首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have purified TnsB, a transposition protein encoded by the bacterial transposon Tn7. The purification procedure involves three chromatographic steps (DNA-cellulose, norleucine-Sepharose, and phosphocellulose) and yields milligram quantities of highly purified protein. The apparent molecular mass of denatured TnsB protein is approximately 85 kDa. Gel filtration chromatography and sucrose gradient sedimentation studies indicate that in solution, native TnsB is a monomer of nonspherical shape. Using DNase I protection analysis, we established that TnsB is a sequence-specific DNA-binding protein that recognizes multiple sites in both ends of the transposon. The TnsB binding sites, three in the left end of Tn7 and four in the right end, are highly related in nucleotide sequence and are located in DNA segments that we have previously shown contain cis-acting sequences important for Tn7 transposition. Our results also show that one of the TnsB binding sites overlaps a proposed promoter for the transposition genes of Tn7. These studies suggest that the specific binding of TnsB to the ends of Tn7 mediates recombination and may also regulate the expression of Tn7-encoded transposition genes.  相似文献   

2.
We have used several high resolution methods to examine the interaction of TnsB, a transposition protein encoded by the bacterial transposon Tn7, with its binding sites at the ends of the transposon. These binding sites lie within the DNA segments that are directly involved in transposition. We show that the binding of TnsB to DNA can promote DNA bending, suggesting that the interaction of TnsB with the ends may result in formation of a highly organized protein-DNA complex. We also identify likely positions of close contact between of TnsB and its binding sites. Analysis of the interaction of TnsB with intact Tn7 ends reveals TnsB occupies its binding sites in a particular order, the sites immediately adjacent to the transposon termini being occupied only after other inner sites are bound. Such ordered occupancy suggests that the various binding sites have differing apparent affinities for TnsB.  相似文献   

3.
The bacterial transposon Tn7 encodes five transposition genes tnsABCDE. We report a simple and rapid procedure for the purification of TnsC protein. We show that purified TnsC is active in and required for Tn7 transposition in a cell-free recombination system. This finding demonstrates that TnsC participates directly in Tn7 transposition and explains the requirement for tnsC function in Tn7 transposition. We have found that TnsC binds adenine nucleotides and is thus a likely site of action of the essential ATP cofactor in Tn7 transposition. We also report that TnsC binds non-specifically to DNA in the presence of ATP or the generally non-hydrolyzable analogues AMP-PNP and ATP-gamma-S, and that TnsC displays little affinity for DNA in the presence of ADP. We speculate that TnsC plays a central role in the selection of target DNA during Tn7 transposition.  相似文献   

4.
In the presence of ATP and Mg(2+), the bacterial transposon Tn7 translocates via a cut and paste mechanism executed by the transposon-encoded proteins TnsA+TnsB+TnsC+TnsD. We report here that in the presence of Mn(2+), TnsA+TnsB alone can execute the DNA breakage and joining reactions of Tn7 recombination. ATP is not essential in this minimal system, revealing that this cofactor is not directly involved in the chemical steps of recombination. In both the TnsAB and TnsABC+D systems, recombination initiates with double-strand breaks at each transposon end that cut Tn7 away from flanking donor DNA. In the minimal system, breakage occurs predominantly at a single transposon end and the subsequent end-joining reactions are intramolecular, with the exposed 3' termini of a broken transposon end joining near the other end of the Tn7 element in the same donor molecule to form circular transposon species. In contrast, in TnsABC+D recombination, breaks occur at both ends of Tn7 and the two ends join to a target site on a different DNA molecule to form an intermolecular simple insertion. This demonstration of the capacity of TnsAB to execute breakage and joining reactions supports the view that these proteins form the Tn7 transposase.  相似文献   

5.
6.
Analysis of Tn7 transposition   总被引:12,自引:0,他引:12  
  相似文献   

7.
We have identified and characterized the cis-acting sequences at the termini of the bacterial transposon Tn7 that are necessary for its transposition. Tn7 participates in two kinds of transposition event: high-frequency transposition to a specific target site (attTn7) and low-frequency transposition to apparently random target sites. Our analyses suggest that the same sequences at the Tn7 ends are required for both transposition events. These sequences differ in length and nucleotide structure: about 150 base-pairs at the left end (Tn7L) and about 70 base-pairs at the right end (Tn7R) are necessary for efficient transposition. We also show that the ends of Tn7 are functionally distinct: a miniTn7 element containing two Tn7R ends is active in transposition but an element containing two Tn7L ends is not. We also report that the presence of Tn7's cis-acting transposition sequences anywhere in a target replicon inhibits subsequent insertion of another copy of Tn7 into either an attTn7 target site or into random target sites. The inhibition to an attTn7 target site is most pronounced when the Tn7 ends are immediately adjacent to attTn7. We also show that the presence of Tn7R's cis-acting transposition sequences in a target replicon is necessary and sufficient to inhibit subsequent Tn7 insertion into the target replicon.  相似文献   

8.
The bacterial transposon Tn7 exhibits target immunity, a process that prevents Tn7 from transposing into target DNAs that already contain a copy of the transposon. This work investigates the mechanism of target immunity in vitro. We demonstrate that two Tn7-encoded proteins_TnsB, which binds specifically to the ends of Tn7, and TnsC, the ATP-dependent DNA binding protein_act as a molecular switch to impose immunity on target DNAs containing Tn7 (or just Tn7 ends). TnsC binds to target DNA molecules and communicates with the Tn7 transposition machinery; here we show that target DNAs containing Tn7 ends are also bound and subsequently inactivated by TnsB. Protein-protein interactions between TnsB and TnsC appear to be responsible for this inactivation; the target DNA promotes these interactions by tethering TnsB and TnsC in high local concentration. An attractive model that emerges from this work is that TnsB triggers the dissociation of TnsC from the Tn7 end-containing target DNA; that dissociation depends on TnsC's ability to hydrolyze ATP. We propose that these interactions between TnsB and TnsC not only prevent Tn7 from inserting into itself, but also facilitate the selection of preferred target sites that is the hallmark of Tn7 transposition.  相似文献   

9.
A Arthur  E Nimmo  S Hettle    D Sherratt 《The EMBO journal》1984,3(8):1723-1729
Novel Tn1/3 derivatives that contained either two left- or two right-hand ends of the transposon were constructed in a small plasmid. Both transposed at reasonable frequencies to give normal transposition products, suggesting that only the 38-bp inverted repeats of Tn3 are essential for transposition. Plasmids containing transposon derivatives with only one end (either left or right) undergo transposase-dependent transposition between replicons at much lower frequencies, resulting in co-integrate molecules in which there is no substantial duplication of transposon DNA and that appear to be simple fusions of the two plasmids. Both the right and left halves of the transposon are separately able to confer transposition immunity to the plasmid, this immunity being inseparably linked to transposition proficiency and specificity.  相似文献   

10.
The Tn7 transposon avoids inserting into a target DNA that contains a pre-existing copy of Tn7. This phenomenon, known as 'target immunity', is established when TnsB, a Tn7 transposase subunit, binds to Tn7 sequences in the target DNA and mediates displacement of TnsC, a critical transposase activator, from the DNA. Paradoxically, TnsB-TnsC interactions are also required to promote transposon insertion. We have probed Tn7 target immunity by isolating TnsB mutants that mediate more frequent insertions into a potentially immune target DNA because they fail to provoke dissociation of TnsC from the DNA. We show that a single region of TnsB mediates the TnsB-TnsC interaction that underlies both target immunity and transposition, but that TnsA, the other transposase subunit, channels the TnsB-TnsC interaction toward transposition.  相似文献   

11.
We previously identified a protein activity from Saccharomyces cerevisiae, OBF1, that bound specifically to a DNA element present in autonomously replicating sequences ARS120 and ARS121 (S. Eisenberg C. Civalier, and B. K. Tye, Proc. Natl. Acad. Sci. USA 85:743-746, 1988). OBF1 has now been purified to near homogeneity by conventional protein and DNA affinity chromatography. Electrophoresis of the purified protein in sodium dodecyl sulfate-polyacrylamide gels revealed the presence of two polypeptides. The major protein band had a relative molecular size of 123 kilodaltons, and the minor protein band, which constituted only a small fraction of total protein, had a molecular size of 127 kilodaltons. Both polypeptides cochromatographed with the specific ARS120 DNA-binding activity and formed a stable protein-DNA complex, isolatable by sedimentation through sucrose gradients. Using antibodies, we have shown that both polypeptides are associated with the isolated protein-DNA complexes. The ARS DNA-binding activity had a Stokes radius of 54 A (5.4 nm) and a sedimentation coefficient of 4.28S, as determined by gel filtration and sedimentation through glycerol gradients, respectively. These physical parameters, together with the denatured molecular size values, suggested that the proteins exist in solution as asymmetric monomers. Since both polypeptides recognized identical sequences and had similar physical properties, they are probably related. In addition to binding to ARS120, we found that purified OBF1 bounds with equal affinity to ARS121 and with 5- and 10-fold-lower affinity to ARS1 and HMRE, respectively. Furthermore, in the accompanying paper (S. S. Walker, S. C. Francesconi, B. K. Tye, and S. Eisenberg, Mol. Cell. Biol. 9:2914-2921, 1989), we demonstrate the existence of a high, direct correlation between the ability of purify OBF1 to bind to ARS121 and optimal in vivo ARS121 activity as an origin of replication. These findings, taken together, suggest a role for OBF1 in ARS function, presumably at the level of initiation of DNA replication at the ARS.  相似文献   

12.
13.
P L Sharpe  N L Craig 《The EMBO journal》1998,17(19):5822-5831
The bacterial transposon Tn7 is distinguished by its ability to insert at a high frequency into a specific site in the Escherichia coli chromosome called attTn7. Tn7 insertion into attTn7 requires four Tn7-encoded transposition proteins: TnsA, TnsB, TnsC and TnsD. The selection of attTn7 is determined by TnsD, a sequence-specific DNA-binding protein. TnsD binds attTn7 and interacts with TnsABC, the core transposition machinery, which facilitates the insertion of Tn7 into attTn7. In this work, we report the identification of two host proteins, the ribosomal protein L29 and the acyl carrier protein (ACP), which together stimulate the binding of TnsD to attTn7. The combination of L29 and ACP also stimulates Tn7 transposition in vitro. Interestingly, mutations in L29 drastically decrease Tn7 transposition in vivo, and this effect of L29 on Tn7 transposition is specific for TnsABC+D reactions.  相似文献   

14.
An activity from Saccharomyces cerevisiae mitochondria was identified that specifically bound to a 12-nucleotide sequence, AAUAA(U/C)AUUCUU, that is a site for processing of pre-mRNAs so as to generate the mature 3' ends of mRNAs. Because processing occurs 3' to the end of the dodecamer site, all mRNAs in yeast mitochondria terminate with that sequence. RNase T1 digestion fragments which terminated precisely at their 3' ends with the dodecamer sequence bound the activity, indicating that mRNAs in vivo would be capable of binding. Gel mobility shift analyses using RNA oligonucleotides showed that binding was reduced by a U-to-A substitution at position 3 of the dodecamer sequence; a C-to-A substitution at position 10 eliminated binding. UV cross-linking identified three polypeptides with approximate molecular masses of 19, 60, and 70 kDa as constituents of the binding activity. These estimates included the contribution of the 32P-labeled RNA oligonucleotide used to tag these polypeptides. An oligonucleotide with a UA-->AU substitution at positions 3 and 4 of the dodecamer site formed complexes deficient in the 19-kDa species, suggesting that binding specificity was inherent to the higher-molecular-weight polypeptides. Assembly of the complex at a dodecamer site on an RNA protected sequences located 5' to the dodecamer site from digestion by a nucleoside triphosphate-dependent 3' exoribonuclease found in yeast mitochondria. Since mitochondrial mRNAs terminate with an intact dodecamer sequence, the binding activity may function in the stabilization of mRNAs in addition to 3'-end formation of mRNAs.  相似文献   

15.
D Haniford  N Kleckner 《The EMBO journal》1994,13(14):3401-3411
During Tn10 transposition, the transposon is fully excised from the donor site by double strand cleavages at the two ends of the element prior to integration at a new target site. Results presented here demonstrate that an interaction between the two transposon ends is required for double strand cleavage at either end. Furthermore, despite this essential interaction of ends, subsequent cleavages at the two ends can occur at observably distinct times prior to occurrence of strand transfer at either end. Moreover, the time between cleavages at the two ends is exaggerated by the presence of an appropriate mutation at one end of the element. Biological rationales for this constellation of mechanistic features are suggested. Additional results demonstrate that mutations at the three terminal basepairs of Tn10 confer defects subsequent to interaction of ends, in confirmation of inferences from genetic analysis. More specifically, mutations in bp 1-3 confer strong defects during conversion of the full excision intermediate to a complete strand transfer product; mutations in bp 1 and 2 also confer more subtle defects subsequent to interaction of ends but prior to full excision. Such defects might reflect roles for these basepairs in the chemical steps of transposition per se, the positioning of terminal residues for those chemical steps, and/or the coupling of cleavage(s) to subsequent conformational changes.  相似文献   

16.
Site-specific Tn7 transposition into the human genome   总被引:1,自引:0,他引:1       下载免费PDF全文
The bacterial transposon, Tn7, inserts into a single site in the Escherichia coli chromosome termed attTn7 via the sequence-specific DNA binding of the target selector protein, TnsD. The target DNA sequence required for Tn7 transposition is located within the C-terminus of the glucosamine synthetase (glmS) gene, which is an essential, highly conserved gene found ubiquitously from bacteria to humans. Here, we show that Tn7 can transpose in vitro adjacent to two potential targets in the human genome: the gfpt-1 and gfpt-2 sequences, the human analogs of glmS. The frequency of transposition adjacent to the human gfpt-1 target is comparable with the E.coli glmS target; the human gfpt-2 target shows reduced transposition. The binding of TnsD to these sequences mirrors the transposition activity. In contrast to the human gfpt sequences, Tn7 does not transpose adjacent to the gfa-1 sequence, the glmS analog in Saccharomyces cerevisiae. We also report that a nucleosome core particle assembled on the human gfpt-1 sequence reduces Tn7 transposition by likely impairing the accessibility of target DNA to the Tns proteins. We discuss the implications of these findings for the potential use of Tn7 as a site-specific DNA delivery agent for gene therapy.  相似文献   

17.
18.
A protein that binds to the recombination signal sequence (RS) of the immunoglobulin J kappa segment was purified almost to homogeneity from the nuclear extract of a murine pre-B cell line 38B9. A similar binding protein was found in lymphoid cell lines but not in non-lymphoid cell lines. The binding activity was associated with a polypeptide with a molecular weight of 60,000. DNase I footprinting analysis demonstrated that this binding protein interacted with the heptamer and several 3' bases close to the heptamer. The Kd value of the J kappa RS binding protein to the J kappa RS was 1 nM. One base substitution in the heptamer of the J kappa RS greatly reduced the affinity of the J kappa RS binding protein. The high specificity of the binding site of the J kappa RS binding protein suggests that this protein may be involved in V-J recombination.  相似文献   

19.
Ultraviolet (UV) light induces a variety of lesions in DNA of which the pyrimidine dimer represents the major species. Pyrimidine dimers exist as both a cyclobutane type and a 6-4' (pyrimidine-2'-one) photoproduct. We have purified a protein of M(r) approximately 125,000 from HeLa cell nuclei which binds efficiently to double-stranded DNA irradiated with UV light but not to undamaged DNA. This protein was designated UVBP1 (UV damage binding protein 1). UVBP1 did not recognise DNA damaged by cisplatin. Using oligonucleotides with a single dipyrimidine site for induction of UV photoproducts, binding of UVBP1 to a TC-containing substrate was shown to be more efficient than to substrates containing a TT, a CT or a CC pair. This binding specificity implies selective recognition of the 6-4' photoproduct. Further evidence for this was provided by the finding that hot alkali treatment of the substrate (which selectively hydrolyses 6-4' photoproducts) abrogated binding of UVBP1, whereas incubation with DNA photolyase to remove cyclobutane dimers did not. No detectable DNA helicase, ATPase or exonuclease activity was associated with the purified protein. We suggest that UVBP1 may be involved in the lesion recognition step of DNA excision repair and could contribute to the preferential repair of 6-4' photoproducts from the DNA of UV-irradiated mammalian cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号