosynthesis of Trp-independent IAA or other secondary metabolites in Arabidopsis.  相似文献   

14.
Ober D  Harms R  Hartmann T 《Phytochemistry》2000,55(4):305-309
Homospermidine synthase. which catalyses the first pathway-specific reaction in pyrrolizidine alkaloid biosynthesis, was cloned from root cultures of Senecio vulgaris and expressed in E. coli. The open reading frame encodes a protein of 370 amino acids with a molecular mass of 40,740 Da. The enzyme is strictly dependent on spermidine as aminobutyl donor since it cannot be substituted by putrescine. The homospermidine synthase from S. vulgaris showed 97.9 and 99.3% nucleic acid identity with two HSS sequences from the closely related species Senecio vernalis. This report also revises data from a previous publication (Kaiser, A., 1999. Cloning and expression of a cDNA encoding homospermidine synthase from Senecio vulgaris (Asteraceae) in Escherichia coli. Plant J. 19. 195 201.) that is incorrect.  相似文献   

15.
16.
3-Dehydroshikimic acid (DHS), in addition to being a potent antioxidant, is the key hydroaromatic intermediate in the biocatalytic conversion of glucose into aromatic bioproducts and a variety of industrial chemicals. Microbial synthesis of DHS, like other intermediates in the common pathway of aromatic amino acid biosynthesis, has previously been examined only under shake flask conditions. In this account, synthesis of DHS using recombinant Escherichia coli constructs is examined in a fed-batch fermentor where glucose availability, oxygenation levels, and solution pH are controlled. DHS yields and titers are also determined by the activity of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate (DAHP) synthase. This enzyme's expression levels, sensitivity to feedback inhibition, and the availability of its substrates, phosphoenolpyruvate (PEP) and D-erythrose 4-phosphate (E4P), dictate its in vivo activity. By combining fed-batch fermentor control with amplified expression of a feedback-insensitive isozyme of DAHP synthase and amplified expression of transketolase, DHS titers of 69 g/L were synthesized in 30% yield (mol/mol) from D-glucose. Significant concentrations of 3-dehydroquinic acid (6.8 g/L) and gallic acid (6.6 g/L) were synthesized in addition to DHS. The pronounced impact of transketolase overexpression, which increases E4P availability, on DHS titers and yields indicates that PEP availability is not a limiting factor under the fed-batch fermentor conditions employed.  相似文献   

17.
Deoxyhypusine synthase (DHS) is involved in the post-translational activation of the eukaryotic initiation factor 5A (eIF5A) and, as a side-reaction, catalyzes the formation of homospermidine if its substrate, the eIF5A precursor protein, is replaced by putrescine. Plant homospermidine synthase is assumed to be phylogenetically derived from DHS; it represents a DHS having lost its intrinsic activity. The enzyme is expressed in plants producing pyrrolizidine alkaloids where it catalyzes the formation of homospermidine the unique precursor of pyrrolizidine alkaloids. Here we show that 29 species randomly selected from 18 angiosperm families as well as a few other terrestrial plant species, all were able to produce small amounts of homospermidine. Basing on these results and in the context of literature on the occurrence of homospermidine in the organismic kingdoms, a universal occurrence of homospermidine is assumed and ubiquitous DHS is suggested to be responsible for its formation. The synthesis of homospermidine as an enzymatic by-product of an essential enzyme is discussed in respect to the evolutionary origin of homospermidine synthase and the biosynthetic pathway of pyrrolizidine alkaloids.  相似文献   

18.
19.
Anthranilate synthase is involved in tryptophan (Trp) biosynthesis. Functional expression of subunit I from Arabidopsis (ASA1) was achieved in bacteria as a protein fused with glutathione S-transferase (GST). The active product was purified in a single step on a glutathione-Sepharose column. The Vmax (45 nmol min-1mg-1), the apparent K(M) for chorismate (180 microM), and the feedback inhibition by Trp (complete inhibition by 10 microM Trp) of the purified fusion product (GST-ASA1) were comparable to anthranilate synthase purified from plants. Polyclonal antibodies raised against the fusion project and purified by affinity chromatography on a GST-ASA1-Sepharose column cross-reacted with a 61.5-kD protein in a partially purified anthranilate synthase preparation from corn seedlings. GST-ASA1 cleavage by thrombin, as well as site-directed mutagenesis modifications of the Trp allosteric site, inactivated the recombinant protein.  相似文献   

20.
The 1st step in the posttranslational hypusine [N(epsilon)-(4-amino-2-hydroxybutyl)lysine] modification of eukaryotic translation initiation factor 5A (eIF5A) is catalyzed by deoxyhypusine synthase (DHS). The eIF5A intermediate is subsequently hydroxylated by deoxyhypusine hydroxylase (DHH), thereby converting the eIF5A precursor into a biologically active protein. Depletion of eIF5A causes inhibition of cell growth, and the identification of eIF5A as a cofactor of the HIV Rev protein turns this host protein and therefore DHS into an interesting target for drugs against abnormal cell growth and/or HIV replication. The authors developed a 96-well format DHS assay applicable for the screening of DHS inhibitors. Using this assay, they demonstrate DHS inhibition by AXD455 (Semapimod, CNI-1493). This assay represents a powerful tool for the identification of new DHS inhibitors with potency against cancer and HIV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号